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PREFACE

The human species as conscious creatures seem to have something special, namely a
particular organ - the brain - which can connect matter (physical entity) and mind (purely non-
physical) to each other in both directions. For example, humans can assign a meaning to a
physical entity; and they can also transform ideas into facts of the physical world. Through
the brain, humans seem to be a kind of transformer between both worlds. However, a lot of
mechanisms involved in this transformation have not been illuminated, yet.

The field of computer science (with its implications from information theory, neural networks
and the discussion about artificial intelligence) and biomedical engineering (with in vivo
measurements of body reactions) can contribute to solving the unanswered questions in
neuroscience. Especially the EEG, as a completely non-invasive technique, can be easily
applied in real world situations of humans. Moreover, it can give an image of the whole brain,
not only parts of it. For these reasons, EEG is a well-suited method for analyzing the
functions of the human brain in real world situations.

The English language, which 1 chose for this work, is not my native language. Despite
extensive proofreading, mistakes as well as false friends’ are probably not completely
eliminated. I hope this does not constrain the understanding of the meaning of this work.

Alois Schlogl
Graz, January 2000
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ABSTRACT

The problem of time-varying spectral analysis of the human EEG on a single trial basis is
addressed. For this purpose the adaptive autoregressive model was investigated, which has the
advantage to be well suited for on-line analysis, and requires a minimal number of parameters
for describing the spectrum. The principle of uncertainty of the resolution between time- and
frequency domain was reformulated into terms of a time-varying AR model, whereby the
model order and the update coefficients correspond to the frequency- and time-resolution,
respectively. Eighty-eight versions of AAR estimation algorithms (Kalman filtering, RLS,
LMS and recursive AR techniques) were investigated. A criterion based on the one-step
prediction error for the goodness-of-fit was defined. This criterion proved to be useful for
determining free parameters like the model order, update coefficients and estimation
algorithm.

The AAR model was applied to the single trial classification of off-line BCI data, for the on-
line analysis of EEG patterns, for detecting transient events like muscle and movement
artifacts and for sleep analysis. The AAR parameters were combined and further analyzed
with a multivariate classifier; whereby linear discriminant analysis showed to be very useful.
Accordingly, one obtains a time course of an error rate and the average and variance of the
classification output. This shows well the dynamics of the EEG spectra. Furthermore, the
classification output can be calculated on-line and provides the BCI feedback for subject
training. This was used to develop a new paradigm in the Graz BCI system. The amount of
(useful) information of the classification output is also estimated.

The method of inverse autoregressive filtering for detecting transient events was modified to
adaptive inverse autoregressive filtering. It was used to detect artifacts within the sleep EEG.
This is useful because the spectrum of sleep EEG changes with time and many artifacts are
observed in EEG recordings. It is demonstrated how an AAR estimation algorithm reacts in
case of a transient event; the detection quality for various types of artifacts was evaluated with
the method of ROC-curves. The area-under-the-curve (AUC) was larger than 0.85 for muscle
and movement artifacts. The AAR parameters were also used for the automated analysis of
sleep EEG. In combination with a linear discriminant analysis, time courses were obtained
which can be related to the expert scoring of sleep stages.

In summarys, it is shown that the AAR method is convenient; no instabilities of the estimation
algorithms occur, at least when the update coefficient and the model order are properly
chosen. Two physiological models for EEG rhythms are discussed, and it is shown that there
is a corresponding ARMA model. It can be expected that the criterion, which was introduced
for comparing AAR models, is also useful for comparing other models (e.g. bi- and
multivariate, non-linear, physiological reasoned, etc.) for time-varying spectrum including
higher order spectra.
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KURZFASSUNG

Das Problem der zeitvarianten Spektralanalyse beim menschlichen Elektroenzephalogramm
ohne Anwendung von Mittelung wird behandelt. Dazu wird ein adaptives autoregressives
Modell untersucht, welches gut fiir die Echtzeitberechung geeignet ist und eine minimale
Anzahl von Parametern zur Beschreibung des Spektrums benétigt. Die Unschirferelation
zwischen Zeit- und Frequenzauflosung wird auf das Gebiet der zeit-verdnderlichen
autoregressiven Modelle iibertragen. Dabei entsprechen die Ordnung des Modells der
Frequenzauflosung und der Adaptionsfaktor der Zeitauflosung. Insgesamt wurden 88
unterschiedliche Varianten von Schitzalgorithmen (Kalman filtern, RLS, LMS und rekursive
Verfahren) untersucht. Ein Kriterium, basierend auf dem Vorhersagefehler, wurde als MaB fiir
die Qualitit eines AAR Schitzers eingefiihrt. Dieses Kriterium wurde zur Bestimmung der
Modellordung, des Adaptionskoeffizienten, sowie zum Vergleich der verschiedenen
Schitzverfahren, angewandt.

Das AAR-Modell wurde zur Offline-Klassifikation von BCI-Daten (ohne Verwendung von
Mittelungsverfahren), zur Online-analyse von EEG-Mustern, zur Detektion von Muskel- und
Bewegungsartefakten und zur Schlafanalyse verwendet. In Kombination mit einem
Klassifikator - die Linear Diskriminanzanalyse zeigte sich brauchbar - wurden die AAR -
Parameter zusammengefal3t und weiter analysiert. Daraus konnte ein Zeitverlauf der
Fehlerrate, des Durchschnitts und die Varianz des Klassifikationsergebnisses bestimmt
werden. Dies stellt deutlich den zeitlichen Verlauf der Dynamik von EEG-Spektren dar. Das
Klassifikationsergebnis kann auch online berechnet werden um Personen eine Riickkopplung
beim Trainieren mit einem BCI zu geben. Daraus wurde ein neues Paradigma im Grazer BCI-
System entwickelt. SchlieBlich wurde auch eine Schitzung des Informationsgehaltes des
Klassifikationsergebnisses durchgefiihrt

Die Methode von "Inversen Autoregressiven Filter" zur Detektion von transienten
(kurzfristigen) Ereignissen, wurde zu "Adaptiven Inversen Autoregressiven Filter"
modifiziert. Dieses Verfahren wurde zur Detektion von Artefakten im Schlaf-EEG eingesetzt.
Dies ist sinnvoll, da sich das Spektrum des Schlaf-EEG's dndert und Artefakte enthilt. Dabei
wurde auch untersucht wie sich die Schitzalgorithmen im Falle eines solchen transienten
Ereignisses verhalten. Die Qualitdt der Detektion wurde mittels ROC-Kurven analysiert,
dabei zeigte sich daf} die Flache unter der ROC-Kurve fiir Muskel- und Bewegungsartefakte
jeweils groBer als 0.85 ist. Weiters wurden die AAR-Parameter auch fiir die automatische
Analyse des Schlaf-EEG's angewandt. Unter Verwendung der Linearen Diskriminanzanalyse
wurden Verlaufskurven ermittelt, welche in Beziehung zur Analyse durch Experten gesetzt
wurden.

Zusammenfassend kann gesagt werden, daB3 die Methode der AAR-Parameter brauchbar ist;
es traten keine Instabilititen bei der Berechnung auf, sofern die Modellordnung und der
Adaptionskoeffizient geeignet gewihlt wurde. Zwei physiologisch begriindete Modelle
wurden diskutiert, wobei gezeigt werden konnte, dal ein entsprechendes ARMA - Modell
existiert. Dasselbe Kriterium, welches zur Wahl des optimalen AAR - Modells verwendet
wurde, konnte auch fiir den Vergleich von anderen Modellen wie z.B. bi- und multivariaten,
nicht-linearen  bzw. physiologisch  begriindeten = Modellen  verwendet  werden.



PART I: BACKGROUND



1. Introduction

1.1  Generation and dynamics of EEG

Measurement and analysis of the human electroencephalogram (EEG) can be traced back to
Berger (1929). The EEG measures the electrical activity of the brain, and is recorded on the
head surface. It has the advantage of being a non-invasive technique and showed to be
interesting in many fields related to neuroscience (physiology, psychology, neurology,
psychiatry, etc.) (Niedermeyer and Lopes da Silva, 1999). The neuro-physiological basis of
the EEG is the electrical field potential. The field potential is caused by secondary ionic
currents, which stem from potential gradients of action potentials. (Speckmann and Elger,
1994). These action potentials are pulses of membrane depolarization travelling along the
axons of neurons. The pulses can exhibit or inhibit through synapses the depolarization of
other, postsynaptic, neurons. A series of pulses, or spike trains, can be seen as the coded
information processes in the neural network. Rieke et al. (1997) provide a mathematical
framework for the information encoding and emphasizes that each single spike is substantial.

An important link is the relation between these spike trains and the observed EEG patterns.
Several works show the relationship between spike trains and EEG patterns like sleep
spindles, k-complexes, alpha waves, delta, theta and beta rhythms (for review see Steriade et
al. 1990, Lopes da Silva 1991, Steriade 1999). They discuss the different types of EEG
oscillations, to which underlying spike train patterns they are related and which brain areas
are involved.

EEG oscillations and rhythms were investigated in many fields, in cognitive and memory
performance (Klimesch 1999), in terms of their relationship to the sleep process (Achermann
and Borbely, 1997). Spectral changes are also used for modeling the sleep process (Merica
and Fortune, 1997). Moreover, oscillations play an important role in the brain wave theory of
Nunez (1995) which considers the ’global’ (whole head) EEG dynamics. Furthermore, the
relationship between functional meaning and rhythms (Basar et al. 1999), e.g. synchronization
and desynchronization (Pfurtscheller and Lopes da Silva 1999ab) seems to be very
interesting and important.

In order to identify the spectrum, the EEG patterns must be averaged or, otherwise, very long
stationary segments are needed. The assumption of long stationary segments is difficult to
obtain. Stationarity can not be always assumed; and even if stationarity can be assumed, the
time resolution is lost. For this reason, averaging (of an ensemble of similar trials) is often
used as a method for increasing the time resolution. In case of averaging, one must take care
about various factors. Maturation, age, sex, state-of-consciousness (e.g. sleep and wake),
psychiatric and neurological disorders (epilepsy, parkinsonism, metabolic brain disorders,
etc.), brain injury, stroke, drug effects, mental tasks, etc. as well as other subject-specific
(individual) factors influence the EEG patters. It is the aim of EEG research to enlighten the
relationship between these factors and the EEG patterns. Often, the need for averaging hides
these relationships and thus it is a limiting factor in EEG analysis.

In this work, methods for the analysis of time-varying EEG spectra will be investigated which
do not need averaging. In order to determine the frequency spectra of the EEG, autoregressive
(AR) parameters are used (Lustick et al. 1968, Fenwick et al. 1969, 1979, 1971, Zetterberg,
1969, Gersch, 1970), Pfurtscheller and Haring, 1972, Florian and Pfurtscheller, 1995). The
main reasons are: firstly, efficient AR estimation algorithms are available, which can be also
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used on-line, secondly, an AR model considers quite well the stochastic behavior of the
(ongoing) EEG and has some tradition in EEG analysis; and thirdly, the AR-spectrum is a
maximum entropy spectral estimator (Burg 1967, 1975, Priestley, 1981, Haykin, 1996). In
other words, a small number of parameters describe the spectrum most accurately without the
need for averaging. Two applications for time-varying spectral analysis of the EEG are the
automated sleep analysis system and the EEG-based Brain Computer Interface (BCI).

1.2 Sleep analysis

EEG-based sleep analysis can be traced back to Loomis et al. (1937, 1938), who already
observed different sleep stages. After the discovery of the rapid-eye-movement (REM) by
Aserinsky and Kleitman (1953), the different sleep stages were classified into Wake (W),
drowsiness (1), light sleep (2), deep sleep (3), very deep sleep (4) and REM (Dement and
Kleitman, 1957). Standardized scoring rules were set up by Rechtschaffen and Kales (1968)
(R&K) which is still the only generally accepted standard for sleep scoring.

Figure 1: Hypnogram, describing the different sleep stages during night. The recording lasts from
ca. 11pm to 7am. W, R, and 1-4 described the wake state, REM, and the four sleep stages,
respectively; M indicates movement.

Many attempts were performed in order to automate sleep stage scoring (Larsen and Walter
1970, Smith and Karacan, 1971, Smith et al. 1975, Principe and Smith 1986, Kemp et al.
1987, Principe et al. 1989, Jansen and Dawant 1989, Jobert et al. 1989, Roberts and
Tarasenko 1992, Nielsen, 1993, Nielsen et al. 1994, Kubat et al. 1993, 1994, Kemp, 1993).
Although, the R&K manual has been criticized (Kubicki et al. 1982, Kubicki and Hermann,
1996) and it was shown (Haustein et al. 1986, Stanus et al. 1987, Hasan et al. 1993) that
variability of human scorers is as large as the differences between a human scorer and an
automated analysis system, no generally accepted standard for an automated sleep analysis
system was obtained, yet. Some promising approaches (Kemp 1993, Nielsen 1993, Roberts
and Tarasenko 1992, Hasan 1996) consist of basically two processing steps, a feature
extractor and a combiner. The feature extractors are basically signal processing methods,
including preprocessing like artifact processing; the combiner which might be a neural
network-based classifier or a statistical quantifier, etc. These concepts were considered in the
European research project on "A new Standard for Integrating polygraphic sleep recordings
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into a comprehensive model of human sleep and its validation in sleep disorders" (SIESTA,
Dorffner, 1998).

1.3  Brain computer interface

An EEG-based brain computer interface (BCI) is a device, which enables people to control
devices by their EEG patterns. This would allow a direct way to transform mental activity into
physical effects without using any muscles. It might be helpful for patients with severe motor
disabilities (Vidal 1973, Wolpaw et al. 1994) e.g. amyotrophic lateral sclerosis (ALS) (Elder
et al. 1982) or the locked-in syndrome. Bauby (1996) describes his own case by dictating his
experience with his eye lid movements only. A further application is to use the EEG for
biofeedback. This would be an alternative in the treatment of headache and pains without
using sedative drugs (Birbaumer, 1999).

Classification EEG processing,
@ (LDA) feature extraction

Time-varying distance

Figure 2: Scheme of an EEG-based BCI with feedback. The EEG from the subject’s scalp is
recorded (A); then it has to be processed on-line (B); next the extracted features are combined

and classified (C); the output can be used to control a device, e.g. a cursor on a computer screen
(D); simultaneously, the output provides feedback to the subject.

The 1dea of a BCI (see Fig. 2) is that different thoughts result in different EEG patterns on the
surface of the scalp. Various attempts were made to analyze these patterns e.g. the power in
specific frequency bands (McFarland et al. 1993, 1997, Wolpaw et al. 1991, 1994) or slow
potential changes (Birbaumer et al. 1981) were used. The Graz BCI system mainly used the
power on selected frequency bands (Flotzinger et al. 1994, Pregenzer et al., 1994, Kalcher, et
al. 1996, Pfurtscheller et al. 1996, 1997, 1998)

The feedback is important for the subject in order to learn what to concentrate on to fulfill the
task. Several issues must be addressed. Firstly, many different feature extraction methods
with several degrees of freedom are available. An prerequisite is also that the method can be
used on-line and in real-time. Thus, one issue is to decide which signal processing method
should be used for EEG feature extraction. Secondly, the number of extracted features must
be combined and reduced to one single parameter. Even with an autoregressive model, which
uses only a few coefficients for spectrum representation, p parameters per channel are
obtained. Other methods yield even more parameters. Therefore, one has to think about
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reducing the number of parameters. For this purpose statistical or a neural network-based
classifier can be used. In order to apply the classifier online, it must be available in advance.
Usually, the classifier has to be learned (trained) from previous BCI recordings (e.g. without
feedback), which is a third issue. Fourthly, the kind of feedback and the presentation of the
classification output to the subject is important, because the feedback should enable the
subject to learn how to control the EEG patterns. The feedback must contain useful
information in order be supportive for this process. All these issues must be addressed in a
BCI approach.

14 Goal

Theoretical considerations let assume that adaptive autoregressive (AAR) parameters are very
appropriate for time-varying spectral analysis of the EEG. Because of the adaptive behavior,
the estimation algorithms are very suitable for on-line application. Time-varying spectral
analysis of the EEG has an important role in sleep analysis, too. In this work, the estimation
algorithms of AAR model parameters and the difficulties that arise in AAR modeling are
investigated. The AAR method is applied to the sleep EEG and the BCI approach; it will be
discussed whether AAR parameters are useful in these applications.

This work is divided into four parts. The first part contains an introduction and presents some,
selected, EEG models. The second part deals with the adaptive autoregressive (AAR) model.
A criterion for the goodness-of-fit of the model estimates is introduced and the idea of inverse
filtering is extended to adaptive inverse filtering. One chapter analyses different estimation
algorithms, based on the mentioned criterion.

The third part contains applications of the AAR model. It is shown that artifacts frequently
occur in the sleep EEG and must be considered seriously. Quality control of the available data
is performed; some artifact processing methods are discussed and it is shown how adaptive
inverse filtering can be used for the detection of muscle and movement artifacts. One chapter
compares different EEG parameter for single-trial analysis (STA), which is followed by the
off-line analysis of data from EEG-based Brain-Computer-Interface (BCI). This is also the
basis for introducing a new BCI paradigm. The final part summarizes the results of AAR
modeling and its applications. The appendix contains a list of abbreviations, an index list and
a listing of the data used. Also, a solution for the problem that AR parameters of different
sampling rates can be usually not compared, is presented.



2. EEG models

Many models about the functioning of the brain are available. They range from hippocampal
networks, compartment models, lumped circuit models (Lopes da Silva et al. 1974, Zetterberg
et al. 1978, Suffczinsky et al. 1999) to global models of brain dynamics (Nunez, 1995). In the
following sections, some selected models are discussed in more detail. Firstly, the
autoregressive (AR) and autoregressive moving average (ARMA) models are pure
mathematical models of the EEG. Therefore, the AR (and ARMA) analysis methods are often
denoted as parametric methods. However, these are very powerful models because they are
able to describe completely the second order statistics of a time series which includes spectral
analysis. Burg (1967) showed that an AR-spectrum is a maximum entropy spectrum and,
hence, describes the spectral density function most accurately with a minimum number of
parameter.

Two examples of more physiological models are also presented. One is the feedback loop
model which was introduced by Kemp and Blom (1981). It is argued that this model is more
realistic than a purely mathematical model like an AR model, because it models a feedback
loop similar to the feedback loop between thalamus and cortex. The feedback loop model
"departures from physiological reality, but ... maintains ... main common properties (of the
EEG)" (Kemp and Blom, 1981).

Another model is the lumped circuit model which is used for describing the alpha rhythm of
the thalamus (Lopes da Silva et al. 1974). The parameters are derived from biological
measurements and describe the interaction between thalamo-cortical (TCR) and reticular
nucleus (RE) neuronal populations. The model can show linear as well as non-linear behavior
(Zetterberg et al. 1978) and is able to explain the interaction between different spatial
populations (Suffczynski et al. 1999). This is the physiologically most-reasoned model.

2.1 The autoregressive model

The use of autoregressive models in EEG analysis can be traced back to Lustick et al. (1968),
Fenwick et al. (1969, 1979, 1971), Zetterberg, (1969) and Gersch, (1970). An attraction of
AR modeling was that efficient algorithms for parameter estimation are available (Levinson,
1947, Durbin, 1960, Pfurtscheller and Haring 1972). Nowadays, the efficient estimation
algorithms are still an important advantage of autoregressive modeling. Zetterberg (1969),
Isaksson and Wennberg (1975), and Isaksson et al. (1981) showed the usefulness of
autoregressive models (Fig. 3) for spectral parameter analysis (SPA) of the EEG.

A 4

Figure 3: Scheme of an autoregressive model. It is assumed that the observed EEG Y; can be
described by white noise X; filtered with the AR model. The AR method is also denoted as
parametric method, because the parameters of a model are used to characterize the EEG.



An AR model is quite simple and useful for describing the stochastic behavior of a time
series. This is described by the following equation

yk:al*yk_l + ... +ap*yk_p+xk (2])
with
X = N{0, G:.2). (2.2)

Xx 1s a zero-mean-Gaussian-noise process with variance o,?; the index k is an integer number
and describes discrete, equidistant time points. The time ¢ in seconds is ¢t = k / fy = k*AT with
the sampling rate f, and the sampling interval AT = 1/fy. yi; with i = 1..p are the p previous
sample values, p is the order of the AR model and a; are the AR model parameter. For
simplicity, the vector notation is introduced for the AR parameters and the vector Y.; consists
of the past p samples

a=la,..,a)]" ’ (2.3)
Yiii = [Vt oo s Yipl (2.4)

Accordingly the AR model can be written as

yi=a Y + x (2.5)
and the transfer function in the Z-domain is

Y(z)/X(z) = 11 - a;*c" - ... - ay*77). (2.6)

The AR model can also be seen as a linear filter with random noise input. The output process
is stationary iff all poles (i.e. roots of the denominator) of the transfer function are inside the
unit circle. While random noise has a flat spectrum, the spectrum of the model output (i.e. the
observed EEG) is determined completely by the AR parameter. The AR model also explains
the spectral composition of a signal (shortly the AR spectrum)

S(f) — Y(Z, Z:ejZm‘AT)
S(f) =0/ (1-Ziaie ?™4T) i=1.p (2.7)

with the sampling interval AT = I/fy. Based on the works of Burg (1967, 1975), Haykin
(1996) refers to the formula of equation (2.7) as the maximum entropy method (MEM) for
spectral estimation. Basically, the AR model is able to describe weak stationary processes. In
case of an AR model, the EEG is considered as a filtered white noise process.

Once the AR parameters are identified, they can be applied inversely to the observed process.
In this case, transient events can be identified within colored background noise. Bodenstein
and Praetorius (1977), Praetorius et al. (1977) and Lopes da Silva et al. (1977) applied it in
order to identify spikes and transient phenomena in the EEG. The basic idea is that in a first
step, the AR parameters of some EEG segments are identified. In the second step, the AR
filter parameters are applied inversely to the EEG (see Fig. 9). Transient phenomena are
detected from this inverse filtered process. In chapter 8, this idea is extended to adaptive
inverse autoregressive modeling in order to detection transient events in the (non-stationary)
sleep EEG.



An important issue in AR modeling is the selection of the model order. Many different criteria
are defined; Haring (1975) describes 12 methods for model order selection and compared
these methods in EEG data. Nowadays, the most common criteria are final prediction error
(FPE, Akaike, 1969), and the Akaike information criterion (AIC, Akaike, 1974), the Bayesian
AIC (BIC, Akaike, 1979), the minimum description length (MDL, Rissanen 1978, 1983), the
CAT criterion (Parzen, 1977), Schwartz’ (1978) bayesian criterion and the Phi-criterion
(Hannan 1980, Hannan and Quinn, 1979). The various model order selection criteria are
discussed in Priestley (1991), Marple (1987), Wei (1990) and Pukkila (1988).

Despite the great number of criteria, less conclusive results about the optimal AR model order
in EEG analysis are available. Jansen et al (1981) found that a fifth order model is sufficient
in 90% of the cases. But he stated further, 'visual inspection of the resulting spectra revealed
that the order indicated by the FPE criterion is generally too low and better spectra can be
obtained using a tenth-order AR model.’. Vaz et al. (1987) reports that the most consistent
model order estimation was provided by the MDL criterion of Rissanen (1978). The study
showed that ‘a 5th order AR model represents adequately 1- or 2-s EEG segments with the
exception of featureless background, where higher order models are necessary’. Shinn Yih
Tseng et al. (1995) found that the average model order on 900 segments of 1.024s is 8.67.
Florian and Pfurtscheller (1995) used an order of p=11 and found no differences for p=9..13.
One reason for the difficulties of order selection in EEG modeling might be that the optimal
model order depends on the length of the observed (investigated) segment, the sampling rate
and EEG-specific properties like the number of frequency components. Because of these
difficulties, the model order was often chosen twice the expected number of frequency
components plus one for the low-frequency component.

2.2 The autoregressive-moving-average model

An AR model can easily be extended to an ARMA model. An ARMA(p,q) model is described
by equation (2.8) with

Vi = a]*yk_] + ... + ap*yk_p +
+ X+ b + .+ byFx, (2.8)

In this case, the vector notation is

a=/[a..,a,b, .., byJ" ; (2.9)
Yiii = [ty oo s Yeps Xl - s Xkgl (2.10)

The transfer-function in the Z-domain is

Y(zV/X(z) = (1 + by*z7" + .. + b2 - a;*z" - ... - a,%2?).  (2.11)
The time-varying ARMA(p,q) spectrum is

S(f) =0 * (1+Zby*e? ™A1 )/ (1-Za* /7T 1=1.q, i=1..p (2.12)
with the sampling interval AT = 1/f, .

In principle, the same model order selection criteria as for AR models can be applied.
However, two parameter, p and ¢, instead of one must be identified a-priori. Shinn Yih Tseng
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et al. (1995) found that the optimal model order is on average 8.67 and 6.17 for an AR and
ARMA model, respectively. However, they found that the AR model can efficiently represent
about 96% of the 900 segments, and the ARMA model can efficiently represent only about
78% of them. The authors, therefore, conclude that the AR model is preferable for estimating
EEG signals.

Refering to Isaksson (1975), Blechschmid (1982) states that an argument against the use of an
ARMA model is that the power spectrum can be negative. The meaning of such negative
power would be unknown. Haykin (1996) writes "an important feature of the MEM spectrum
is that it is nonnegative at all frequencies, which is precisely the way it should be". In other
words, only the AR-spectrum (2.7) but not an ARMA spectrum (2.12) is a maximum entropy
method (MEM).

2.3 Kemp’s feedback loop model

The feedback loop model (Kemp and Blom, 1981, Kemp 1983) is a simple model, using a
bandpass in a feedback loop and a low-pass filter for modeling the volume conduction effect
(Fig 4). Similar to an AR model, the feedback loop model is a white noise driven, parametric
model for the EEG. The model is able to explain variations of one frequency component by
varying one parameter, the feedback gain factor p(f). This means the sychronization and
desynchronization is explained solely by the feedback gain factor p. Kemp’s model was used
to measure alpha attenuation (Kemp 1983) and to analyze sleep EEG (Mortazaev, et al. 1995).

Figure 4: Feedback loop model (Kemp, 1983). v, is random noise input, L is a low-pass that
considers the volume conduction effect, G is a bandpass of the dominant frequency component, p
is the feedback gain factor, y, is the model output, i.e. the observed EEG (adapted from Schlégl et
al. 1998b).

It is assumed that the EEG is generated by a white noise driven system, where the strength of
the feedback is modulated by the gain factor p. According to Kemp and Lopes da Silva
(1991), the model is described by the following equations:

U= CoYk + C1 Vi1 (2.15)
Sk=daj Sk-1 + az Sk-2 +boyk+b] Vk-1 +b2yk (2]6)
Ui = Vk+p*Sk_] (2]7)



with

co= 1/2+1/2n)F,/F. (2.18)
¢ = 12-1/2n)F,/F. (2.19)
a1 = (8-2.(27Fy/ Fy)2) / (4+(27Fy / F,)*+47B / F,) (2.20)
> = (-4+47B / F-(27Fy / F,)?) / (4+(27F, / F,)*+47B / F,) (2.21)
bo = 47B(1/7/F+1/F,) / (4+(27F, / F,)*+47B / F,) (2.22)
b= 4.B(-2/F.)/ (4+(27F o/ F,)*+47B / F,) (2.23)
by = 4. TB(1/7F. - 1/F,)/ (4+(27F o/F,)+47B / F,) (2.24)

F. is the low-pass cut-off frequency of L, F\y and B are the mean frequency and the bandwidth
of the band-pass G in the feedback loop. For time-discrete systems the frequency F, should be

pre-warped (Oppenheim and Schafer, 1975)

F.=F *arctan(r F./F,)/ 7 (2.25)
Using the Z-transformation, the convolution operator (2.16-17) can be replaced by the
multiplication

U(z) = V(z) + p *S(2)* 2! (2.26)

S(z) = G(z) *U(z) (2.27)

Y(z) = L(z) * U(z) (2.28)

L(z) and G(z) can be derived from equations (2.15-16,) and (2.27-28)

Uz) =coY(2)+c; Y(z). 7' (2.29)
Lz)=Y(z)/U(z)=1/(co+c1z')=1/C(z) (2.30)
S(z)=a;S(z) 7" +a;S(z) 27 + bo Y(z) + b1 Y(z) 7' + b2 Y(2) 27
(2.31)
Y(z)/5(z) = L(z) G'(z) =
=(l-a17"-ay2?)/(bo+ br 7" + b2 27) (2.32)
G(z) = (bp+ b, 7'+ b, z‘z)/[(] ~ar 7 - a z'z) *(co+ ¢y z_])]
=B(z)/[A(z) C(z) ] (2.33)
The feedback loop has the following (forward) transfer function
Uz)/V(z) = 1/[1 -pz’ G(z)] (2.34)
The input-output analysis gives a transfer function of
H(z)=Y(z)/V(z) = [Y(z)/U(zZ)] . [U(z) / V(z)] = (2.35)

=L(z)/[1-pZ" G()] =[1/C(z)] / [1-pz' B(z)/[Az) C(z) ] ]

H(z) = A(z)/ [A(z)C(z) - p 7" B(z)] (2.36)
=(l-a;7"-a2 )/ [(1-a1 7" a2 2°) (co+ 1 Z") - p(bo 2" + b1 27 + b2 27)]

H(z)=co' (1-a;7"-a:7%)/ ...
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./ [1-(aj-ci/co-p bo/co) 7'+ (a2 - a; ei/ey - pbi/co) 22+ (az ci/cy - p ba/cp) 7]
(2.37)

Equation (2.37) represents the transfer function of the feedback loop model and exhibits that
it is an ARMA(3,2) model with a normalizing factor of 1/cy

Yk -( ar-ci/co-p bo/co) Y1 + (az - aj ci/co - p bi/co) yr-2+ (az ci/co - p ba/co) yr-3 =

= 1/co (Vi - aj Viep - a2 Vi) (2.38)
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Figure 5: Transfer function of the feedback loop model for different gain factors p. (adapted from
Schldgl et al. 1998b). The sampling rate is Fs = 100Hz, the low pass with cut-off frequency F; =
1.8Hz, center frequency F, =10Hz, bandwidth B = 4 Hz. The filter coefficients can be calculated
by equations (2.18-24); the frequency response h(f) is obtained by H(z) with z=exp(j2n/Fs™f) (left
side). The pole-zeros diagram (in the complex Z-plane) is displayed at the right side. There is one
pole (x) on the real axis (representing the low-pass) and a conjugate complex pair of zeros and
poles. In case p = 0, the poles and zeros are equal and diminish. Increasing the feedback gain p
results in moving of the poles towards the unit circle, while the zeros are constant.

Fig. 5. shows that an increase of the feedback gain p also increases the 10Hz-component. A
variation in time of the gain factor modulates the amplitude of this spectral component. The
model explains variations of one frequency component in the EEG by a variation of a gain
factor in a feedback loop. The low-pass cut-off frequency F., the center frequency Fy and
bandwidth B must be known or have do be determined a-priori. In any case, variations of
these terms are neglected. This is a disadvantage; an AR model does not need such
assumptions. Individual variations are considered within the estimated parameter. However,
the feedback loop model explains how an internal state-dependant variable can modulate the
EEG spectrum. The above derivation shows that an EEG that is generated with Kemp’s
feedback loop model can be equally described by an ARMA(3,2) model. (Schlogl et al.
1998b).
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24  The lumped circuit model

The lumped circuit model describes the behavior of a large population of neurons (Lopes da
Silva et al. 1974, Zetterberg et al. 1978). The lumped model can be positioned between
models of single cells and global models of EEG dynamics (Suffczinski et al. 1999). The
lumped circuit model explains how the feedback loops between TCR and RE cells can
generate the EEG alpha rhythm (ca. 8-13 Hz) (Lopes da Silva et al. 1974) and non-linear
dynamics. Suffczinsky et al. (1999) extended the lumped circuit model to two and more
modules and could explain the antagonistic ERD/ERS behavior of neighboring modules.

P(t)

h,(t)

T V(D) V) E(t) '
E

A 4

hy(t

N
A

(&)
(V)

1(t) Vi(t)

Figure 6: Block diagram of the lumped circuit model for a simplified alpha rhythm model. The
thalamo-cortical relay (TCR) cells are represented by two input devices hq(t) and h(t). These
generate potentials which stimulate an excitatory and an inhibitory postsynaptic potential (EPSP
and IPSP). he(t) and (V) model the RE cells in the feedback loop. fz(V) and f,(V) represent the
spike generating process; E(t), I(t) and P(t) are pulse train densities at the TCR output, the RE
output and the excitatory TCR input, respectively. The constant ¢, represents the number of RE
cells to which one TCR cell projects and ¢, is the number of TCR neurons to which one RE
projects. V(1) and V(1) represent the average membrane potential at the excitatory and inhibitory
population, respectively. (Adapted from Lopes da Silva et al. 1974)

h(t)

Figure 6 shows a lumped circuit model for an alpha rhythm model. The average excitatory
potential Vi(t) is the potential which can be measured on the head surface as EEG. The
transfer function of the model in the Laplace-domain is given by (Lopes da Silva et al. 1974,
Suffczinski et al. 1999)

Ve(s)/P(s) = A (ax-a;) (s+b3) (s + by) /((s + a;) (s+az) (s+b2) (s + b;)+K)
(2.39)

with the feedback gain
K =cjc2q.qi(axap) (by-b;) AB (2.40)

The values of the parameter are provided in Suffczinski et al. (1999). The transfer function 1is
linear up to a critical value of the feedback gain K. = 3.74ES8 s The transfer function in the
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Laplace domain V(s)/P(s) can be transformed into the Z-domain by applying the bilinear
transformation

s =2F(z-1)/(z+1) (2.44)
0 ‘ :
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Figure 7: Transfer function of the lumped alpha rhythm model. The left figure shows the spectral
density function of the transfer function; the right figure shows the pole-zeros diagram (for a
sampling rate of 100Hz). The parameter were chosen accordingly to Suffczinsky et al. (1999). The
pole-zeros diagram shows that all poles and zeros (except one pole pair) are on the real axis. The
conjugate complex pair of poles moves with increasing K towards the unit circle. Simultaneously,
this pole-pair also changes the angle, which corresponds to the shift in the center frequency.

The result of the bilinear transformation shows that the transfer function V’(z)/P’(z) is an
ARMA(4,4) model. Fig. 7 shows the spectral density function and the pole-zero diagram for
various feedback gains K. In case of a random noise input P(z) (which is actually assumed)
the frequency spectrum of Vg is the same as the spectrum of the transfer function. In summary
can be said, while the feedback gain K of the lumped model is below a critical value, an
equivalent ARMA model can be found and the alpha rhythm of the EEG can be explained.
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PART II: THE ADAPTIVE AUTOREGRESSIVE MODEL
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3. Theoretical considerations

3.1 Non-stationarity

A classical approach for estimating time-varying AR-parameter is the segmentation based
approach. In this case, the data is divided into short segments and the AR parameters are
estimated from each segment. The result is a time-course of the AR parameters that describes
the time-varying characteristics of the process. The segment length determines the accuracy of
the estimated parameters and defines the resolution in time. The shorter the segment-length,
the higher is the time resolution but this has the disadvantage of an increasing error of the AR
estimates.
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Figure 8: Exponential and a rectangular window. The upper panel displays the two types of
windows in the time domain. The rectangle is 100 samples long, the exponential window has a
time constant of 100 samples, and the area under both windows is 100. The lower panel displays
the Fourier transform of both window functions. The smooth curve corresponds to the exponential
window.

Basically, the segmentation based methods (Jansen et al. 1981, Florian and Pfurtscheller,
1995) implicitly use a rectangular window for the convolution; sometimes also a triangular
window is used. The adaptive algorithms (LMS, RLS, etc., Akay, 1994, Patomiki et al. 1995,
1996, Bianchi et al. 1997) applied implicitly a one-sided window similar or equal to an
exponential window. Beside these two major groups of algorithms, also time-varying AR
estimation with some optimize windowing function can be found (Kaipio and Karjaleinen,
1997a,b, Bianchi et al. 1997). The window function is important because it determines the
resolution in the time- and frequency domain.
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Comparing the different approaches requires the consideration of many factors.
Segmentation-based approaches can select segments subsequently, otherwise an overlap can
be considered. If the overlap is the segment length minor 1, we speak of a sliding window
approach. Only this type of algorithm provide estimates with the same time resolution as the
adaptive algorithms. However, in this case, the computational effort can grow with the
window length. Only in case of a rectangular window the algorithm can be fastened if the
update is made in the following manner:

a(t) =a(t-1) + oft) - ft-L) 3.1

In any case, the past L samples (L is the segment length) must be stored in memory.
Alternatively, the adaptive algorithms can perform calculation concurrent to the data
acquisition, where no buffering is required and the update can be made in the form

a(t) = da(t-1) + oft) (3.2)

requiring low computational effort. For this reason, the adaptive algorithms are well suited for
on-line analysis.

At this point, the principle of uncertainty between time- and frequency domain (POU) must
be mentioned. The POU means that “The more accurately we try to determine Y(tf) as
function of time, the less accurately we determine it as a function of frequency, and vice
versa”’; in other words “In determining evolutionary spectra, one cannot obtain
simultaneously a high degree of resolution in both the time domain and the frequency
domain” (Priestley, 1981). This statement addresses a problem of non-stationary spectral
analysis which also has to be considered when time-varying AR parameters are used for
spectral estimation. Because of this consideration, we assume an upper limit for the
adaptation speed of an AAR(p)-model. For this reason, the type of smoothing window seems
to be of less importance. However, the computational time-resolution must be distinguished
from the actual time-resolution of the model estimates.

Another problem is addressed by Haykin (1999) 'The issue whether there will be one ultimate
time-frequency resolution that effectively describes all time-varying signals, or whether there
will be a number of densities tailored for individual applications is a major issue in the field
(of signal processing) and unsettled’. Also this issue should be taken into account if a method
for time-varying spectral estimation is used.

3.2  Adaptive autoregressive model

It was shown how an autoregressive model can be used to describe the EEG in the stationary
case. In order to consider the non-stationarity (i.e. the variation in time), the AR parameters
(2.1) are allowed to vary in time. This is described by the following equation

Vi = ancFye + o+ ApkFVep + Xk, X = N{0, o:(k)} (3.3)
Xx 1s a zero-mean-Gaussian-noise process with variance o*(k); the index k is usually an
integer and describes discrete, equidistant time points. The time ¢ in seconds is t = k / fy =

k*AT with the sampling rate fy and the sampling interval AT = I/fy. yr; with i = 1..p are the p
previous sample values, p is the model order; a;; are the time-varying AR model parameters.
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Later, it will be shown how the time-varying AR parameters can be estimated in an adaptive
way. In this case, the parameters are called adaptive autoregressive (AAR) parameters.
Accordingly, an AAR model is an autoregressive model whose parameters are estimated
adaptively. Emphasizing the model order can be done by the notion of an AAR(p) model.

The difference to the conventional AR model is ‘only’ that the AAR parameters (as well as the
variance 0,?) are allowed to vary in time. It is assumed that only a small non-stationarity takes
place; this will be called nearly stationary. Some upper limit of the adaptation rate can be
assumed, this means the AR parameters change only 'slowly' with time. It is assumed that the
changes of the AAR-parameters within one interation are smaller than the estimation error. If
the assumptions are fulfilled, the process is nearly stationary. Then, an AAR-model can be
used to describe the time-variation (i.e. non-stationarity) in the data. If those assumptions are
not fulfilled, the process is highly non-stationary; some transient event occurs which can not
be described by the AAR parameter. This case will be investigated in chapter 7 in more detail.

The AR model also explains the spectral composition of a signal (shortly the AR spectrum);
Accordingly, AAR parameters describe a 'time-varying' or 'evolutionary' spectrum S(w,?):

S(f.t) =0u(k) (1+3 by e 77 ) / (1-3; 4y 7 7M7)
I=1..q, i=1..p, (3.4)

with the sampling rate fy = 1/AT is the time ¢
t = kify = k*AT (3.5)

At this point, it should be noted that the AR parameters of a given spectral density also
depend on the sampling rate. As a consequence, AR parameters of different sampling rates
cannot be compared directly. This became a problem especially in multi-center data (data set
D1 and D4). For this reason, a method of re-sampling was developed which is described in
Appendix B.

33 Innovation process, prediction error and Goodness-of-fit

An AR-model can be used to describe the EEG as filtered white noise. In case the filter input
is zero, also the output is flat. In other words, x; "drives" the output y;. Furthermore, x; is a
measure for the new information, since the predictable part is already determined by the past
p samples. For this reason, x; is called the "innovation process" and is orthogonal to all past
values y.;, >0 (Haykin, 1996, pp. 303-4, 307-8)

Xk = Yi- i Y (3.6)

Because the predicted value ak_IT * Yy, is uncorrelated to the innovation process xi, the
variances are related by the following equation

var(xi } = var {yq} - var{(ai;" * Yi.,)} (3.7

In practice, the AAR parameters ay are only estimated values d;. If the estimates are near the
true values, the prediction error ¢; will be quite close to the innovation process.

e = Y-y ¥ Y =
18



= Y- * Yk—1T+ (@ 1-d)" ¥ Yy, = (3.8)
= Xi + (Ar-1-Gk1)” * Y

The AAR estimates at time k-1 depend only on previous samples. They do not depend on
samples at time ¢t = k * AT or larger. Actually, this is the case in all estimation algorithms
investigated in this work. Exceptions would be Kalman smoother algorithm (Grewal and
Andrews 1993, Haykin, 1996). Hence, the prediction error ¢, is independent of all previous
samples y.;, i>0; the one-step prediction process (d.;” * Y.;) is uncorrelated to the prediction
error process e; both processes are orthogonal. Hence, the total variance of the signal is

var{y } = var{(@c." * Yi.1)} + var {e} (3.9)

Alternatively, the terms MSE (mean squared error) and MSY (mean squared signal Y) might
be used

MSE = var{e;} = mean [el] (3.10)
MSY = var{y;} = mean [ykZ] (3.11)

Equation (3.8) shows that the prediction error consists of the innovation process and the
prediction error due to the estimation error of the parameter. This estimation error a@.;-d.; is
caused by the estimation algorithm and changes of the ‘true’ model parameter a;. In the
optimal case, when a;=dy, the one-step prediction error e; is equal to the innovation process
Xk, and the mean squared error would be minimal. The mean square of e; (MSE, equation
3.10) increases with bad estimates. Hence the MSE i1s a measure for the goodness-of-fit of the
AAR estimates dy.

In terms of neural network learning, it can be said that the past values y;; are used for
estimating the model parameters (at time k*AT) and the present value yy is used for evaluation
of the model validity. For this reason, the mean square of the prediction error (MSE) can be
used as a criterion for measuring the goodness of fit. The smaller the MSE is, the better the
estimated AAR parameters d; describe the process.

REV = MSE/MSY (3.12)

For comparing the results of different data sets, the MSE is normalized by the variance of the
signal (MSY) for obtaining the "relative error variance" REV. Because MSY is constant for a
given data series, the REV can be used (instead of MSE) as a measure for the goodness-of-fit.

REV provides the ratio how much of the signal is not explained by the model estimates.
REV=1 means that the model parameters are zero and the signal is white noise; REV = 0
means that the signal can be explained completely by the model (a theoretical consideration
only). If 0 < REV < 1, REV tells us how much of the signal is contributed by the white noise
process and how much stems from the one-step prediction process. Consequently, REV
expresses how much of the signal is not explained by the model parameters. The smaller the
MSE (and REV) is, the larger is the part of the signal variance (MSY-MSE) that is explained by
the estimated AAR model parameter. In this sense, 1-REV is a measure for the goodness-of-fit
and describes how well the AAR estimates explain the observed signal y.
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3.4  Adaptive inverse autoregressive filtering

Previously, it was described that an AAR model can be used to model slowly varying, nearly
stationary stochastic processes. In this case the estimates are close to the parameters and
reliable AR parameters and AR spectra can be obtained. However, artifacts (like muscle
activity) can cause transient, highly non-stationary, patterns in EEG recordings. Bodenstein
and Praetorius (1977), Praetorius et al. (1977) and Lopes da Silva et al. (1977) applied
(stationary) autoregressive models for identifying spikes and transient phenomena in the EEG.
The basic idea of inverse AR filtering is that in a first step, the AR parameters of some EEG
segments are identified. In the second step, the AR filter parameters are applied inversely to
the EEG. Transient phenomena are detected from this inverse filtered process (see Fig. 9).
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Figure 9: Principle of adaptive inverse filtering. The gray parts show the principle of inverse
filtering for detection of spikes or other transient events (Lopes da Silva et al. 1977). The AAR
estimation algorithm identifies the AR-filter parameter and simultaneously calculates the one-step
prediction error process. The black parts indicate the differences to the (stationary) inverse
autoregressive filtering.

The scheme of inverse filtering can be modified to a scheme of adaptive inverse filtering. It
will be shown in later chapters, that all AAR estimation algorithms calculate the filter
coefficients and the one-step prediction error. In other words, both steps, model estimation
and inverse filtering, are performed simultaneously. The principle of adaptive inverse filtering
can also be used to detect transient events. An example for this approach is provided in
chapter 7, where the AAR model was applied for detecting muscle and movement artifacts in
the sleep EEG (Schlogl et al. 1998c, 1999f). The behavior of the AAR estimation in case of
transients in the EEG and the contradiction to the basic assumption of near stationarity is
discussed in more detail in section 8.2 .
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4. Estimation algorithms

AAR estimation algorithms have the advantage of providing a high (computational) time
resolution with low computational effort and they are also well suited for on-line analysis.
Such methods are the Least-Mean-Squares (LMS) approach (Schack et al. 1993, Haykin,
1996, Widrow and Stearns, 1985), the Recursive-Least-Squares (RLS) approach (Akay, 1994,
Patomiki et al. 1995, 1996, Mainardi et al. 1995), Recursive AR (RAR) techniques (Bianchi
et al. 1997) as well as Kalman filtering (Isaksson, 1975, Mathieu, 1976, Duquesnoy, 1976,
Blechschmid, 1977, 1982, Jansen, 1979, 1981). Penny and Roberts (1998) used Kalman
filtering based on Jazwinski (1969) and Skagen (1988).

All AAR estimation algorithms have in common the calculation of the one-step prediction
erTor e

ex = Y- g ¥ Y (4.1)

as the difference between the prediction from the past p samples dr.;” * Y;.; and the actual
sample value y;. In a further step, e is used to update the AAR estimates from dy.; -> dy.

At first, some simple algorithms, like the Least Mean Squares (LMS) algorithm and a
recursive AR algorithm, are presented. The following section deals with Kalman filtering
(KF) applying KF to an AR model, also the mathematical derivation is provided. It is shown
that different assumptions lead to different variants of the KF algorithm for AAR estimation.
This phenomenon explains why different algorithm, all named KF, are used for time-varying
AR estimation. A summary of differences is provided; it is also shown that the Recursive-
Least Squares (RLS) algorithm is a special case of Kalman filtering.

4.1 Least mean squares and recursive AR methods

The LMS algorithm (Haykin 1986, Widrow and Stearns, 1985, Akay, 1994) is described by
the following update equation:

LMS I:
ﬁk = dk_] + UC/MSY*e,*Yy.; (42)

a; is the estimate of the time-varying AR vector, ¢ is the (one-step prediction) error process
(4.1). MSY is the variance of the signal y and is used instead of normalizing y to variance 1.
The update coefficient UC determines the speed of adaptation, the time-resolution as well as
the smoothing of the AR estimates.

LMS II:

The adaptation equation (4.2) uses a constant adaptation rate UC/MSY. Schack et al. (1993)
used time-varying adaptation rate in the way that also the normalization factor is estimated
adaptively

Vi = (1-UC) * Vi, + UC * ¢ (4.3)

and the update equation is
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ﬁk = dk_j + UC/Vk*ek*Yk_l. (44)

This algorithm considers a time-varying variance 0,%(k) of the innovation process, whereby V;
is the estimate of the variance X; calculated from e;? using the exponential smoothing window
with a time constant of I/UC. Schack et al. (1993) used different update coefficients in
equation (4.3) and (4.4). However, no advantage was found to select different UC. Moreover,
it was difficult to select an additional free parameter. For these reasons, the same update
coefficient was used in both equations (4.3-4).

RAR I:
A = (1-UC)* A+ UCHY *Y, ! (4.5)
ki = UC*A Y/ (UC*Y *A*Y+1) (4.6)
ﬁk = dk_] + kkT*ek (4 7)

Bianchi et al. (1997) presented a recursive method for estimating the time-varying AR
parameter. The difference to the RLS algorithm is that Ax is not the state error correlation
matrix (see next section) but rather the covariance matrix of the signal itself. This method will
be called in short recursive AR technique (RAR).

RAR II:

The second version of this algorithm, which was proposed by Bianchi et al. (1997), estimated
the covariance matrix (4.5) using a ‘whale forgetting function’.

Ak = C]*Ak.]+C2*Ak_2+Cj*Yk*YkT (48)

Bianchi et al. (1997) used coefficients ¢;, ¢; and ¢; which are 1.74, -0.7569, and (1-c;-c3),
respectively. Here, the whale function is extended to a general approach in order to apply
different update coefficients UC. The coefficients c;, ¢, and c; were determined such that the
zeros p; » of the polynomial (4.9) are both 1/(1-2*UC).

I-crig! - e*? = (1- prg! e (1- pyiz?) = (4.9)
= (I-(1-2*¥UC)*¢" )¥(1-(1-2%UC)*7") =

= 1= (pi+p2)*s" + pripsz?

0321- Ci-C2 (4]0)

It is a simple exercise to derive that the adaptation time constant is approximately 1/UC. The
AAR estimates are adapted by the equations (4.6-8).

4.2  The Kalman filtering and the state-space model

This section introduces the basics about KF, as far as it is important for AAR estimation.
Kalman (1960) and Kalman and Bucy (1961) presented the original idea of KF. Meinhold and
Singpurwalla (1983) provided a bayesian formulation of the method. Grewal and Andrews
(1993) and Haykin (1996) are the main references used in this investigation.

Kalman filtering is an algorithm for estimating the state (vector) of a state space model with
the system equation
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2k = Grr *Zp1 + Wy 4.11)
and the measurement (or observation) equation

Ve =Hy * 7 + vy (4.12)
Zx 1s the state vector and depends only on the past values of w; and some initial state zy. The
system is defined for all k£>0. The output signal y;, which can be measured, is a combination
of the state vector and the measurement noise v, with zero mean and variance V; = E{v,v.}.
wy 1s the process noise with zero mean and covariance matrix Wy = E{wk*wkT}. The state
transition matrix Gy, and the measurement matrix H; are known and may or may not
change with time. Kalman filtering is a method that estimates the state z; of the system from
measuring the output signal y; with the prerequisite that Gy.;, Hy, Vi and W for k>0 and z9
are known.
The inverse of the state transition matrix Gy ;  exists and

Gii+1¥Grrr =1 (4.13)
is the unity matrix I. Furthermore, Kj .;, the a-priori state-error correlation matrix and Z;, the
a posteriori state-error correlation matrix are used; K;, is known. In this case, Qy is the
estimated prediction variance that can be calculated by the following formula:

O« = HiKiw*H '« + Vi (4.14)

It consists of the measurement noise V; and the error variance due to the estimated state
uncertainty H;*Kj . I*HkT. Next, the Kalman gain k; is determined by

ki = Gijer*Kir ¥H ' / Ok (4.15)
Using the next observation value yy, the one-step prediction error e is calculated,

e, =y, —H, *z, (4.16)
the state vector zx+; is updated,

L0 =Gy 2tk ey (4.17)
the a posteriori state vector can be estimated

z, = Giin 2 (4.18)

Z% 1s the estimate of the state if y; is already known. Finally, the a posteriori state-error
correlation matrix Z; and

Zi = Kik-1 — Giisr 1 "k *Hi * K k-1 (4.19)

the a-priori (yy.; is unknown) state-error correlation matrix K. ; for the next iteration
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Kisix = Gy 1 Zi %G i + Wi (4.20)

is updated. Equations (4.14-20) describe one iteration k-1->k of the Kalman filtering
algorithm for the state space model (4.11-12). This is the very general form of Kalman
filtering. In case of univariate signal processing (one channel), the output signal y; is one-
dimensional; hence also the (co-) variance matrix Vj reduces to a scalar, namely the variance
of the signal. For estimating AR parameter with KF, the AR model has to be embedded into
the state space model. The AR (2.1) and ARMA model (2.9) are fitted into the state space
model as follows:

The state transition matrix Gy; as well as its inverse matrix Gy.;; is the identity matrix,
which is time-invariant

Giv.1 = Gy = I = constant. (4.21)
The time-varying AR parameters (3.3) are identical to the state vector zx in (4.11)

w=ap=[ap, ... apil’, (4.22)
the measurement matrix Hj consists of the past p sampling values

Hy=Yi= [yt o Yipl (4.23)
the AR parameters follow a multivariate random walk model

ay = ai.; + wy (4.24)
with a multivariate zero mean random noise with covariance W such that

wi = N(O,Wy). (4.25)
The measurement noise and one-step prediction error is

Xk = € (426)
xe = N0, V) (4.27)

Next, substituting Z; (4.20) in equation (4.19), assuming that Wi = UC*Z; and replacing K 1.,
by A gives

Ap = (1+UCY* (A - ki*Yy  #Ay ) =
Ay = Ay - kY A +
+ UC*Ak_] - UC*kk*Yk_]T*Ak_] (428)

which is the Recursive-Least-Squares (RLS) algorithm (Haykin, 1996, p509, Patomiki et al.
1995, 1996). For the general case of KF, the equation with explicit Wy is used

Ak = Zk + Wk (429)

Basically, Z; is the a-posteriori correlation matrix, which is smaller than the a-priori
correlation matrix Ax.;; Wi increases Zi, in order to prevent the 'stalling phenomenon'
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(Haykin, 1996, p. 756). Furthermore, a state space model is ‘observable’ (in terms of system
theory) if the observability matrix (Grewal and Andrews, 1993 p.44) has full rank. Because
the system matrix is the identity matrix and the observation matrix is a vector of the past p
samples, the observation matrix X YkYkT has a toeplitz form and is, therefore, non-singlular.
Hence, the state space model for the AR parameters is 'observable’. It is important to note that
Wi and V; are not determined by the Kalman equations, but must be know or have to be
assumed. Accordingly, different assumptions can result in different algorithms.

4.3 Kalman filtering and the AAR model

Adaptive autoregressive (AAR) parameters are estimated with Kalman filtering as for the
iteration from k-1->k. The update equations of Kalman filtering for an AAR model can be
summarized by the following equations.

ek = Yi- A1 Y (4.30)
AY i =Ar Y (4.31)
O = Yi " # AL Y + Vi (4.32)
ki=Ax1*Yi1/ O (4.33)
G = drg + ki ey (4.34)
Xi=As - kY # A (4.35)
Ar=X+ W, (436)

Yii" = [yir ... Yi-p] are the past p values, ¢ is the one step prediction error, Vi is the variance
of the innovation process and x, ki is the Kalman Gain vector. A;.; and X; are the a-priori and
the a posteriori state error correlation matrix. The initial values ay and A are a zero vector and
the identity matrix I of order p, respectively.

The product Ay ;*Y;; 1s required three times, in equations (4.32, 4.33, 4.35) within each
iteration. Storing the result in an intermediate variable (4.31) makes the algorithm faster and
computationally more efficient. Because of the symmetric properties of the state error
correlation matrix A’ = Ay for real valued time series, applies the following formula:

AY, ;= YA = (Ar#Ye)" (4.37)

AY,_; is the intermediate variable used in (4.32, 4.33, 4.35) for improving the speed of the
calculation.

The remaining unknown parameters are the variance Vi of the innovation process
(measurement noise, one-step prediction error) and the covariance matrix W, which describes
the adaptation or speed-of-change of the AR parameter. Isaksson et al. (1981) assumed that
the covariance matrix is Wy = u?*I and the term Vj in (4.32) V; is 1; Abraham and Leodolter
(1983) showed that in case Wy / Vi = const, Ay, Xi, Wi, Ok can be replaced by A= AV,
W= W/Vi, Q= O/Vi, and V= Vi/Vi.=1. Accordingly, the algorithm is the same as in
(4.30-36) with Vi = 1. However, if W, / Vi is not constant, V should be estimated separately.
Another version of Kalman filtering (Roberts and Tarasenko, 1992; Roberts, 1997; Penny and
Roberts, 1998) turned out to be very different to the former approaches. It can be traced back
to Jazwinski (1969) and contains, in essence, a decision whether the prediction error is due to
the state uncertainty or due to the innovation process.
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The state error correlation matrix is increased only if the prediction error is larger than
expected due to the state uncertainty. A consequence is that the covariance W is most of the
time equal the zero matrix, only at some time points it is larger. Patomiki et al. (1995, 1996)
used the Recursive-Least-Squares (RLS) algorithm, which is a special case of Kalman
filtering using equations (4.30-36) with V, = u = 1-UC and W, = UC * Z;. (Note, for
0<UC<<l! i1s u= 1/(1-UC) approx. u = 1+UC). Looking at the earliest algorithm (Kalman,
1960; Kalman and Bucy, 1961) it can be found that the term Vj does not appear in the update
equations, hence V; = 0.

Tables 1 and 2 provide a systematic overview of the different variants of Kalman filtering. It
has been shown that the different Kalman filtering algorithms are due to different assumptions
about the covariance matrix Wy and the variance V). Consequently, the differences can be
reduced to differences how to estimate the Wy and V;. The various versions (totally 7%12 = 84
permutations) of Kalman filtering have been implemented and tested.

Jansen et al. (1979), Blechschmid (1982) and Haykin et al. (1997) describe other variants.
Jansen et al. (1979) refers to Duquesnoy (1976), Isaksson (1975) and Mathieu M. (1976) who
suggested Wi = 0. He used Kalman filtering for identifying the (stationary) AR parameters of
short EEG segments. Blechschmid (1982) also used W; = 0, but has investigated earlier
periodic re-initialization (Blechschmid, 1977). Haykin et al. (1997) proposed a state transition
matrix G = g*I with a g-value slightly smaller than 1. All these methods were implemented,
too. The version with W; = 0 worked well for a certain time before it became unstable.
Periodic re-initialization and the version with G = ¢*I showed no further advantages. First
attempts also gave a much larger variance of the residual process (MSE) than many of the
methods from Table 1 and 2. Therefore, periodic re-initialization was not investigated further.

Table 1: Estimation of the variance of the innovation process V, in Kalman filtering. The variance
Vi is usually not known, it must be estimated from the available data. The following 7 variants of
selecting Vj in the Kalman filtering approach were investigated.

Type Estimation of Vj References
vl Vi=(1-UC) * Vi, + UC * ¢’ Schack et al. (1993)
v2 Vi=1 Abraham and  Leodolter
(1983), Isakson et al. (1981).
v3 Vi=1-UC Akay, (1994), Blechschmid
(1982), Haykin (1996),
Patomaiki et al. (1995, 1996)
v4 V= (1-UC) * V' 1, + UC * ¢’ cf. (v1), one-step delayed
Vi= Vi
v5 qe=Ye *A 1 %Yy Jazwinski (1969)
V= (1-UC)*V i + see (V6)
+ UC*(ekZ-qk) if€k2>CIk
Vie= Vi if e <q
Vi= V%
v6 Same as v5 except Penny and Roberts (1998)
Vi= Ve
v7 Vi=0 Kalman (1960)
Kalman and Bucy (1961)
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Table 2: Variants for estimating the covariance matrix W,. The version a1 is most similar to the
RLS-algorithm; all elements of W are different to zero. In the versions a2-12, only the diagonal
elements are unequal (larger than) zero. The versions a2-a5 are the same as a9-a12 respectively,
except for the term (1+UC). The latter stemmed from a special formulation of the RLS algorithm.
Due to different implementation details in Roberts (1997) and Penny and Roberts (1998), several
variants (a6, a7 and a8) of Jazwinski's (1969) versions were implemented.

Type

Estimation of W,

References

al

Wi = UC *Zi

Akay (1994), Haykin (1996)

a2

Zi=(I-k*Y, )*As
Wi =1*UC *trace(Z;)/p

a3

Zi=(I- kY, )*As
Wi =1*UC * trace(Ay.;)/p

a4

Zi=(I -k, )*Ay
W,=UC *1I

as

Zi= (I -k Y, ) Ay,
W,=UC?*1

Isaksson et al. 1981

a6

Zi=A*Vi/ Ok
gk = (1-UC)*qrs +
+UCHe -0 /(i1 #Y )
Wi = qi*l ifq>0
Wk = 0,’ lqu <0

personal communications
(S.J. Roberts, 1997)

a7

Zi = A *Vi/Ok
gk = (1-UC)*qrs +
+ UCH(e? - Qi) / (Yir " #Yip)
Wi = g1 ifqi>0
Wi =0; ifqr< 0

same as (a6) but V; used
instead of Vi

al

02i =Yy, *Zi; * Yy + Vi
qr = (1-UC)*qr.; +
+ UCHe?-021) / (Yis" * Yip)
Wk =gk *] lqu >0
Wk = 0,’ lqu <0

Jazwinski (1969)
Penny and Roberts (1998)

a9

Zi=(I-(1+UC)¥ Yy, )* A
Wi =1*UC *trace(Z;)/p

alO

Zi=(I-(1+UC)¥ Yy, )* A
Wi =1*UC *trace(Ay.;)/p

all

Zi=(I - (1+UC)**Yy ) )*Ay s
W,=UC *1I

al2

Zi=(I-(1+UC)¥*Yi," )* A
W,e=UC?*1
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5. Comparison of the AAR estimation algorithms

The previous section showed that many different algorithms (LMS, RAR, RLS, Kalman
filtering) for estimating AAR model parameters are available. Some free parameters like the
update coefficient UC and the model order p must be selected in advance. Moreover,
additional a-priori assumptions must be made in Kalman filtering, Especially the variance of
the innovation process Vj (time-varying or not) as well as the covariance matrix W; of the
multivariate random walk of the AR parameters are required. Still, we do not know how the
covariance matrix W; should be selected, we only know it should have the form of a
covariance matrix (symmetric, positive definite, main diagonal elements must be positive and
the largest elements).

In section 3.3 , a criterion for the goodness-of-fit was introduced, namely the relative error
variance REV (i.e. normalized MSE). It was said that the REV measures the part of the
variance that is not explained by the model estimates. Hence, the smaller REV is, the better
the AAR estimates describe the observed process Yi. In the following, the REV will be used
to compare the AAR estimation algorithms. These algorithms were applied to five real world
data sets (data set DS, Appendix E); the model order was fixed for each data set (Table 6). An
ARMA-model was also estimated with each algorithm. Furthermore, the update coefficient
was varied over 10 decades in order to find the optimal value for each algorithm.

Twelve versions for estimating Ay = Z; + W) have been implemented. These versions can be
grouped into 3-4 types. The first form is Wy, = UC* Ay ;. This is most similar to a RLS
approach and relates to the proposal of Wi = g*A; version (al). In the second form W; is a
diagonal matrix, which is under certain conditions (¢;>0) larger than zero (a6-8). That means,
Wi 1s only in some (rare) cases larger than zero. The third types utilize a diagonal matrix of
Wi = g*I with g, = trace(Z;)/p*UC (a2), UC*UC (a5), trace(Ax.;)/p*UC (a3) and g, = UC
(a4). The forth group (a9 - al2) is the same as the third type (a2-a5), except for the calculation
of Z; (see Table 2). The results are very similar to the results of (a2-a5) and are, therefore, not
shown in Fig. 10.

Figures 10 and 11 show the REV for the various AAR estimation algorithms with 40 different
update coefficients applied to five different data sets. The algorithms and the update
coefficients UC with the lowest REV provide the best estimates. In cases without converging
estimates (a*v7: Vi, =0, RAR1 and RAR2), the REV is larger, in some cases it is even infinite.
These cases are not shown. It should be noted that also in these cases, the REV is never
smaller than the best estimates. In Figure 11, the dependencies of REV from UC of each
algorithm are shown . The markes o indicate the following versions and the update
coefficients within the parenthesis: alvl (10"8), alv2 (10'7), alv3 (10'6), a8v4 (0.1), a7vl (10
3), alv2 (10‘2) are indicated in Fig. 11. In some cases (e.g. a8v4 in S4 UC = 0.1 gives REV =
0.251), the marker was out of the displayed scope.
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Figure 10: Comparison of different AAR estimation algorithms. Different algorithms are grouped
into 8 blocks of 7 KF methods and 4 alternative methods. The 8 blocks correspond to 8 versions
for estimating the covariance matrix W,. Each block contains the 7 versions of estimating the
variance of the observation noise process V. The update coefficient UC was varied in a range
over 10 decades and zero. Each cross represents the relative error variance REV for a certain
ucC.
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Figure 11: Dependency of REV on UC for some selected algorithms. The circles ’0’ indicate
certain update coefficients as described in the text. In some cases, REV was too large, in other
cases no values were available, which means that the algorithm did not converge and REV was
infinite. The x-axis has a logarithmic scale except for the leftmost value of UC which is zero.
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5.1 Estimation of the measurement variance V;

At first, we look at the estimation methods for V;. It can be seen that (v2) and (v3) as well as
(vl) and (v4) yield quite similar results. The similarity between (v2) and (v3) is due to Vi
equal and close to 1, respectively. The difference between (v1) and (v4) is mostly very small,
but in some cases (e.g. a8v1 vs. a8v4 in S2, S3, S5; a7v1 vs. a7v4 in S5; a3vl vs. a3v4 in S2)
a difference can be observed leading to the conclusion that v1 is preferable. The question,
whether the variance Vj of the innovation process should be chosen as a constant (v2, v3) or
should be estimated adaptively (v1), can not be answered generally from these results.

5.2 Estimation of the covariance W,

We can find several good solutions for estimating W, but for some it can be definitely said
that they perform worse. E.g. (al) works only well for one data set (S4), while for all other
data sets it does not; (a8) is good for S4 but not for S1, S2, S3 and S5. It should be taken into
account, that data set S4 is the shortest one (less 1000 samples); for this reason, the results
from S4 might be not that representative.

In general, it can be said that the version (al), (a6), (a7) and (a8) do not perform well, (a2) -
(a5) seem to be favorable. The versions (a9)-(al2) (not displayed in Fig. 11) give almost the
same results as (a2)-(a5), respectively. (al) uses the estimate W; = UC*A; whereby all
elements of the matrix (not only the diagonal elements) are utilized. (a6, a7, a8) use Wy being
a diagonal matrix but only in some iteration steps Wy is non-zero, mostly Wy is a zero matrix.
According to these results, it can be said that W; should be a diagonal matrix larger than zero,
which should be added at each iteration to the a posteriori error covariance. The assumption
of an uncorrelated, multivariate random walk model for the variation of the AAR parameter
(i.e. state vector of the state space model) seems to perform best in all large data sets (S1, S2,
S3, S5).
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6. Model order and update coefficient

The REV is a measure for the goodness-of-fit; a UC can be identified that yields the lowest
REV for a fixed order p (Fig. 11). The value of this UC is called the optimal update
coefficient UC,,,. Note that in almost all cases, a REV smaller than 1 can be identified. E.g.
for a6vl UC = 107 is optimal in S2 and S4 and UC = 107 in S1, S3 and S5. In the same way,
an optimal update coefficient UC,,, for each version can be identified. This means, that each
algorithm was stable and gave useful results, not any algorithms became unstable, if only a
proper update coefficient was used. However, a fixed model order was used in each case.
Next, it will be investigated how the model order p and the update coefficient UC,,, are
related. For this purpose, S3 from data set D5 with various p and UC was analyzed .

0.12 i i i i 0.12
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Figure 12: Relative error variance (REV) depending on the update coefficient (UC) and the model
order p. The algorithm a5v1 was applied to EEG with time-varying spectrum (data is described in
Schlégl et al. 1997a,b, Pfurtscheller et al. 1998) sampled with 128Hz and a length of 407.5s. The
EEG was derived from electrode position C3 during repetitive imaginary left and right hand
movement. The model order was varied from 2 to 30. The left part shows REV(UC) for different
model orders p; the right figure shows REV(p) for different update coefficients UC. The minimum
REV can be identified for p=9 and UC = 2® = 0.0039.
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Figure 13: (Relative) error (REV) surface depending on model order p and update coefficient UC.
The model order was varied from 2 to 30; UC was varied 2™ with k=1..30 and 10™ with k=1..10.
The same results of Fig. 12 are displayed in three dimensions (adapted from Schlégl et al. 2000).

Fig. 12 and 13 display the relative error variance depending on the model order and the
update coefficient. The REV(p,UC) is quite smooth, at p=9 and UC=2'8, a minimum with a
value of REV i, = 0.0572 can be identified. In summary, the optimal setting of estimation
algorithm, model order and update coefficient can be identified with the REV-criterion and
depends on the investigated data only. In general, slow changes require a smaller update
coefficient. Also, with a smaller update coefficient, the time considered window is larger.
Thus, the frequency resolution can be increased with the increase of the model order.
Generally, one can expect that a larger model order requires a smaller update coefficient and
vice versa. To a certain extend, this effect can be also identified in Fig. 12 and 13.

Of course, the task of identifying the optimal model order with Kalman filtering is quite
laborious because the KF algorithm has to be applied for each combination of p and UC. A
more efficient way is to use order-recursive filters (e.g. adaptive lattice filters, Sayed and
Kailath, 1994, Haykin 1996). The advantage is that by calculating REV(p,UC), also all
REV(,UC), i<p are obtained. Thus, the overall computational effort is much lower .
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PART III: APPLICATIONS
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7. Brain Computer Interface

In the introductory chapter, the various issues in developing an EEG-based BCI were already
mentioned. These are extracting the EEG features, obtaining a classifier, generation and
presentation of feedback, and the subjects’ motivation. The subjects’ motivation must be
supported by reliable feedback in order to support the subject in learning to control the EEG
patterns. Therefore, EEG processing, classification and feedback generation will be discussed
in the following. For this purpose, the results of different EEG parameters and classification
methods are compared off-line. A new BCI paradigm is developed; furthermore, an attempt to
estimate the amount of information in the feedback is made.

A common measure for the performance of STA is the classification error rate. For this
purpose, the EEG for (at least) two classes is processed. In other words, signal processing
methods are applied for extracting features (like bandpower, AR-parameter etc.) from the
EEG. These features are applied to a classification system. Such a classification system can be
a neural network, e.g. Learning Vector Quantization (LVQ, Kohonen, 1995, Flotzinger et al.
1992, 1994, Pregenzer et al. 1994, Pregenzer, 1997, 1998) or a statistical classifier like Liner
Discriminant Analysis (LDA). Usually, a certain number of experiments (trials) is performed;
the number of trials must be much larger than the number of extracted features. Each trial
belongs to one out of two or more distinguished classes. The classification system is used to
evaluate the separability of the features or to generate the on-line feedback.

Reliable values of error rates can be obtained for large data sets (5000 vs. 1000 samples,
Michie et al. 1994). If this huge amount of data is not available, cross-validation (X-V, Stone
1978) must be applied in order to prevent over-fitting. If not stated otherwise, the following
results were obtained by 10times 10fold X-V. A random permutation of the data set is divided
into 10 subsets; 9 subsets are the training set, one subset is the test set. The classifier is
calculated from the training set and applied to the test set. This procedure is repeated 10
times, with every subset being once a test set. The percentage of false classified trials is used
as the error rate. The whole procedure is repeated for 10 different, random permutations of the
data set. Thus, error rates from 100 different combinations of training and test sets are
obtained. Note that training and test set were different in each permutation. The average of
these error rates is ERR10, the 10fold10times X-V error rate.

7.1 Comparison of different EEG parameters

In this section, the average error rate from cross-validation is used to compare different
feature extraction methods and two classification methods. EEG data from three subjects were
investigated (data set D2). The following feature extraction methods were used:

Hjorth (1970), Barlow (Goncharova and Barlow, 1990), Hilbert transformation (Medl et al.
1992), AR(6) parameter estimated with the Burg algorithm (Kay, 1988) and with the Yule-
Walker method (Kay, 1988), bi-variate AR(6) parameter, bandpower (Pfurtscheller and
Arinabar, 1977) with predefined fixed frequency bands, and bandpower with optimized
frequency bands using DSLVQ (Pregenzer et al. 1997, 1998). In some cases (Hjorth, Barlow),
the data was pre-filtered with a bandpass (5-15 and 5-25Hz). All these parameters were
calculated from the segment 4-5s.
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Also, the LMS algorithm was applied to the same data in order to estimate AAR(6)
parameters. For this purpose, the adaptive algorithms were initialized with second zero; the
AAR estimates between 4-5s were averaged in order to obtain one feature vector for each
trial. However, this means the AAR parameters, due to the adaptive estimation, take into
account a longer data segment. This fact has to be considered when comparing the results.
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Figure 14: Comparison of different feature extraction and classification methods. The LVQ-
algorithm (Flotzinger et al. 1994, Pregenzer, 1998) as well as LDA (see Appendix C) were applied
for classification. Always, a 10-times-10-fold cross-validation was used within each subject. The
error rates from all three subjects were averaged.

Fig. 14 shows that in cases of bandpower (10-13, Hz, Complex demodulation and optimized
Band), the LVQ classifier is superior to LDA. However, the lowest error rates were obtained
by the AAR + LDA method. Beside filtered Hjorth and Barlow parameters, also the AR-
parameters, estimated with Yule-Walker and Burg, provide good results in combination with
LDA. The consequence of these results was that LVQ should be used in combination with
bandpower values, whereby AR parameters should be classified with LDA. Furthermore, the
AR parameters in general (adaptive and the classical Burg and Yule-Walker approach)
showed very good results.
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7.2  Optimal classification time

Previously, it was already mentioned that in order to provide feedback, a classifier is needed.
This classifier has to be calculated from earlier BCI recordings. From the previously
performed ERD analysis, the period of time is known, which has high discriminative power.
However, the AAR parameters were calculated for every time point; furthermore, the time
window for estimating the AAR was clearly not rectangular and has, due to the update
coefficient, a different length. Hence, the optimal time points for the classification is not
known.

The solution for this problem was to apply the single trial classification for different time
points; in practice, 8 time points per second were investigated. From each time point, an error
rate was obtained; accordingly a time course of the error rate was yielded. Several subjects
performed BCI-experiments; the timing is shown in Fig. 16(a). The EEG data of one session
(160 trials) from four different subjects were used to calculate the time course of the error rate
as shown in Fig. 15(a) (first column). The thick line shows the time course of the cross-
validated error rate, calculated 8 times per second; the thin line displays the error rate for each
sample time (128 per second) without cross-validation. The computational effort of LDA is
not high, and the AAR parameters were calculated only once. Therefore, the computational
effort was feasible.

From these time courses, the optimal classification time point can be easily identified. The
classifier from this time point can be used for the on-line classification. A side effect of this
investigation was that an idea of the time course of the EEG patterns was obtained. E.g. the
time course of subject f76 has a peak up to 50% at about 6s. This peak is not found in 310
and £56. The relationship between the time course of the ERD and the time course of the error
rate was discussed in Pfurtscheller et al. (1998). Clearly, subject-specific differences can be
identified.

The time courses of the error rate ERR10; and ERR;, the mean and standard deviation of the
distance function for both classes, and the entropy obtained with 4 subjects are shown in
Fig. 15. The first column in (a) shows the time courses of the error rate. In all 4 cases, the
decrease of the error rate starts during presentation of the cue stimulus (3.0 - 4.25s). This
means that the EEG patterns become better separable. For every subject, a time point with the
best discrimination can be found. These time points were used for calculating the classifier
wr.. The classifier, obtained by applying LDA, is a weight vector w. It can be applied to the
AAR parameter of both EEG channels in the following way.

#1 #1 #2 #2
Dl‘ = []y al,t y see ap,l‘ ’ a],l y see a[),l ]' wTC (7'1)

The offset (i.e. threshold) is incorporated in w and is considered by the element ’1’ in the data
vector. Once the classifier is fixed, it can be applied to the AAR parameters at any time point
t, and the distance D, becomes also time-varying. Thus, D; is called the time-varying signed
distance (TSD) function because D, varies in time; the sign of D, describes whether the
classification is left or right and the absolute value of D, expresses the distance to the
separating hyperplane described by w.

The advantage of this procedure is that all AR parameter (also from several channels, thus
considering different spatial locations) were reduced to one dimension. Now, D; was a one-
dimensional, time-varying function that can be calculated for every time point # on a single-
trial basis. Equation (7.1) is the most informative linear projection - with respect to the class
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relation - from multiple to one feature; the weight vector wry. incorporates the class
information and expresses what the observer is interested in. In other words, the output is a
(linear) combination of AAR parameters and produces a new one-dimensional feature.

This might seem to be trivial. However, the TSD can be calculated on each single trial; it can
be averaged, also the standard deviation can be analyzed. The differences between classes are
displayed in the second column of Fig. 15(b). It can be clearly seen, that after presenting the
cue, the TSD is different for the two classes. Again, a different temporal behavior for every
subject can be found. However, now we can see that in session f76, a crossing of the TSD can
be observed. This crossing also explains why the error rate (Fig 15(a), 1** column) increases at
6s and decreases again afterwards.

A novelty is that also the standard deviation (S.D.) of the TSD is included in Fig. 15(b). The
S.D. of the TSD shows the within-class variability of the output. It is caused, mainly, by the
inter-trial variability of the EEG patterns. The ratio between the average TSD of the two
classes on the one hand and the S.D. of the TSD on the other hand yields an impression of the
ratio between useful information (i.e. signal) and noise (SNR). The SNR can be used to
estimate the amount of information from the classification output.

7.3  Entropy of the BCI output

The distance D, ¥ is the distance function as defined in (7.1), whereby the superscrip
denotes the number of the trial. In an ideal case D © > 0 for all left trials and D/’ < 0 for all
right trials. However, it was shown that the distance D @ does not only depend on the class
relationship, but also on many other factors like background EEG activity, noise from the
amplifier and the analog-digital converter, numerical errors etc. These factors are the noise
term and can be summarized in the part that is uncorrelated to the class information. In the
TSD (Fig. 15b), this term 1s visualized as the within-class standard deviation of the TSD. The
noise variance is

t @

N, = %(ggg{Df“ i+ variDy” }) (7.2)

where {L} and {R} are the sets of left and right trials, var{.} is the variance over all trials i.
The between-class standard deviation is shown as the difference between the average TSD for
both classes. This part is correlated to the class and can be seen as the term which carries the
useful information, hence, it is the signal. Note that the signal and the noise term are not
correlated, hence the total variance is the sum of both, the signal and the noise variance.

S +N, = Var}{D;”} (7.3)

ie{L,R

Assuming that the signal and noise is uncorrelated (which it is per definitionem), it can be
shown that

S, = var DO - N, = (u, - p, ) (7.4)

ie{L,R}
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Figure 15: Time courses displaying the
separability between two classes obtained in
four subjects. The vertical lines indicate the
time point used to generate the weight
vector. The time point t with the lowest error
rate ERR10 was used. The timing scheme is
shown in Figure 16(a) (adapted from Schlégl
et al. 1999q).

(a) In the first column (previous page), the
time courses of the error rates ERR10; (thick
line) and ERR; (thin line) are shown. ERR
gives the classification error with LDA of the
EEG-channels C3 and C4 at time t. AAR(10)
parameters were used as EEG features. The
thick line shows ERR10; calculated 8 times
per second; the thin line shows the time
course of ERR; calculated at every sample.
The numbers indicate the lowest ERR10 and
the corresponding classification time.

(b) The second column (see previous page)
shows the averaged TSD for the left and
right trials. The TSD is calculated as linear
combination of AAR(10)-parameters of the
EEG channel C3 and C4. The average TSD
curves (thick lines) clearly show a different
behavior during imagined left and right hand
movement. The thin lines represent the
within-class standard deviation (SD) of the
TSD and indicate the inter-trial variability of
the EEG patterns.

(c) The third column shows the mutual
information between the TSD and the class
relationship. The entropy difference of the
TSD with and without class information was
calculated for every time step. This gives (a
time course of) the mutual information in
bits/trial.

One can say D,” consists of two processes. One is correlated to the movement imagery task
containing useful information (signal) while the other process is uncorrelated to the task
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(noise). The Signal-to-Noise ratio (SNR) (for any fixed time point ¢ within a trial) is defined
as follows:

s - s, . (o, — 11, ) (7.5)
N, 2(2?5{1)5 g Zf}er}{Df( ) })
and
D(i)
SNR, +1= 5N _ : iev{fffe}{ "} (70
N, 2(2?5}{@” I+ Zﬁer}{D’(i) })

The mutual information between the BCI output D and the class relationship can be
determined by calculating the entropy difference between noise and signal (see also chapter
2.1, Shannon, 1948). This leads to the following formula for the mutual information for each
possible classification time #:

I,=0.5%log> (1+SNR;) (7.7)

Figure 15(c) displays the time courses of the mutual information between the distance TSD
and the target cue (left or right). The time course of the mutual information shows at which
point of time the patterns are most separable. As expected, no information about the class
relationship can be obtained prior to cue presentation; the entropy starts to increase at 3.5s. In
general, the mutual information displays a maximum when the error rate is minimal.
However, there are also differences between the time courses of the error rate and the mutual
information curves. In the data set f310, the mutual information is larger than 1 bit per trial,
although the error rate is not zero. The explanation is, that the entropy analysis is based on the
variance, however, there are some outliers which make a complete separability of the two
classes impossible. Data set f76 shows a larger mutual information at about ¢=7s; this is
surprising because the error rate is smaller at r/=5s. The unexpected result in g37 is that (the
time course of) the mutual information does not increase prior to t=5s although the error rate
already decreases at 4s. One explanation for these differences might be that the EEG patterns
are different at 4-5s and 6-8s and the former patterns are not "represented” by the specific
weight vector.

This 1s a first attempt to estimate the amount of information of a BCI output, in order to
approach the required information rate of 20 words per minutes (Robinson, 1999)

7.4  The continuous-feedback-paradigm

A typical task for a subject was to imagine a left or a right hand movement according to a
target cue. The timing is shown in Fig. 16. The target cue was an arrow on a computer screen
pointing either to the left or the right side (3.0-4.25s). Depending on the direction, the subject
was instructed to imagine a movement of the left or right hand. From 6.0 — 7.0s feedback was
given. The feedback was provided in five classes, '++, '+,'0'-,'--. The '+ and '-' sign
indicated a correct and false classification, respectively. The double signs were presented as
larger sign on the screen (Pfurtscheller, et al. 1996). The feedback was calculated from the
band power of the most reactive frequency bands. These frequency components were found
by using the Distinction Sensitive-LVQ algorithm (Pregenzer et al. 1994) from previous

recordings of the same subject.
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Figure 16: Timing of one trial in a BCIl experiment. (a) BCl4c paradigm, (b) BCl4e paradigm
(adapted from Schlégl et al. 1997b,c, Pfurtscheller et al. 1998, Neuper et al. 1999)

However, the AAR+LDA method offered even more possibilities. Once, a classifier is
obtained, it can be applied continuously in time. Since the AAR parameters are updated with
the same sampling rate, also the output can be calculated with the same rate. The display rate
could be increased from one per trial to a feedback, which is continuous in time. Applying the
LDA classifier is a simple weighted sum and requires very little computational effort; at least
as compared to the AAR estimation algorithms. Furthermore, the form of the feedback was
changed; instead of qualitative feedback (correct or wrong), the result of the distance function
(9.1) was represented by the length of a bar. Thus, a quantitative feedback was provided.

This new type of feedback generation was developed according to the timing scheme in Fig
16b and was called BCI4e (Schlogl et al. 1997¢). This should enable to learn better how to
control the EEG patterns. It was used to enhance EEG differences (Neuper et al. 1999) and a
new online BCI system (Guger et al. 1999). Also, it is an approach towards a more continuous
analysis of the EEG patterns, beyond a fixed timing scheme as in Fig. 16a. In the meantime,
several hundred BCI sessions (e.g. Neuper et al. 1999, Guger et al. 1999, Pfurtscheller and
Guger 1999) were recorded, using AAR+LDA for the feedback generation.

The system was also applied successfully to a tetraplegic patient (T.S., 22 years, male). The
subject had an accident in April 1998, which caused a lesion (at C4/C5) and results in a severe
paralysis of lower and upper extremities, except for his left biceps muscle. The goal is to
restore the hand grasp function of his left hand with an electrically powered hand orthesis.
The control of the orthesis is performed with the BCI system (Pfurtscheller and Guger, 1999).
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8. Analysis of sleep EEG

The second application of the AAR method is related to a research project on sleep research.
The aim of the project is to develop an automated sleep analysis system. Eight different
European sleep laboratories provided the data. For this reason, also a quality control of the
data was performed which is described in the first section. Another important topic in
automated EEG analysis is artifact processing. In this section, it will be shown how the AAR
method can be used for adaptive inverse autoregressive filtering. The method is validated and
the influences of the transient patterns to the AAR estimates are discussed. Finally, the AAR
parameters were used to perform an all-night sleep analysis.

8.1  Quality control of EEG recordings

Typically, the resolution of analog-to-digital conversion is 12 or 16 bit in EEG analysis. The
data 1is stored in a 16bit-integer format (e.g. EDF, Kemp et al. 1992, and BKR-format'). This
means that 2'° = 65536 different amplitude values are possible. Fig. 17 shows the histograms
of the EEG channel C3-A2 from several all-night sleep recordings. The ’sidelobes’ are due to
saturation effects of the input amplifier and/or ADC. The results are described in detail in
Schlogl et al. (1999).

Various parameter can be obtained from the histogram: the total number of samples N (8.1),
the entropy of information (8.2), the mean value u (8.3), the variance o? (8.4), the skewness
(8.6) and the kurtosis (8.7) of the data can be calculated. Note that once the histogram is
available, the computational effort is quite low, even for an all-night EEG recording.

N=13 H(i) (8.1)
[ =3 (H(i)/N*log>(H(i)/N) (8.2)

The mean ¢ and variance o of signal Y can be obtained from the histogram
uy = E{Yy} = % (i Hy(i)/N (8.3)

0%y = E{(Ye-uy)?} = Zi((i - wy)* * Hy(i))/Ny (8.4)

The Gaussian distribution with the mean u, variance 02 and the number of samples N is
Py(x) = N/V(270v2)* exp(-(x-uy)/(20v2)) (8.5)

Furthermore, the skewness % and kurtosis % of the data series Y are defined (Nikias and
Petropulu, 1993) as follows:

%y = Zi((i- uy)’ * Hy(i)) / Ny (8.6)

Yy = Zi((i - uy)" * Hy(i))/Ny - 3%(0v2)2 (8.7)

! BKR-Format V2.07, Department for Medical Informatics, Institute for Biomedical

Engineering, University of Technology Graz
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Figure 17: Histograms of EEG channel C4-A1 from 8 all-night recordings. The units at the
horizontal axes are digits and can range from -32 768 to 32 767. The horizontal line with the
vertical ticks displays the mean = 1, 3 and 5 times of the standard deviation. The markers |> and
<| indicate the real maxima and minima found in the recordings. The markers x indicate the digital
minima and maxima as stored in the header information; if invisible, the values are outside the
scope. The light parabolic lines display the Gaussian distribution with the same mean and
variance as the data (adapted from Schlégl et al. 1999b).
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The Gaussian distribution (8.5) can be related to the histogram (see Fig. 17). The Gaussian
distribution appears as a parabolic line due to the logarithmic scaling. It can be clearly seen
that the histogram deviates from a Gaussian distribution. Due to this fact, the higher order
moments, like skewness and kurtosis are non-zero, which would mean the EEG is non-linear.

Priestley (1988) showed by means of state-dependent models (SDM), that a non-linear system
can be represented by a non-stationary system and vice versa. In theory, the non-linear form is
equivalent to the non-stationary form. It is known that the sleep EEG varies during the
different sleep stages. The spectral density function and the amplitude (variance) changes.
Solely, a varying variance of the EEG can explain the deviation from normal distribution of
the sleep EEG. In other words, the deviation from Gaussian distribution can be explained by
the non-stationarity in the sleep EEG. This is an example for how a non-linearity might be
caused by a non-stationarity. It can be concluded that the observed non-linearity can be
described also by a time-varying (i.e. non-stationary) model.

8.2  Artifact processing with the AAR parameters

Artifacts are one major problem in EEG recordings. EEG artifacts are all parts of the signal
which are caused by non-cortical activity. They are caused by other biomedical sources, like
eye movement superimpose the electrooculogram (EOG), the electrical activity of the heart
(electrocardiogram ECG), or muscle activity in the face or due to chewing. Technical artifacts
are failing electrode, power line interference (S0Hz) or simply a saturation of the amplifier.
Anderer et al. (1999) gives a review of artifacts and artifact processing in the sleep EEG. In
the sleep research project SIESTA, nine types of artifacts were distinguished. Experts scored a
database (Data set D3) visually with these nine artifact types. The results are shown in Table 3
(Schlogl et al. 19994d).

Table 3: Artifact in the sleep EEG. In total, 563 192 1s-epochs were scored for nine different
artifact types. In some epochs several artifact types were found simultaneously, therefore the sum
is 108.5%

Type Epochs [1s] %
no artifact 345 254 61.3
EOG 51427 9.1
ECG 123 886 22.0
muscle 43 861 7.8
movement 20 209 3.6
Failing elect. 10 804 1.9
sweat 4135 0.7
50/60 Hz 11 608 2.1
breathing 2 0.0
pulse - 0.0
SUM 611 186 108.5

Different artifact processing methods were validated (Schlogl et al. 1999¢). The most frequent
artifact is ECG; it can be minimized by regression analysis which is quite simple, by adaptive
filtering (Sahul et al. 1995), or by a method on removing a template of the ECG artifacts
(Harke et al. 1999). The eye movement artifact can be removed e.g. by principle component
analysis (Ille et al. 1997, Lagerlund 1997 et al.); a 50Hz notch filter can remove the line
interference. Failing electrode artifacts cause a flat input at the upper or lower saturation value
of the amplifier. This artifact type can be detected with an over/underflow check of the input
signal whereby the saturation thresholds must be known (Schlogl et al. 1999b). Movement
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artifacts are a mixture of failing electrodes and muscle artifacts. In the following, it is shown
how the AAR estimation algorithms can be used for the detection of these muscle and
movement artifacts by means of adaptive inverse filtering.
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Figure 18: AAR parameter of a segment of sleep EEG. a) shows the raw EEG, (b) is the
prediction error process, (c) the detection threshold e > 3*var{y;} and (d) shows the AAR
estimates (adapted from Schlégl et al. 1998c).
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In section 3.4 the principle of adaptive inverse filtering as a modification of inverse filtering
was explained as described by Praetorius et al. (1977), Bodenstein and Praetorius (1997), and
Lopes da Silva et al. (1977). The idea is that (the variance of) the prediction error process can
be used to detect transient events in the EEG. In this case, muscle artifacts are such transient
events. Fig. 18(a) shows an example of a sleep EEG contaminated with muscle activity (fast
spikes) and eye movements (slow, smooth spikes). The data was sampled with a rate of
100Hz and is 1000s (16min 40s) long. The Kalman filtering algorithm (al2v2) was applied
with p=10 and UC = 0.001. The one-step prediction error process is shown in Fig. 18(b). It
can be seen that the transients are more pronounced. The detection function in Fig. 18(c) is
obtained by applying a threshold of 3*var{y,} to the squared prediction error process e%. Note
that the threshold determines the specificity and sensitivity of detector.

Earlier, when discussing the premises of an AAR model, it was already stated that transient
events contradict the assumption of a slowly varying AAR process. In other words, the
characteristics of transients can not be characterized by the AAR model parameter. Fig.18(d)
displays how transients influence the corresponding AAR estimates; all AAR parameter
change towards zero. Note, that an AR-spectrum (2.7) with zero coefficients gives a flat
spectrum; also the spectrum of a single spike (Dirac impulse) is flat. It can be concluded that
in the case of transients, the AAR estimates still describe the spectral density distribution of
the signal. The increase of the absolute power is considered in the variance of the error
process. It is interesting that even in such cases, the spectral estimation moves towards the
theoretically expected spectral density function.

After the transient has vanished, the estimation algorithms require about the same time to
adapt in order to obtain estimates that accurately describe the signal characteristics. During
this time, the poles (roots of the AR polynomial in the complex Z-plane) move from the origin
towards the unit circle. Moreover, it means that the spectral peaks, which have diminished
during the transient, become now more and more pronounced again.

Figure 18 shows that the mean squared error can be used to detect muscle artifacts. In the next
step, the detector quality is evaluated using the artifact database (Table 3). For this purpose,
Kalman filtering (version aSvl, UC=0.001, p=10, ay =0, Ay=I) was applied (Data set 5) and
the prediction error was calculated. The mean squared prediction error process MSE of each
Is-epoch was analyzed by the receiver-operator-characteristics (ROC) curve in order to
investigate the quality of the detector (see also Schlogl et al. 1999f).

The ROC-curve was calculated for each artifact type with sufficient examples (pulse and
breathing artifacts were not considered, see Table 3). A ROC-curve displays the sensitivity vs.
100%-specificity for different detection thresholds. If the ROC curve is diagonal (sensitivity =
100% - specificity), the area under the ROC curve (AUC) is 0.5, this means no correlation
between expert scoring and output can be observed. The ROC curve can be used to identify
the optimal threshold if the costs (for false positive and false negative decisions) are known.
Furthermore, the area-under the ROC curve (AUC) is a measure for the detector quality (Judy
et al. 1992), whereby no threshold has to be selected in advance.
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Figure 19: ROC curves of the MSE versus the expert scoring for: 'no artefact’ (top left), 'EOG’
(t.r.), ’ECG’, 'muscle’, ‘'movement’, 'failing electrode’, 'sweat’, '50/60Hz’ (b.r.).

In Fig. 19, the ROC curves for each artifact type are shown. The AUC is displayed in the
center of each curve. It can be seen that the AUC is 0.857 and 0.898 for muscle and
movement artifacts, respectively. An AUC of 0.870 was obtained, when both artifact types
were combined to one type. Other artifact types were rarely detected by the MSE; probably,
those artifact types are closer to slow variations than to transients.

However, an AUC of 0.87 also means that a perfect separation of artifacts from artifact-free
epochs, at least according to the definition of the expert, is not possible. The basic principle of
adaptive inverse autoregressive filtering is that transient events can be clearly distinguished
from nearly stationary changes. This might not always be the case. E.g. the (muscle) artifact
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can last several seconds up to minutes. E.g. some subjects grit their teeth during sleep, causing
muscle artifacts in the EEG. This artifact type is clearly not a short event, but can last much
longer. It was also shown that very short transients require a longer adaptation period
afterwards. On the other hand, EEG patterns might be transient, short-term phenomena, e.g.
sleep spindles, or K-complexes which have a typical length of 1s. All these phenomena limit
the accuracy of the MSE as a detector of transient events.

Despite these facts, some ability to detect muscle artifacts could be observed. Summarizing, it
can be said the proposed method of adaptive inverse filtering is not a very specific method for
detecting transients. But it a useful byproduct of the AAR estimation algorithm. It is obtained
without additional computing effort and can easily be applied on-line.

8.3  Sleep analysis

It was shown (equation 3.6) that the AAR method can be used to describe time-varying
spectra. It is also known that the spectrum of the sleep EEG is an important measure for
determining the sleep stages. In the following is investigated how AAR parameters can be
used to determine sleep stages. For this purpose, the AAR parameters from 38 all-night sleep
recordings (from data set 1) were estimated. The model order p=10, update coefficient
UC=0.001, the Kalman filtering algorithm aSv1, a 50Hz notch filter, a low pass filter with an
edge frequency of about 35Hz and regression analysis for minimizing the ECG artifact were
used. The re-sampling algorithm as described in the Appendix B was used to obtain AAR
parameter for 100Hz, even if the sampling rate was 200 or 256Hz. The AAR estimates at the
end of each second were stored for further processing. No smoothing or averaging of the
estimates was performed.

These AAR estimates were used to determine a classifier based on LDA, similar as described
in the BCI approach. For each of the three classes (Wake, REM and deep sleep), a weight
vector was obtained. These weights can be used to calculate the time-varying distance
function for each classifier. The results of one recording are shown in Fig. 20.

In the second plot of Fig.20, the MSE of the one step prediction error for each 1s-epoch is
shown. The increase of the MSE appears in bursts and is related to sleep stages. In case of
deep sleep and REM without interruptions the MSE is relatively small. In these cases, the
EEG contains no transient events, thus it can be assumed that the EEG is nearly stationary and
the spectrum changes slowly. In section 8.2 was shown that an increased MSE is an indicator
for muscle and movement artifacts or other transient phenomena. Hence, it can be assumed
that the increase of the MSE represents arousal reactions, which often cause muscle and
movement artifacts in the EEG. The fact that several MSE spikes coincide with short
awakenings supports this assumption.

Below the MSE curves (in Fig. 20) is the output of the three classifiers (Wake, REM and deep
sleep) displayed . The scaling is arbitrary; but it can be seen that the larger the values are, the
higher is the probability of the corresponding process. The Wake and REM processes increase
during Wake and REM. However, it can be seen, with respect to this scaling, that in case of
Wake scoring, the WAKE process is larger than REM and vice versa. The weights for the
deep sleep process were obtained from the classes 2 versus 34+4. Despite the fact that the sleep
curve is superimposed by the awakenings and REM into the negative direction, it can be seen
that a value of approx. zero corresponds stage 2; the highest values correspond to the sleep
stages 3 and 4.

50



NO01001.CM1
M T \

Wake - —
REM - —

N-bo‘ol\)—k
I

log(MSE)
o

A

JM i MM ‘W >Jﬂ

5 6 7 8

| w W“ Il MMJL JIW - ML M. H e ‘MW »MMWWWM

23 0 1 2 3
20 \

L

10~ WAKE

l"“l 'I' wfmmfu»“mmsmﬂ i I"“H'MM LM |J mM LMNL*'M

' IM||| ]

o

-10 | |
23 0 1 2 3 4 5 6 7 8

(deep) Sleep

time [h]

Figure 20: Sleep analysis with AAR method. The first plot displays the hypnogram scored by an
expert. The second part contains the MSE (variance of the inverse filtered process) of the
channels C3-M2 and C4-M1. The third and forth plot contain time courses for Wake, REM and
Sleep. These were obtained by a linear combination of 10 AAR parameter of two EEG channels
(C3 and C4). The curves were smoothened with a rectangle window of length 30.

This result is only a first approach, which has to be imporved in the future. For example, in
case of a transient, not only the MSE is increased, but also the AAR estimates tend to zero and
need some time afterwards for adaptation. One idea would be to implement an artifact
detector (e.g. with a threshold for the MSE). In case of a detected artifact, the adaptation of the
AAR parameter should stop until the MSE of the prediction error process is below this
threshold. This would limit the variation of the AAR estimates and it can be expected that the
classification output shows a better resolution. Furthermore, also non-linear classifier like
neural networks might be useful in order to improve the classification output.
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It is important to note that this sleep staging is based on EEG only. One can clearly identify
variations according to the R&K sleep stages. Although this is only a first result, it seems to
be a possible approach towards an automated sleep analysis based on spectral variations of the
EEG.
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PART IV: CONCLUSIONS

53



9. Comments on AAR modeling

9.1 Historical notes

Bohlin (1972), Mathieu (1976), Dusquesnoy (1976), Blechschmid (1982) and Jansen et al.
(1979, 1981) already applied Kalman filtering to an AR model for analysing EEG. Despite
these works and the theoretical advantages (optimal filter, non-stationary spectral analysis),
Kalman filtering was not very much used for EEG analysis. It can be assumed that the
unsolved problem of selecting the model order and the unstable estimation algorithms were
reasons for this.

Furthermore, it can be speculated that the instabilities were caused by neglecting the
covariance matrix W;. Often, the covariance W was set to zero or not considered at all. In
these cases, the algorithm adapts from some initial value towards the true’ AR parameter of a
stationary time series; the longer the observation was, the smaller was the estimation variance.
This leads to the stalling phenomenon and numerically unstable estimation algorithms. The
solutions for these problems was to increase the covariance at some (rare) time points (e.g.
Blechschmid, 1977, Roberts, 1997 and Penny and Roberts, 1998 who refers to Jazwkinski,
1969) or to use the Kalman filter as (stationary) AR estimation algorithms of short segments
(Jansen, 1979, 1981, Blechschmid, 1982).

These approaches were very different from a random walk approach, which means the use of
a non-zero covariance matrix W (4.24-25) at every iteration. It was shown in this work that a
random walk approach gives a lower one-step prediction error than the other assumptions.
Furthermore, if the update coefficient and the model order were chosen properly, no stability
problem was observed. It can be concluded that the random walk model is the best model but
it was not used in the past.

9.2  Model order, update coefficient and the time-frequency resolution

Since AR models are used, the order of the model is of immanent importance. Various
information criteria (AIC, BIC, FPE, CAT, etc.) (Priestley, 1981) can be used in the stationary
case. These criteria are not applicable in the time-varying case. Hence, it was suggested to use
the MSE (REV) criterion also for model order selection. The advantage of the REV criterion
for the model order selection is that no penalty term is needed.

The problem of selecting the model order and the update coefficient can be seen as a
reformulation of the principle of uncertainty between time and frequency domain (Priestley,
1981) in terms of stochastic time series analysis with an autoregressive model. The model
order corresponds to the frequency resolution and the update coefficient determines the time
resolution. Hence, for a certain UC, one optimal model order exists and vice versa.

The question of Haykin (1999) ’...whether there will be an ultimate time-frequency
distribution ...or a number of densities tailored for individual applications... ’ can be
reformulated whether to look for the global minimum of REV(p,UC) or for one of several
local minima which yield locally optimal solutions for REV(p, UC).
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9.3 Alternative and related methods

In this work, only adaptive algorithms with forward prediction were investigated. Other,
related algorithms are time-varying autoregressive (TVAR) modeling (Kaipio and
Karjalainen, 1997a,b) as well as Kalman smoothing algorithms (Grewal and Andrews, 1993).
They might be interesting alternatives for off-line analysis or when a delayed estimation of
the AAR parameters is acceptable. Both approaches were not investigated because the REV-
criterion is based on an un-correlated prediction error process (i.e. residual process) which
would be not the case in these methods.

In this work, the spatial relationship was considered in the classification. The spatial
relationship can be addressed by bi-variate (Schack et al. 1995, Andrew 1997, Arnold et al.
1998) and multivariate time-varying AR models (Gersch, 1987). In these cases, it should be
considered that the number of coefficients increases with the square of the number of
components. A larger number of parameters also increases the estimation variance of the
model parameter. Here, the test of the residual process might be a useful tool in order to
prevent overparametrization.

In this work were also discussed two more or less physiological models of the EEG. The
lumped circuit model explains only one rhythm (alpha), the Kemp’s feedback loop model is
able to describe the low frequency components (delta) and one high frequency component
(alpha). These models do not explain an EEG spectra with more components e.g. delta alpha
and beta as described by Isaksson and Wennberg (1975). An AR model is a linear model,
which is able to describe the spectral composition of the EEG signal. An AAR model also
considers the time-variation of the spectrum, assuming that the characteristic change only
gradually. However, non-linear EEG analysis (like the lumped circuit model with a feedback
gain larger than the critical value) can not be represented by an AR model. But recently, an
extended Kalman filtering method was applied (Valdes et al. 1999) to the lumped model
(Lopes da Silva et al. 1974, Zetterberg et al. 1978). The state-space model was constructed
directly from the neural mass model. The advantage of this method is that the model
parameters in equation (2.39-40) may not need to be assumed as in Suffczinki et al. (1999).
They are rather part of the state vector and can, therefore, be estimated with the Kalman filter.
The work of Valdes et al. (1999) shows one possible direction how non-linear EEG analysis,
based on physiological models, can be performed with Kalman filtering.

All models that address the problem of time-varying spectral analysis (including higher order
spectra) without averaging can be tested by means of the REV criterion. It is only important
that the prediction error e(?) at time ¢ is uncorrelated to all previous sample values y(z-i), i>0.
This can be ensured if y(7) is used firstly for calculating the prediction error e(?) at each time
point #; afterwards, y(¢) can be used for all further processing steps.

94 Is an AAR model a useful model for EEG?

The ERD/ERS and the AAR parameters have in common that both describe time-varying
EEG spectra. The ERD/ERS describes changes of power in distinct frequency bands; all AAR
parameters together describe the time-varying spectral density functions. A single AAR-
parameter does not mean very much and all AAR parameters are more difficult to deal with.
This is clearly a disadvantage of the AAR parameters as compared to the ERD method.
However, in combination with the LDA, the results can also be visualized. Furthermore, AR
modeling does not require the selection of specific frequency bands. Individual variations of
the mean frequency, which might be important for the significance of a study (Klimesch et al.
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1998, Klimesch, 1999), can be considered more easily. The temporal changes of the ERD
(Pfurtscheller, 1999) are also considered by the time-variation of the AAR parameters.
Compared to the segmentation-based AR estimation (Florian and Pfurtscheller 1995,
Pfurtscheller 1999), the computational effort of the adaptive estimation algorithms is
reasonable; moreover, the time-resolution of the parameters is the same as the sampling rate.

In summary, the AAR method is appropriate for on-line and single trial analysis of the time-

varying EEG spectrum. The advantages of the AAR method, compared to other methods, are
most significant in cases where no averaging of an ensemble of recordings can be applied.

56



REFERENCES

Abraham B. and Leodolter J. (1983) Statistical Methods for Forecasting, Wiley, New York.

Akaike H. (1969) Fitting Autoregressive models for prediction. Ann. Inst. Statist. Math. 21,
243-247.

Akaike H. (1974). A new look at the statistical model identification, /IEEE Trans. Autom.
Control, vol. AC-19, pp.716-723.

Akaike, H. (1979) A Bayesian extension of the minimum AIC procedure of autoregressive
model fitting. Biometrika, 66, 2, 237-42.

Akay M. (1994) Biomedical Signal Processing, Acad. Press, San Diego.

Anderer P., Roberts S., Schlogl A., Gruber G., Klésch G., Herrmann W., Rappelsberger P.,
Filz O., Barbanoj M-J., Dorffner G., Saletu B. (1999) Artifact processing in
computerized analysis of sleep EEG - a review, Neuropsychobiology, 40(3): 150-157.

Andrew C.M. (1997) Multivariate spectral analysis of movement-related EEG data. Shaker
Verlag, Aachen, Germany.

Andrew C.M. (1999) Quantification of event-related coherence. in Pfurtscheller, G. and
Lopes da Silva, F.H. (Eds.) Event-Related Desynchronization. Handbook of
Electroenceph. and Clin. Neurophysiol. Revised Edition Vol. 6. Elsevier, Amsterdam.

Arnold M., Miltner W., Witte H., Bauer R., Braun C. (1998) Adaptive AR Modeling of
Nonstationary Time Series by Means of Kalman filtering. /IEEE Trans Biomed Eng
45(5): 553-562.

Aserinsky E., Kleitman N. (1953) Regularly occurring episodes of eye mobility and
concomitant phenomena during sleep. Science, 118: 273-274.

Basar E., Basar-Eroglu C., Karakas S., Schiirmann M. (1999) Oscillatory Brain Theory: A
new trend in Neuroscience. IEEE Eng. Med. and Biol. 18(3): 56-66.

Bianchi A., Mainardi L., Meloni C., Chierchia S., Cerutti S. (1997) Continuous monitoring of
the Sympatho-Vagal Balance through spectral analysis. IEEE Engineering in Medicine
and Biology. 16(5): 64-73.

Bauby J-D. Schmetterling und Taucherglocke, Paul Zsolnay Verlag,Wien, 1997. (orig. franz.:
Le scaphandre et le papillon, Edition Robert Laffont, S.A. Paris, 1997.)

Berger H. (1929) Uber das Elektroenzephalogramm des Menschen, Arch. Psychiat. Nervenkr.
87:527-570.

57



Birbaumer N. (1999), Selbstkontrolle des Gehirns und die Beherrschung von Krankheiten.
Materie, Geist und Bewuftsein, Forum Alpbach.

Birbaumer N., Elbert T., Rockstroh B. and Lutzenberger W. (1981) Biofeedback of event-
related potentials of the brain. Int. J. Psychophysiol. 16: 389-415.

Birbaumer N., Ghanayim N., Hinterberger T., Iversen 1., Kotchoubey B., Kiibler A.,
Perelmouter J., Taub E., Flor H. (1999) A brain-controlled spelling device for the
completely paralyzed. Nature 398: 297-298.

Blechschmid H. (1977) Die Analyse nichtstationdrer Zeitserien mit Hilfe eines Kalman-
filters. Diplomarbeit, Technische Universitit Graz, Austria.

Blechschmid H. (1982) Die mathematische EEG-Auswertung mit einem schnellen online-
fahigen Kalman-Filter. PhD-Thesis, University of Technology Graz, Austria.

Bodenstein G. and Praetorius H.M. (1977) Feature extraction from the electroencephalogram
by adaptive segmentation, Proc. IEEE, 65: 642-657.

Bohlin T. (1972) A method of analyzing EEG-signals with changing spectra. Digest of the 3rd
International Conference on Medical Physics, Including Medical Engineering. Chalmers
Univ. Technol, Gothenburg, Sweden; 1972; xvi+317 pp. p.21-6.

Burg J.P. (1967) Maximum entropy spectral analysis, in 37" Ann. Int. Meet., Soc.
Explor.Geophys., Oklahoma City, Okla.

Burg J.P. (1975) Maximum entropy spectral analysis, PhD-thesis, Stanford, University,
Stanford, Calif.
CEN (1995) Vital signs Information Representation Version 1.2, Interim Report -
CEN/TC251/WGS5/N95-3, European Committee for Standardisation, Brussels.

Dement W. and Kleitmann N. (1957) Cyclic variations in EEG during sleep and their relation
to eye movemnts, body motility and dreaming. Electroenceph. clin. Neurophysiol. 9: 673-
690.

Dorffner G. (1998) Towards a new standard of modeling sleep based on polysomnograms -
the SIESTA project. Proc. ECCN 98, Ljubljana, Electroenceph. and Clin. Neurophys.
106(Suppl. 1001): 28.

Duda R.O. and Hart P.E. (1973), Pattern classification and Scene Analysis, John Wiley &
Sons.
Durbin J. (1960) The fitting of time series models, Rev. Int. Stat. Inst., 28, 233-244.

Duquesnoy A.J. (1976) Segmentation of EEG's by means of Kalman filtering. Progress
Report No. PRS, pp.87-92, Institute of Medical Physics TNO, Utrecht.

Elder S.T., Lashley J.K. and Steck C.G. (1982) Amyotriphic Lateral Sclerosis: A challenge
for biofeedback. American J. of Clin. Biofeedback. 5(2): 123-125.

Fenwick P.B., Mitchie P., Dollimore J., Fenton G.W. (1969) Application of the autoregressive
model to E.E.G. analysis. Agressologie. 10:Suppl:553-64.

Fenwick P.B., Mitchie P., Dollimore J., Fenton G.W. (1970) The use of the autoregressive
model in EEG analysis. Electroencephalogr Clin Neurophysiol. 29(3):327.

58



Fenwick P.B., Michie P., Dollimore J., Fenton G.W. (1971) Mathematical simulation of the
electroencephalogram using an autoregressive series. Int J Biomed Comput. 2(4):281-
307.

Florian G. and Pfurtscheller G. (1995) Dynamic spectral analysis of event-related EEG data.
Electroenceph. clin. Neurophysiol. 95: 393-396.

Flotzinger D., Kalcher J., Pfurtscheller G. (1992) EEG classification by Learning Vector
Quantization. Biomed. Technik, 37: 303-309.

Flotzinger D., Pfurtscheller G., Neuper Ch., Berger J., Mohl W. (1994) Classification of non-
averaged EEG data by learning vector quantisation and the influence of signal
preprocessing. Medical & Biological Engineering & Computing, 32: 571-576.

Gersch W. (1970) Spectral analyisis of EEGs by autoregressive decomposition of time series.
Math. Biosci., 7, 205-222.

Gersch W. (1987) Nonstationary mulitchannel time series analysis, pp. 261-296 in Gevins
A.S. and Rémond A, (eds) Methods of Analysis of brain electrical and magnetic signals,
EEG handbook (revised series, vol. 1), Elsevier.

Goel V., Brambrink A.M., Baykal A., Koehler R.C., Hanley D.F., Thakor N.V. (1996)
Dominant frequency analysis of EEG reveals brain's response during injury and recovery.
IEEE-Transactions-on-Biomedical-Engineering. 43(11): 1083-92

Goncharova LI. and Barlow J.S. (1990) Changes in EEG mean frequency and spectral purity
during spontaneous alpha blocking. Electroenceph. clin. Neurophysiol., 76: 197-204.

Grewal M.S. and Andrews A.P. (1993) Kalman filtering: Theorie and Practice. Prentice Hall,
Englewood Cliffs, New Jersey.

Guger C., Schlogl A., Walterspacher D., Pfurtscheller G. (1999) Design of an EEG-based
Brain-Computer Interface (BCI) from Standard Components running in Real-time under
Windows. Biomedizinische Technik, 44: 12-16.

Guger C., Schlogl A., Neuper C., Walterspacher D., Strein T., Pfurtscheller G. (2000) Rapid
prototyping of an EEG-based brain-computer interface (BCI), IEEE Trans. Rehab. Eng.,
in press.

Hannan E.J. and Quinn B.G. (1979) The determination of the order of an autoregression, J.
Roy. Statist. Soc., Ser. B,41: 190-195

Hannan E.J. (1980) The estimation of the order of an ARMA process, Ann. Statist, 8: 1071-
1081.

Haring G. (1975) Uber die Wahl der optimalen Modellordung bei der Darstellung von
stationdren Zeitreihen mittels Autoregrressivmodels als Basis der Analyse vom EEG -
Signalen mit Hilfe eines Digitalrechners. Habilschrift, Technische Universitit Graz.

Harke K. C., Schlogl A., Anderer P., Pfurtscheller G. (1999) Cardiac field artifact in sleep
EEG. Proceedings EMBEC’99, Vienna, Austria, Part I, 482-483.

Hasan J., Hirvonen K., Virri A., Hikkinen V., Loula, P. (1993) Validation of computer
analysed polygraphic patterns during drowsiness and sleep onset. Electroenceph. clin.
Neurophysiol. 87, 117-127.

59



Hasan J. (1996) Past and future of computer-assisted sleep analysis and drowsiness
assessment. J Clin Neurophysiol. 13(4):295-313.

Haustein W, Pilcher J, Klink J, Schulz H. (1986) Automatic analysis overcomes limitations of
sleep stage scoring. Electroencephalogr Clin Neurophysiol. 64(4):364-74.
Haykin S. (1996) Adaptive Filter Theory. Prentice Hall, Englewood Cliffs, NJ.

Haykin S., Sayed A.H. , Zeidler J.R., Yee P., Wei P.C. (1997) Adaptive Tracking of Linear
Time-varinat Systems by Extended RLS Algorithms, IEEE Trans. Signal Proc. 45(5):
1118-1128.

Haykin S. (1999) Adaptive Filters, IEEE Signal Processing Magazine, 16(1): 20-22.

Hjorth B. (1970) EEG analysis based on time domain parameter. Electroenceph. clin.
Neurophysiol., 29: 306-310.

Isaksson A. (1975) SPARK - A sparsely updated Kalman filter with application to EEG
signals. Technical Report 120, Department of Telecommunication Thearoy, Royal
Insitute of Technology, Stockholm.

Isaksson A. and Wennberg A. (1975) Visual evaluation and computer analysis of the EEG - A
comparison. Electroenceph. clin. Neurophysiol., 38: 79-86.

Isaksson A., Wennberg A., Zetterberg L.H. (1981) Computer Analysis of EEG signals with
Parametric Models, Proc. IEEE, 69(4): 451-463.

Ille N., Berg P., Scherg M. (1997) A spatial component method for continuous artifact
correction in EEG and MEG. Biomedizinische Technik (Ergdnzungsband 1) 42: 80-83.

Jazwinski A. H. (1969) Adaptive filtering, Automatica, 5(4): 475-485.

Jansen B.H., Hasman A., Lenten R., Visser S.L. (1979) Usefulness of autoregressive models
to classify EEG-segments. Biomedizinische Technik. 24(9): 216-23.

Jansen B.H., Bourne J.R., Ward J.W. (1981) Autoregressive estimation of short segment
spectra for computerized EEG analysis. IEEE Trans. Biomedical Engineering. 28(9).

Jansen B.H., Dawant B.M. (1989) Knowledge-based approach to sleep EEG analysis-a
feasibility study. IEEE Trans Biomed Eng. 36(5):510-8.

Jobert M., Mineur J., Scheuler W., Kubicki S., Scholz G. (1989) System zur koninuierlichen
Digitalisierung und Auswertung von 32 Biosignalen bei Ganznacht-Schlafableitungen.
EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb. 20(3):178-84.

Judy P.F., Schaefer C.M., Green R.E., Oestmann, J-W. (1992) Measuring Observer
Performance of Digital Systems. In eds. Green and Oestmann, Thieme Medical
Publishers, New York.

Kaipio J.P. and Karjalainen P.A. (1997a) Simulation of nonstationary EEG, Biol. Cybern.
76(5): 349-56.

Kaipio J.P. and Karjalainen P.A. (1997b) Estimation of event-related synchronization changes
by a new TVAR method. IEEE Trans Biomed Eng. 44(8): 649-56.

60



Kalcher J., Flotzinger D., Neuper Ch., Golly S., Pfurtscheller G. (1996) Graz Brain-Computer
Interface II - Towards communication between humans and computers based on online
classification of three different EEG patterns, Med. Biol. Eng. Comput., 34: 382-388.

Kalman R.E. (1960) A new approach to Linear Filtering and Prediction Theory, Journal of
Basic Engineering Trans. of ASME, 82: 34-45.

Kalman R.E. and Bucy R.S. (1961) New Results on Linear Filtering and Prediction Theory,
Journal of Basic Engineering, 83: 95-108.

Kemp B. (1983) Accurate measurement of flash-evoked alpha attenuation. Electroenceph.
Clin. Neurophysiol. 56(2): 248-53.

Kemp, B. (1993) A proposal for computer based sleep/wake analysis (Consensus report). J
Sleep Res., 2: 179-185.

Kemp B. and Blom H.A.P. (1981) Optimal detection of the alpha state in a model of the
human electroencephalogram. Electroenceph. Clin. Neurophysiol. 52(2): 222-5.

Kemp B. and Lopes Da Silva F.H. (1991) Model-based analysis of neurophysiological
signals, Weitkunat, R. (ed.) Digital Signal Processing, Elsevier.

Kemp B., Virri A., Rosa A.C., Nielsen K.D., Gade J. (1992) A simple format for exchange of
digitized polygraphic recordings. Electroenceph. clin. Neurophysiol., 82: 391-393.

Kemp B, Groneveld EW, Janssen AJ, Franzen JM. (1987) A model-based monitor of human
sleep stages. Biol Cybern. 57(6):365-78.

Klimesch W., Doppelmayr M., Russegger H. and Pachinger Th. (1998) A method for the
calculation of induced band power; implications for the significance of brain oscillations.
Electroenceph. Clin. Neurophysiol. 108: 123-130.

Klimesch W. (1999) Event-related band power changes and memory performance, in
Pfurtscheller, G. and Lopes da Silva, F.H. (Eds.) Event-Related Desynchronization.
Handbook of Electroenceph. and Clin. Neurophysiol. Revised Edition Vol. 6. Elsevier,
Amsterdam.

Kohonen, T. (1995) Self-organizing maps, Springer.

Kubat M, Pfurtscheller G, Flotzinger D. (1994) Al-based approach to automatic sleep
classification. Biol Cybern. 70(5):443-8.

Kubat M., Flotzinger D., Pfurtscheller G. (1993) Towards automated sleep classification in
infants using symbolic and subsymbolic approaches. Biomed Tech. 38(4):73-80.

Kubicki S, Herrmann W.M. (1996) The future of computer-assisted investigation of the
polysomnogram: sleep microstructure. J Clin Neurophysiol. 13(4):285-94.

Kubicki S, Holler L, Berg I, Pastelak-Price C, Dorow R. (1989) Sleep EEG evaluation: a
comparison of results obtained by visual scoring and automatic analysis with the Oxford
sleep stager. Sleep. 12(2):140-9.

Kubicki, St., Herrmann, W.M., Hoéller, L., Scheuler, W., (1982) Kritische Bemerkungen zu
den Regeln von Rechtschaffen und Kales iiber die visuelle Auswertung von EEG-
Schlafableitungen, Z. EEG-EMG 13: 51-60.

61



Lagerlund T.D., Sharbrough F.W., Busacker N.E. (1997) Spatial filtering of multichannel
electroencephalographic recordings through principal component analysis by singular
value decomposition. J Clinic Neurophysiol. 14: 73-82.

Larsen L.E. and Walter D.O. (1970) On automatic methods of sleep staging by EEG spectra.
Electroencephalogr Clin Neurophysiol. 28(5):459-67.

Levinson N. (1947) The Wiener RMS (root-mean-square) error criterion in filter design and
prediction, J. Math. Phys., 25, 261-278.

Loomis A.L., Harvey E.N., Hobart G.A. (1937) Cerebral states during sleep as studied by
human brain potentials. J. Exp. Psychol. 21:127-144.

Loomis A.L., Harvey E.N., Hobart G.A. (1938) Distribution of disturbance-patterns in the
human electroencephalogram with special reference to sleep. J. Neurophysiol. 1:413-
430.

Lopes da Silva F.H. (1991) Neural mechanisms underlying brain waves: from neural
membranes to networks. Electroencephalogr Clin Neurophysiol. 79(2):81-93.

Lopes da Silva F.H., Hoeks A., Smits H., Zetterberg L.H. (1974) Model of brain rhythmic
activity. The alpha-rhythm of the thalamus. Kybernetik. 15(1):27-37.

Lopes da Silva, F.H., van Hulten, K., Lommen, J.G. Stomr van Leeuwen, W., von Veelen,
C.W.M. and Vliegenthart, W. (1977) Automatic detection and localization of epiliptic
foci, Electroenceph. Clin. Neurophysiol. 43: 1-13.

Lopes da Silva F.H. (1999) EEG analysis: theory and practice. In Niedermeyer E. and Lopes
da Silva F.H. (Eds.) Electroencephalography - basic prinicples, clinical Applications
and related fields. Urban & Schwarzenberg, 4™ edition.

Lopes da Silva F.H. and Pfurtscheller G. (1999) Basic concepts of EEG sychronization and
desychronization. in Pfurtscheller, G. and Lopes da Silva, F.H. (Eds.) Event-Related
Desynchronization. Handbook of Electroenceph. and Clin. Neurophysiol. Revised
Edition Vol. 6. Elsevier, Amsterdam.

Lugger K., Flotzinger D., Schlogl A., Pregenzer M., Pfurtscheller G. (1998) Feature
extraction for on--line EEG classification using principal components and linear
discriminants. Med. Biol. Eng. Comput., 36: 309-314.

Lustick L.S., Saltzberg B, Buckley J.K., Heath R.G. (1968) Autoregressive model for
simplified computer generation of EEG correlation functions. Proceedings of the annual

conference on engineering in medicine and biology, Vol.10. IEEE, New York, NY,
USA; 1968; 552+xxvii pp. 1 pp.

Mainardi L.T., Bianchi A.M., Baselli G., and Cerutti S. (1995) Pole-tracking algorithms for
the extraction of time-variant heart rate variability spectral parameter. /[EEE Trans
Biomed Eng. 42(3): 250-9.

Marple Jr. A.L. (1987) Digital spectral Analysis with applications. Prentice-Hall, Englewood
Cliffs, N. J.

Mathieu M. (1976) Anayse de l'electroencéphalogramme par prédiction linéartre. These,
Université Pierre et Marie Curie, Paris.

62



McFarland D.J., Neat G.W., Read R.F., Wolpaw J.R. (1993) An EEG-based method for
graded cursor control, Psychobiol., 21: 77-81.

McFarland D.J., Lefkowicz A.T., Wolpaw J.R. (1997) Design and operation of an EEG-based
brain-computer interface with digital signal processing technology. Behavior Research
Methods, Instruments & Computers, 29(3): 337-345.

McFarland D.J., McCane L.M., Wolpaw J.R. (1998) EEG-based communication and control:
short-term role of feedback. IEEE Trans Rehab Engng. 6: 7-11.

Medl A., Flotzinger D., Pfurtscheller G. (1992) Hilbert-Transform Based Predictions of Hand
Movement from EEG Measurements. Proceedings of the 14th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society, Paris, France,
2539-2540.

Meinhold R. J. and Singpurwalla N.D. (1983) Understanding Kalman filtering. The American
Statistician. 37(2): 123-127.

Merica H, Fortune RD. (1997) A neuronal transition probability model for the evolution of
power in the sigma and delta frequency bands of sleep EEG. Physiol Behav. 62(3):585-9.

Michie, D., Spiegelhalter, D.J. and Taylor, C.C. (1994) Machine Learning, Neural and
Statistical Classification, Ellis Horwood Limited, Englewood Cliffs, N.J..

Mourtazaev M.S., Kemp B., Zwinderman A.H., Kamphuisen H.A. (1995) Age and gender
affect different characteristics of slow waves in the sleep EEG. Sleep 18(7): 557-64.

Neuper C., Schlogl A., Pfurtscheller G. (1999) Enhancement of left-right sensorimotor EEG

differences during feedback-regulated motor imagery. J. Clin. Neurophysiol. 16(4):
373-82.

Niedermeyer E. and Lopes da Silva F.H. (1999) Electroencephalography - basic prinicples,
clinical Applications and related fields. Urban & Schwarzenberg, 4™ edition.

Nielsen K.D. (1993) Computer assisted sleep analysis, PhD-Thesis, Aalborg University,
Denmark, ISBN 87-984421-0-4.

Nielsen K.D., Drewes A.M., Svendsen.L., Bjerregard K., Taagholt S.A. (1994) Ambulatory
recording and power spectral analysis by autoregressive modelling of polygraphic sleep

signals in patients suffering from chronic pain. Methods of Information in Medicine.
33(1): 76-80.

Nikias C.L. and Petropulu A.P. (1993) Higher-order spectra analysis. Prentice Hall,
Englewood Cliffs, NJ.

Oppenheim A.V. and Schafer RW. (1975) Digital Signal Processing, Prentice Hall,
Englewood Cliffs, NJ.

Parzen E. (1977) Multiple time series modeling: Determining the order of approximating
autoregressive schemes, in Multivariate Analysis IV In "Applications of Statistics (P.R.
Krishnaiah, ed.) 283-295, North Holland, Amsterdam.

Patomiki L., Kaipio J.P., Karjalainen P.A. (1995) Tracking of nonstationary EEG with the
roots of ARMA models. in Proceedings of 1995 IEEE Engineering in Medicine and

63



Biology 17th Annual Conference and 21 Canadian Medical and Biological
Engineering. IEEE, New York, NY, USA 2: 887-8.

Patomiki L., Kaipio J.P., Karjalainen P.A., Juntunen M. (1996) Tracking of nonstationary
EEG with the polynomial root perturbation. in Proceedings of the [8th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society.
IEEE, New York, NY, USA; 3: 939-40.

Penny W.D. and Roberts S.J. (1998) Dynamic linear models, Recursive Least Squares and
Steepest descent learning, Technical Report, Imperial College London.

Pfurtscheller G. (1999) Quantification of ERD and ERS in the time domain. In Pfurtscheller,
G. and Lopes da Silva, F.H. (Eds.) Event-Related Desynchronization. Handbook of
Electroenceph. and Clin. Neurophysiol. Revised Edition Vol. 6. Elsevier, Amsterdam.

Pfurtscheller G and Haring G. (1972) The use of an EEG autoregressive model for the time-
saving calculation of spectral power density distributions with a digital computer.
Electroencephalogr Clin Neurophysiol. 33(1):113-5.

Pfurtscheller G. and Cooper, R. (1975) Frequency dependence of the transmission of the EEG
from cortex to scalp. Electroenceph. clin. Neurophysiol. 38: 93-96.

Pfurtscheller G. and Aranibar A. (1977) Event-related cortical desynchronisation detected by
power measurements of scalp EEG. Electroenceph. clin. Neurophysiol., 42, 817-826.

Pfurtscheller G., Flotzinger D., Kalcher J. (1993) Brain-computer interface—a new
communication device for handicapped persons, J. Microcomp. Appl., 16: 193-299.

Pfurtscheller G. and Guger C. (1999) Brain-Computer Communicatio System: EEG-based
Control of Hand Orthesis in a tetraplegic patient. Acta Chir. Autriaca, 31, Suppl. 159,
23-25.

Pfurtscheller G., Kalcher J., Neuper Ch., Flotzinger D., Pregenzer M. (1996) Online EEG
classification during externally-paced hand movements using a neural network-based
classifier, Electroenceph. Clin. Neurophysiol., 99: 416-425.

Pfurtscheller G., Neuper Ch., Flotzinger D., Pregenzer M. (1997) EEG-based discrimination
between imaginary right and left hand movement. Electroenceph. clin. Neurophysiol.
103(6): 642-651.

Pfurtscheller G., Neuper C., Schlogl A., Lugger K. (1998) Separability of EEG signals
recorded during right and left motor imagery using adaptive autoregressive parameter.
IEEE Trans. on Rehab. Eng. 6(3): 316-25.

Pfurtscheller G. and Lopes da Silva F.H. (1999a) Event-Related Desynchronization and
Related Oscillatory Phenomena of the Brain. Handbook of Electroenceph. and Clin.
Neurophysiol. Revised Edition Vol. 6. Elsevier, Amsterdam.

Pfurtscheller G. and Lopes da Silva F.H. (1999b) Event-Related EEG/MEG synchronization
and desynchronization: basic prinicples. Clin. Neurophysiol. 110: 1842-1857.

64



Praetorius H.M., Bodenstein G. and Creutzfeld O. (1977) Adaptive Segmentation of EEG
records: A new approach to automatic EEG analysis. Electroenceph. Clin.
Neurophysiol. 42: 84-94.

Pregenzer M. (1998) DSLVQ - Distinct Sensitive Learning Vector Quantization, Shaker
Verlag, Aachen, Germany.

Pregenzer M., Pfurtscheller G., Flotzinger D. (1994) Selection of electrode positions for an
EEG-based Brain Computer Interface, Biomed. Technik, 39: 264-269.

Pregenzer M., Pfurtscheller G., Flotzinger D. (1996) Automated feature selection with a
distinction sensitive learning vector quantizer. Neurocomputing, 11: 19-29.

Priestley M.B. (1981) Spectral Analysis and Time Series. Academic Press, London, UK.
Priestley M.B. (1988) Non-linear and non-stationary Time Series Analysis. Academic Press,

London, UK.

Principe J.C., Smith J.R. (1986) SAMICOS - a sleep analyzing microcomputer system. /[EEE
Trans Biomed Eng. 33(10):935-41.

Principe J.C., Gala S.K., Chang T.G. (1989) Sleep staging automaton based on the theory of
evidence. IEEE Trans Biomed Eng. 6(5):503-9.
Principe J.C., B. de Vries and P.G. Oliveira (1993) The gamma filter - a new class of adaptive
iir filters with restricted feedback. IEEE Trans. Signal Proc., 41(2): 649-656.

Pukkila T., Krisnaiah P., (1988) On the use of autoregressive order determination criteria in
multivariate white noise tests. IEEE Trans. on ASSP 36(9): 1396-1403.

Rechtschaffen A. and Kales A. (1968) A manual of standardized terminology techniques and
scoring system for sleep stages in human subjects. U.S. Departmant of Health, Education
and Welfare, Public Health Service, Washington, D.C.: U.S. Government Printing Office.

Rieke, F., Warland D., Rob de Ruyter van Steveninck and Bialek W. (1997) Spikes -
Exploring the neural code. MIT Press, Cambridge.
Rissanen, J. (1978) Modeling by shortest data description. Automatica 14, 465-471.
Rissanen, J. (1983) Universal Prior for the Integers and Estimation by Minimum Description
Length. Ann. Stat., 11: 417-431.
Roberts S.J. (1997) Matlab source code of Kalman filtering , personal communications.
Roberts S.J. and Tarassenko L. (1992) New Method of Automated Sleep Quantification.
Medical and Biological Engineering and Computing, 30(5): 509-517.
Roberts S. and Tarassenko L. (1992a) The analysis of the sleep EEG using a multi-layer
Neural network with spatial organisation. /[EE Proceedings Part F, 139(6): 420-425.

Robinson C.J. (1999) An Information Theory View of the Use of Brain-Control Interfaces in
augmentative Commmunication. First international meeting on Brain-Computer
Interface technology: theory and Practice, The Rensselaerville Institute,
Rensselaerville, NY.

65



Sahul Z., Black J., Widrow B., Guilleminault C. (1995) EKG artifact cancellation from sleep
EEG using adaptive filtering. Sleep Research, 24A: 486.

Sayed A.H. and Kailath, T. (1994) A state-space aproach to adaptive RLS filtering, IEEE
Signal Processing Magazine, 18-60.

Schack B., Witte H., GrieBbach G. (1993) Parametrische Methoden der dynamischen
Spektralanalyse und ihre Anwendung in der Biosignalanalyse. Biomedizinische Technik,
38, 79-80.

Schack B., Bareshova E., Grieszbach G., Witte H. (1995) Methods of dynamic spectral
analysis by self-exciting autoregressive moving average models and their application to
analysing biosignals, Med. Biol. Eng. Comput. 33: 492-8.

Schlogl A. (1995) Dynamic spectral analysis based on an Autoregressive Model with time-
varying coefficients, Proceedings of 1995 IEEE Engineering in Medicine and Biology
17th Annual Conference and 21 Canadian Medical and Biological Engineering. IEEE,
New York, NY, USA, 881-2.

Schlogl A., Schack B., Florian G., Lugger K., Pregenzer M., Pfurtscheller G. (1996)
Classification of Single trial EEG: A comparison of different parameter. in Qualitative
and Topological EEG and MEG analysis - Proc. Third Int Hans Berger Congress, eds.
H. Witte, U. Zwiener, B. Schack, A. Doering; Druckhaus Mayer, Jena, pp.266-268.

Schlogl A., Flotzinger D., Pfurtscheller G. (1997a) Adaptive Autoregressive Modeling used
for Single-Trial EEG Classification. Biomed. Techn. 42: 162-167.

Schlogl A., Neuper C., Pfurtscheller G. (1997b) Subject specific EEG patterns during motor
imaginary. Proceedings of the 19th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society. IEEE, Piscataway, NJ, USA, pp.1530-
1532.

Schlogl A., Lugger K., Pfurtscheller G. (1997¢) Using adaptive autoregressive parameter for a
brain computer-interface experiment. Proceedings of the 19th Annual International
Conference of the IEEE FEngineering in Medicine and Biology Society. 1EEE,
Piscataway, NJ, USA, pp.1533-1535.

Schlogl A. and Pfurtscheller G. (1998a) Considerations on Adaptive Autoregressive Modeling
in EEG Analysis. Proceedings of First International Symposium on Communication
Systems and Digital Signal Processing, Sheffield, UK, pp.367-370.

Schlogl A., Kemp B., Pfurtscheller G. (1998b) Parametric Models in EEG analysis. -
analogies between Autoregressive and Kemp's model. Abstracts of the 9th European
Congress of Clinical Neurophysiology Ljubljana, Slovenia June 3-7, 1998 -
Electroenceph. Clin. Neurophys. 106(Suppl. 1001): 40.

Schlogl A., Penzel T., Conradt R., Ramoser H., Pfurtscheller G. (1998c) Analysis of Sleep
EEG with Adaptive Autoregressive Parameter - preliminary results, Abstracts of the 9th
European Congress of Clinical Neurophysiology Ljubljana, Slovenia June 3-7, 1998 -
Electroenceph. and Clin. Neurophys. 106(Suppl. 1001): 28.

66



Schlogl A., Woertz M., Trenker E., Rappelsberger P., Pfurtscheller G. (1998d) Adaptive
Autoregressive Modeling used for Single-trial EEG Classification, Proc. 14th Congress

European Sleep Research Society ESRS'98 in Madrid. Journal of Sleep Research
7(Suppl.2): 242.

Schlogl A., Kemp B., Penzel T., Kunz D., Himanen S.-L., Virri A., Dorffner G., Pfurtscheller
G. (1999b) Quality control of polysomnographic sleep data by histogram and entropy
analysis. Clin. Neurophys. 110(12): 2165 - 2170.

Schlogl A., Anderer P., Barbanoj M.-J., Dorffner G., Gruber G., Klosch G., Lorenzo J.L.,
Rappelsberger P., Pfurtscheller G. (1999d) Artifacts in the sleep EEG - A database for
the evaluation of automated processing methods. Sleep Research Online 2(Supplement
1): 586.

Schlogl A., Anderer P., Barbanoj M.-J., Klosch G., Gruber G., Lorenzo J.L., Filz O,
Koivuluoma M., Rezek 1., Roberts S.J., Virri A., Rappelsberger P., Pfurtscheller G.,
Dorffner G. (1999e) Artifact processing of the sleep EEG in the SIESTA project.
Proceedings EMBEC’99, Vienna, Austria, Part II, pp.1644-1645.

Schlogl A., Anderer P., Roberts S.J., Pregenzer M., Pfurtscheller G. (1999f) Artefact
detection in sleep EEG by the use of Kalman filtering. Proceedings EMBEC’99, Vienna,
Austria, Part II, pp.1648-1649.

Schlogl A., Neuper C., Pfurtscheller G. (1999g) Estimating the Mutual Information of EEG-
based Brain Computer Communication, /EEE Trans. Rehab. Eng. submitted.

Schlogl A., Roberts S.J., Pfurtscheller G. (2000) A criterion for adaptive autoregressive
models. Proc. of the World Congress on Medical Physics and Biomedical Engineering.
Chicago, accepted.

Schwartz, G. (1978) Estimating the dimension of a model. Ann. Statist., 6: 461-464.
Shannon, C.E. (1948) The mathematical theory of communication; Bell Syst. Tech. J., 27:
379-423, 623-656.
Shinn Yih Tseng, Rong Chi Chen, Fok Ching Chong; Te Son Kuo (1995) Evaluation of
parametric methods in EEG signal analysis. Medical Engineering & Physics. 17(1): 71-8.
Skagen D.W. (1988) Estimation of running frequency spectra using a Kalman filter algorithm,
J. Biomed Eng, 10: 275-279.

Smith J.R., Funke W.F., Yeo W.C., Ambuehl R.A. (1975) Detection of human sleep EEG
waveforms. Electroencephalogr Clin Neurophysiol. 38(4):435-7.

Smith J.R. and Karacan I. (1971) EEG sleep stage scoring by an automatic hybrid system.
Electroencephalogr Clin Neurophysiol. 31(3):231-7.

Stancak A. Jr, Pfurtscheller G. (1996) The effects of handedness and type of movement on the
contralateral preponderance of mu-rhythm desynchronisation. Electroencephalogr Clin
Neurophysiol. 99(2):174-82.

Stanus E., Lacroix B., Kerkhofs M., Mendlewicz J. Automated sleep scoring: a comparative
reliability study of two algorithms. Electroencephalogr Clin Neurophysiol. 66(4):448-56.

67



Steriade M., Gloor P., Llinas R.R., Lopes da Silva F., Mesulam M. (1990) Report of IFCN
Committee on Basic Mechanisms. Basic mechanisms of cerebral rhythmic activities.
Electroencephalogr Clin Neurophysiol. 76(6): 481-508.

Stone M. (1978) Cross-validation: A review. Mathematische Operationsforschung und
Statistik, - Series Statistics. 9(1):127-39.

Suffczynski P., Pijn J.P., Pfurtscheller G. and Lopes da Silva F.H. (1999) Event-related
dynamics of alpha band rhythm: A neuronal network model of focal ERD/surrounded
ERS. 1In: Pfurtscheller and Lopes da Silva (1999) (Eds.) Event-Related
Desynchronization. Handbook of Electroenceph. and Clin. Neurophysiol. Revised
Edition Vol. 6. Elsevier, Amsterdam.

Valdes P.A., Jimenez, H.C. Riera J., Biscay, R. Ozaki T. (1999) Nonlinear EEG analysis
based on a neural mass model. Biological Cybernetics. 81, 415-424.

Van de Velde M., van den Berg-Lenssen M.M., van Boxtel G.J., Cluitmans P.J., Kemp B.,
Gade J., Thomsen C.E., Varri A. (1998) Digital archival and exchange of events in a
simple format for polygraphic recordings with application in event related potential
studies. Electroencephalogr Clin Neurophysiol. 106(6): 547-51.

Vaz F., Guedes De Oliveira P., Principe J.C. (1987) A study on the best order for
autoregressive EEG modelling. International Journal of Bio-Medical Computing. 20(1-
2): 41-50.

Wei W.W. (1990) Time Series Analysis. Univariate and multivariate methods. Redwood City,
Addison-Wesley.

Widrow B. and Stearns S.D. (1985) Adaptive Signal Processing, Prentice Hall, Englewood
Cliffs, NJ.

Woertz M., A. Schlogl A., Trenker E., Rappelsberger P., Pfurtscheller G. (1999) Spindle
Filter Optimisation with Receiver Operating Characteristics-Curves Proceedings
EMBEC99, Vienna, Austria, Part I, 480-481.

Wolpaw J.R., McFarland D.J., Neat G.W., Forneris C. (1991) An EEG-based brain-computer
interface for cursor control, Electroenceph. Clin. Neurophysiol., 78, 252-259.

Wolpaw J.R. and McFarland D.J. (1994) Multichannel EEG-based brain-computer
communication, Electroenceph. Clin. Neurophysiol., 90, 444-449.

Zetterberg L.H. (1969) Estimation of parameter for linear difference equation with application
to EEG analysis. Math. Biosci., 5, 227-275.

Zetterberg LH, Kristiansson L, Mossberg K. Performance of a model for a local neuron
population. Biol Cybern. 31(1):15-26, 1978.

68



APPENDIX



A. Notation

® convolution operation.

oo infinity

AT sampling interval

b2 sum

p sum over all ;

0X(k) variance of innovation (AR model)
Ay a-priori state error correlation matrix

AY,  AyY,, intermediate variable in order to increase the computational speed.
E{.} expectation operator

G, system matrix of the state space model

H; measurement (observation) matrix of the state space model

K, .; a-priori state error correlation matrix

I, identity matrix (of order p)

Ok estimated prediction error variance

Vi estimated variance of measurement noise

UC  update coefficient

X variance of measurement noise (state space model)

Zyr; aposteriori state error correlation matrix
ai i-th AAR parameter
aik i-th AAR estimate

ai vector of the AAR parameter
ek prediction error

Jo sampling rate

k time index, discrete

ki Kalman gain

log  logarithmus
log, logarithmus dualis (logarithm of basis 2)
p AR model order, feedback gain factor in Kemp’s feedback loop model

q Moving average model order

’ transposition operator

t time, continuous

Vi observation noise

Wi system noise

y(t)  time-continuous process

Vk time-discrete process, observation at time t = k*AT

7! backshift operator, independent variable in the Z-transformed expression

7y state vector at time k



B. Subsampling

In a multi-center sleep research project, EEG data with different sampling rates (100, 200 and
256Hz) were available. One aim was to apply Kalman filtering for calculating adaptive
autoregressive (AAR) parameters. The AR parameters are in a one-to-one relationship to the
autocorrelation function as well as to the spectral composition of the signal. It will be outlined
how AAR parameters for a target sampling rate (e.g. 100Hz) different to the source sampling
rate (e.g. 256. Hz) can be generated. The AR-equation (2.1) shows that a value y(k*AT) is
composed of the linear combination of the past values y((k-i) * AT;), i=0,1,2,...,p, plus some
error term. The problem would be solved if one would be able to interpolate the values for the
sampling times y(k*AT; - i*AT>), i=1,...,p.

0.4+ -

0 0.0 0.1 0.15 0.2 0.25

Figure 21: Scheme for subsampling from 256Hz to 100Hz for 1/4s. Each sample value of the
target sampling is the "moving average" of 2 or 3 samples from the source. The weights were
calculated using the sinc-function at the corresponding time point (0). These weights were
normalized (x) such that the sum for each target sample is 1.

The weights of the matrix in Table 4 are obtained by the scheme in Fig. 21. The subsampling
is easily performed by subsequently multiplying segments with the resampling matrix in
Table 4. The resampling matrix for a source sampling rate of 200 Hz is the average of two
succeeding samples; hence, the weights are all 0.5. This can be generalized for integer
multiples of the target. If the ratio fi/f> is integer, the weights are all fo/f;; fi/f> succeeding
samples are averaged. Furthermore, note the moving average has a low pass characteristic.
However, in order to prevent aliasing, it should be ensured that the source signal contains only
frequency components up to half the target sampling rate. If this is not the case, a digital anti-
aliasing filter can be applied. This filter can be combined with a 50Hz Notch filter.
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Table 4. Weights for the resampling matrix from 256 to 100 Hz. The matrix has 64 rows and 25
columns. Subsampling of data is performed by subsequently multiplying source vectors of length

64 with the matrix. Note that the matrix is sparse.

T

1/200

3/200

5/200

7/200

49/200

0

0.2563

1/256

0.3935

2/256

0.3502

3/256

0.3310

4/256

0.3942

5/256

0.2748

6/256

0.5135

7/256

0.4865

8/256 0.3104 ..

62/256 0.4722

63/256 0.5278

Until here, the sub-sampling can be performed on the raw data and afterwards, the AAR
estimation algorithm can be applied. However, in the following it will be shown that the
proposed sub-sampling method can be incorporated into the state space model. It can be seen
from the AAR update equations (e.g. 4.1) that in each iteration p+1 sample values yi , yr.j, ... ,
Yip With the target sampling rate are needed. This means the interpolated values can be
calculated "on the fly" meaning the iteration rate of the AAR estimation algorithm is the
sampling rate of the source, while the AAR parameters consider a time distance of the target
sampling rate.

Example: p=2, f;=256Hz, />=100Hz.
The actual sample is

Vi = Y(t+3/100) = 0.49%y(t+7/256)+0.51%y(t+6/256)

using the weights of Table 4, and the previous p samples (i.e. state vector) are
Yir = [t s Vil = [¥(t+2/100), y(t+1/100)]" =
= [0.27*y(t+5/256)+0.39%y(t+4/256 )+0.33 *y(t+3/256),
= 0.26%y(t+2/256)+0.39*y(t+1/256)+0.35 *y(t+0/256)]

The one-step prediction error would be

ex = e(1+3/100) = y(t+3/100) - a;*y(t+2/100) - az*y(t+1/100)
= 0.49 *y(t+7/256) + 0.51%y(t+6/256) +
- ar¥(0.27%(t+5/256) + 0.39%y(1+4/256) + 0.33%y(1+3/256))
- @ ¥(0.26%y(t+2/256) + 0.39%y(t+1/256) + 0.35%y(t+0/256))

Note, that the iteration k -> k+1 can be At = AT; = 1/f; or At = AT, = 1/f>. The former case, At
= AT; = 1/f;, means that firstly the data is sub-sampled and afterwards the AAR estimation
algorithm 1is applied; in case At = AT, = 1/f> sub-sampling is applied "on-the-fly" within the
AAR estimation algorithm.
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In practice, the target vector [y %, ..., ¥ kpl T can be simple generated by multiplying a source
vector (of appropriate length m) with some part of the transformation matrix 7 (of appropriate
size mxp+1) from Table 4. Note that p+1 elements must be generated in order to calculate the
one-step prediction error. The transformation matrix is sparse and can, therefore, be
implemented with O(p) computational effort.

[y ,k; ey y,k—p] = [)’1, ey yl—m+]] * T[m><p+]] (Bl)

In this section a solution for the sub-sampling problem of an autoregressive model was
provided. It was shown how 100Hz-A AR-parameter can be calculated from 256Hz data.



C. Linear Discriminant Analysis

The principle of Linear Discriminant Analysis (LDA) will be outlined briefly. A more
detailed view can be found in (Duda and Hart, 1973). LDA can be seen as a method to
identify the regression coefficients for a certain target value in an n-dimensional feature
space. Alternatively, LDA can be seen as a method for identifying the best discriminating
hyperplane in an n-dimensional feature space. We assume an n-dimensional feature space
with N = N; + N; examples; each example is represented by an n-dimensional feature vector
d;. Each feature vector d; is assigned to one of two classes C; and C;,, whereby N; and N, are
the total number of examples within each class. It can be shown that the weight vector w is the
best discriminating hyperplane between the features of both classes.

[wi .. wy]" =8, % (g -p2) (C.1)
wu; and u, are the means of the classes C; and C, and S,, is the within-class scatter-matrix

Sw=1N*Z (dy;-u;) (dyi-pg) + /N2 * 5 (dy - u2)" (dy - 12)
(C.2)

Furthermore, the offset wy is

w0=[w1...wN]T*,u (C.3)

with the overall mean x4 (mean of the data from both classes). When d; are the features, w =
[wi ... wy]" are the weighting factors that determine the best discriminating hyperplane. If we
apply any feature vector d;, in the following way to the weight vector, we obtain a scalar value
D, that is the normal distance of d; to the discriminating hyperplane.

Di=w'*d;-w, (C4)

Applying a zero-threshold to the distance D, results in a classification of the data d; in the way
that
w! *d; > w, means d; c C, (C.5)

w! *d; <w, means d;,  C, (C.6)

In case of a classification task, the detection output is compared to the original class
relationship and an error rate of incorrectly classified examples can be obtained. Usually,
cross-validation with several permutations of training and test data set is applied. The average
error rate from different permutations is a measure for the separability of the data.
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D. Communication theory

Shannon (1948) introduced the concept of the "entropy of information" in communication
theory (coding, information transmission). The entropy value is a measure for the variability,
randomness, the average amount of choices or the average amount of information. The larger
the variability, the higher is the entropy. For the purpose of estimating the entropy of the raw
EEG, several definitions are applicable.

Firstly, coding theory uses the entropy of information in binary digits (bits). It is the entropy
in discrete systems, which is defined as

Iy = % (py(i)*log2(py(i)). (D.1)

The index Y indicates the relation to the signal Y. For large N, the probability density function
py(i) is the normalized histogram of the time series Y with the total number of samples

py(i) = Hy(i)/Ny (D.2)
Ny = X Hy(i). (D.3)

Secondly, the entropy of a continuous distribution x of the signal Y is

Iy = [ by ()log(p, (2)kix (D.4)

In case of a Gaussian distribution is
p(x) = 1/270%)* exp(-(x-1)/(20?)) (D.5)

whereby -o0 < x < co. The entropy of a continuous Gaussian process Y with the probability
distribution p(x) is

Iy = 0.5 * log»(2me*02y) = log( V(2 ) *Oy) (D.6)
(e denotes Euler's constant 2.718...) and is determined solely by the variance 6%y One can
also estimate the entropy of noise, for example the quantization noise of an ADC or the
amplifier noise.
Thirdly, the entropy difference between a signal and noise is determined by the SNR (2.8) and
vice versa. A larger value of the entropy difference means a better SNR and a better resolution
of the signal. Assuming that signal and noise are uncorrelated Gaussian processes #which
define the signal-to-noise ratio SNR and an entropy difference Al of

SNR = o6%y/ Py (D.7)

Al = 0.5 *log>( SNR+1) (D.8)

Hence, the entropy difference Al between signal Y and noise N is determined by the SNR.
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E. Data

Data set D1: Several hundreds of polygraphic all-night data from healthy subjects and patients
according to the protocol of the SIESTA project (Dorffner 1998) with sixteen channels (6+1 EEG,
2 EOG, 2 EMG, 1 ECG, 3 respiration and 1 oxygen saturation (Sa0O2) -channels) were recorded.
Sleep recorders from the following providers were used: Fa. Jaeger (SleepLap 1000P), Nihon
Kohden/DeltaMed, Walter Graphtek (PL-EEG), Flaga (EMBLA) and Siemens. Sampling rates of 1,
8, 16, 20, 25, 100, 200, 256 and 400 Hz were used for the various channels. The EEG was
sampled with 100, 200 or 256Hz. The sampling rates and filter settings were stored in the headers
of the data files for further evaluation. The data set was used to perform the histogram and
entropy analysis (chapter 2, Schldgl et al. 1999). If not stated otherwise, the #analysis results of
the sleep EEG were obtained from this database.

Data set D2: The EEG data stem from three subjects (E08, E10, E15) who displayed pronounced
10 Hz and beta-band changes in response to movement. The data were extracted from a series of
experiments which were performed in twelve right-handed subjects (details see Stancak and
Pfurtscheller, 1996). The task of the subjects was to move the right (left) index finger with 10-12
second intervals. The movement consisted of a rapid finger extension and flexion. The subjects
were trained to hold the movement time in the range of 0.13 to 0.21 sec which ensured that the
movements were ballistic. About 80 movements were obtained for the left and right finger.

Artifacts were rejected visually; the number of artifact-free trials is shown in (see Table 5) . One
trial consists of 5 pre-movement and 4 post-movement seconds. Each trial comprises two signals
corresponding to electrodes C3 and C4 (10-20 system). The EEG signals represent reference-free
data that were obtained by the Laplacian operator method. Since the sampling rate was 128 Hz,
each trial contains 1152 x 2 values. The files have a BKR format, which is used at the Department
of Medical Informatics. The data were triggered according to the onset of EMG burst; this is at
time 5.0 sec of each trial. This data set was used for the comparison of different EEG parameters
and different classification methods based on single trials.

Table 5: Data sets from 3 three subjects performing left and right hand movement.

Subject right hand left hand trivial error
number of trials | number of trials
E08 50 41 45 %
E10 42 57 42 %
E15 35 53 40 %

Data set D3: This data set stems from the BCl4c study. The experiment is described in
Pfurtscheller et al. (1997, 1998) and Schldgl et al. (1997a,b). Selected sessions of 4 subjects
(subject 3, session 10; f5, session 6; {7, session 6; g3, session 7) with 80-79, 78-78, 80-80 and
76-75 (L)eft-(R)ight trials, respectively, were investigated. The data was used to show the time
courses of the classification error , the time-varying distance, and the amount of information
gained by single trial EEG data. The data was used in off-line analysis for inventing the AAR+LDA
classification system which was applied in succeeding BCl-experiments with continuous feedback
(paradigm BCl4e, Schiégl et al. 1997¢, Neuper et al. 1999, Guger et al. 1999) .

Data set D4: This data set is part of the data set D1; fifteen polygraphic sleep recordings were
selected randomly. Experts scored artifacts from 7 EEG channels of 90 minutes segments in
each. Nine types of artifacts (EOG, ECG, EMG, movement, failing electrodes, sweat, 50Hz,
breathing and pulse) were distinguished and scored on a 1 second resolution (in total 563 192 1s-
epochs). (Nearly) no pulse and breathing artifacts were identified. These data were used for
analyzing the artifact processing ability of different processing methods. The data is described in
more detail in (Schlégl, et al. 1999b,e,f ). The data was used to demonstrate the artifact
processing in the sleep EEG and to calculate the histograms from the all-night sleep recordings.
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Data set D5: The sets that were used for evaluation of various AAR estimations the algorithms
and to find the optimal update coefficient. For each data set, a different model order was used
(column 3). The selected model orders range from an AR(6) up to an ARMA(20,5) model.
Different update coefficients UC (0 and in the range between 10" and 10°°) were applied.

Table 6: Description of five real-world data sets used for the evaluation. The data is displayed in
Fig. 22.

No duration Model Description
Fs [Hz]
S.D. (MSY'®)
samples

S2 1000s AR(10) Sleep EEG (channel C3-A2)
Fs = 100Hz
S.D. = 4.025 [units]
100001 samples

S3 90min ARMA(20,5) |Sleep EEG, Fp1-A2, 2™ 90-min epoch (1h28m48s-
Fs = 256Hz 2h58m48s a.m.) with saturation artifacts. 29053
40.3 pv (2.1%) of the samples reach the upper or lower
1 328400 samples saturation limit.

S4 8.1 min AR(6) Bipolar recording from 2.5cm anterior to 2.5cm
Fs=128Hz posterior over the left sensori-motor area, position
S.D. =0.112 x 50uV C3, The subject was asked to perform an imaginary
62279 samples hand movement according to a cue on a computer

screen in approx. 10s intervals

S5 836s AR(12) 852 heart cycles (R-R intervals), the mean
S.D.=1.232 (66.9/min) was removed.
852 heart cycles

S8 90min AR(15) Sleep EEG, electrode position C3-A1, 2" 90 min
256Hz epoch, 1Th31m33s - 3h01m33s a.m.,
165.2
1382400 samples
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Figure 22: Five real word data sets. The first, second and fifth are sleep EEG recordings with eye
movement artifact, muscle artifact, amplifier saturation artifacts, respectively. The third set is the
EEG recording of a BCI experiment, and the forth set are the R-R intervals of heartbeats. A more
detailed description is provided in Table 6. The data sets were selected from different biomedical
research projects. The data are all real world data; no simulated data was used.
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F. List of figures

Figure 1: Hypnogram, describing the different sleep stages during night. The recording lasts from ca. 11pm to
7am. The wake state, REM, and the four sleep stages are described by W, R, and 1-4, respectively, M

indicates movement. 3
Figure 2: Scheme of an EEG-based BCI with feedback. The EEG from the subject’s scalp is recorded (A); then it
has to be processed on-line (B); the extracted features 4

Figure 3: Scheme of an autoregressive model. It is assumed that the observed EEG Yt can be described by white
noise Xt filtered with the AR model. The AR method is also denoted as parametric method, because
the parameter of an model are used to characterize the EEG. 6
Figure 4: Feedback loop model (Kemp, 1983). vk is random noise input, L is a low-pass that considers the
volume conduction effect, G is a bandpass of the dominant frequency component, p(t) is the feedback
gain factor, yk is the model output, i.e. the observed EEG (adapted from Schlogl et al. 1998b). 9
Figure 5: Transfer function of the feedback loop model for different gain factors p. (adapted from Schlogl et al.
1998b). The sampling rate is Fs = 100Hz, the low pass with cut-off frequency Fc = 1.8Hz, center
frequency FO =10Hz, bandwidth B = 4 Hz. The filter coefficients can be calculated by equations
(2.18-24); the frequency response h(f) is obtained by H(z) with z=exp(j2 /Fs*f) (left 11
Figure 6: Block diagram of the lumped model for a simplified alpha rhythm model. The thalamo-cortical relay
(TCR) cells are represented by two input devices which have as impulse responses potentials
simulating an excitatory and inhibitory postsynaptic potential (EPSP and IPSP) by he(t) and hi(t),
respectively. The RE cells are modeled by he(t) and fI(V) in the feedback loop. fE(V) and fI(V)
represent the spike generating process; E(t), I(t) and P(t) are pulse train densities at the TCR output,
RE output and excitatory TCR input, respectively. The constant cl represents the number of RE cells
to which one TCR cell projects and c2 is the number of TCR neurons to which one RE projects. VE(t)
and VI(t) represent the average membrane potential at the excitatory and inhibitory population,
respectively. (adapted from Lopes da Silva et al. 1974) 12
Figure 7: Transfer function of the lumped alpha model. The left figure shows the spectral density function of the
transfer function; the right figure shows the pole-zeros diagram. The parameter were chosen
accordingly to Suffczinsky et al. (1999). The pole-zeros diagram shows that all poles and zeros
(except one pole pair) are on the real axis. The conjugate complex pair of poles move with increasing
K towards the unit circle. Simultaneously, this pole-pair change also the angle, which corresponds to
the shift in the center frequency. 13
Figure 8: Exponential and a rectangular window. The upper panel displays the two types of window in the time
domain. The rectangle is 100 samples long, the exponential window has a time constant of 100
samples, the area under both windows is 100. The lower panel displays the Fourier transform of both
window functions. The smooth curve corresponds to the exponential window. 16
Figure 9: Principle of adaptive inverse filtering. The gray parts show the principle of inverse filtering for
detection of spikes or other transient events (Lopes da Silva et al. 1977). The AAR estimation
algorithm identifies the AR-filter parameter and calculates simultaneously the one-step prediction
error process. The difference to the stationary inverse filtering are indicated by the black parts.__20
Figure 10: Comparison of different AAR estimation algorithms. Different algorithms are grouped into 8 blocks
of 7 KF methods and 4 alternative methods. The 8 blocks correspond to 8 versions for estimating the
covariance matrix Wk. Each block contains the 7 versions of estimating the variance of the
observation noise process Vk. The update coefficient UC was varied in a range over 10 decades and
zero. Each cross represents the relative error variance REV for a certan UC. 29
Figure 11: Dependency of REV on UC for some selected algorithms. The circles ‘o' indicate certain update
coefficients as described in the text. In some cases, REV was too large, in other cases no values are
available, which means that the algorithm did not converge and REV was infinite. The x-axis has a
logarithmic scale except that the leftmost value of UC is zero (adapted from Schlogl and Pfurtscheller,
1999c). 30
Figure 12: Relative error variance (REV) depending on the update coefficient (UC) and the model order p.The
algorithm a5vI was applied to EEG with time-varying spectrum (data is described in Schlogl et al.
1997a,b, Pfurtscheller et al. 1998) sampled with 128Hz of a length of 407.5s, derived from electrode
position C3 during repetitive imaginary left and right hand movement . The model order was varied
from 2 to 30. The left part shows REV(UC) for different model orders p; the right figure shows
REV(p) for different update coefficients UC. The minimum REV can be identified for p=9 and UC =
2-8 = 0.0039 (adapted from Schlogl et al. 2000). 32
Figure 13: (Relative) error (REV) surface depending on model order p and update coefficient UC. The model
order was varied from 2 to 30; UC was varied 2-k with k=1..30 and 10-k with k=1..10. The same
results of Fig. 12 are displayed in three dimensions (adapted from Schlogl et al. 2000). 33
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Figure 14: Comparison of different feature extraction and classification methods. The LVQ-algorithm
(Flotzinger et al. 1994, Pregenzer, 1998) as well as LDA (see Appendix C) were used for
classification. Always, a 10-times-10-fold cross-validation was used within each subject. The error
rates from all three subjects were averaged. 37

Figure 15: Time courses displaying the separability between two classes obtained in four subjects. The vertical
lines indicate the time point used to generate the weight vector. The time point t with the lowest error
rate ERR10 was used. The timing scheme in shown in Figure 16(a) (adapted from Schliogl et al.
1999g).

(a) In the first column (previous page) the time courses of the error rates ERRI10t (thick line) and
ERRt (thin line) are shown. ERRk gives the classification error with LDA of the EEG-channels C3 and
C4 at time t. AAR(10) parameter were used as EEG features. The thick line shows ERRI0t calculated
8 times per second; the thin line shows the time course of ERRt calculated at every sample. The
numbers indicate the lowest ERRI10 and the corresponding classification time.

(b) The second column (see previous page) shows the averaged TSD for the left and right trials. The
TSD is calculated as linear combination of AAR(10)-parameter of the EEG channel C3 and C4. The
average TSD curves (thick lines) clearly show a different behavior during imagined left and right
hand movement. The thin lines represent the within-class standard deviation (SD) of the TSD and
indicate the inter-trial variability of the EEG patterns.

(c) The third column shows the mutual information between the TSD and the class relationship. The
entropy difference of the TSD with and without class information was calculated every time step. This

gives (a time course of) the mutual information in bits/trial. 40 - 41
Figure 16: Timing of one trial in a BCI experiment. (a) BCl4c paradigm, (b) BCl4e paradigm (adapted from
Schlogl et al. 1997b,c, Pfurtscheller et al. 1998, Neuper et al. 1999) 43

Figure 17: Histograms of EEG channel C4-Al from 8 all-night recordings. The units at the horizontal axes are
digits and can range from -32 768 to 32 767. The horizontal line with the vertical ticks displays the
mean xthe 1, 3 and 5 times of the standard deviation. The markers |> and <| indicate the real
maxima and minima found in the recordings. The markers x indicate the digital minima and maxima
as stored in the header information, if invisible the values are outside the scope. The light parabolic
lines display the Gaussian distribution with the same mean and variance as the data (adapted from
Schlogl et al. 1999b). 45

Figure 18: AAR parameter of a segment of from sleep EEG. a) shows the raw EEG, below (b) is the prediction
error process (c) the detection threshold et? > 3*var{yt} and (d) shows the AAR estimates (adapted

from Schlogl et al. 1998¢). 47
Figure 19:ROC curves of the MSE versus the expert scoring for: 'no artefact' (top left), 'EOG’ (t.r.), 'ECG/,
'muscle’, 'movement', 'failing electrode’, 'sweat', '50/60HzZ' (b.r.). 49

Figure 20: Sleep analysis with AAR method. The first plot displays the hynogram scored by an expert. The
second part contains the MSE (variance of the inverse filtered process) of the channels C3-M2 and
C4-M1. The third and forth plot contain time courses for Wake, REM and Sleep. These were obtained
by a linear combination of 10 AAR parameter of two EEG channels (C3 and C4). The curves were
smoothened with a rectangle window of length 30. 51

Figure 21: Scheme for subsampling from 256Hz to 100Hz for 1/4s. Each sample value of the target sampling is
the "moving average" of 2 or 3 samples from the source. The weights were calculated using the sinc-
function at the corresponding time point (0). These weights were normalized (x) such that the sum for
each target sample is 1. 111

Figure 22: Five real word data sets. The first, second and fifth are sleep EEG recordings with eye movement
artifact, muscle artifact, amplifier saturation artifacts, respectively. The third set is the EEG
recording of a BCI experiment, and the forth set are the R-R intervals of heartbeats. A more detailed
description is provided in Table 6. The data sets were selected from different biomedical research
projects. The data are all real world data, no simulated data was used. X
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G.

AAR
AIF
AR
BKR

EDF
KFR
LDA
LMS
MEM
MSE
MSY
RAR
REV
RLS
R&K
STA
TSD

Abbreviations

adaptive autoregressive
adaptive inverse filtering
autoregressive

EEG data format from the Department for Medical Informatics, University of

Technology Graz

European Data Format for Biosignals (Kemp et al. 1992)

Kalman filtering

Linear discriminant analysis
least mean squares
maximum entropy method
mean squared error

mean squared signal Y
recursive AR technique
relative error variance
recursive least squares
Rechtschaffen and Kales (rules for sleep scoring)
single trial analysis
time-varying signed distance
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