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a b s t r a c t

Several feature types have been used with EEG-based Brain–Computer Interfaces. Among the most
popular are logarithmic band power estimates with more or less subject-specific optimization of the
frequency bands. In this paper we introduce a feature called Time Domain Parameter that is defined by
the generalization of the Hjorth parameters. Time Domain Parameters are studied under two different
conditions. The first setting is defined when no data from a subject is available. In this condition our
results show that Time Domain Parameters outperform all band power features tested with all spatial
filters applied. The second setting is the transition from calibration (no feedback) to feedback, in which
the frequency content of the signals can change for some subjects. We compare Time Domain Parameters
with logarithmic band power in subject-specific bands and show that these features are advantageous in
this situation as well.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Amplitude modulations of sensorimotor rhythms (SMRs) can
be voluntarily induced by most people, e.g. by kinesthetically
imagining limb movements. This ability can be taken as a
basis for Brain–Computer Interfaces (BCIs) which are devices
that translate the intent of a subject measured from brain
signals directly into control commands, e.g. for a computer
application or a neuroprosthesis. BCI systems can also be based
on other components of brain signals, see Dornhege, del R. Millán,
Hinterberger, McFarland, and Müller (2007), Allison, Wolpaw, and
Wolpaw (2007), Birbaumer et al. (2006), Pfurtscheller, Neuper, and
Birbaumer (2005), Wolpaw, Birbaumer, McFarland, Pfurtscheller,
and Vaughan (2002) and Kübler, Kotchoubey, Kaiser, Wolpaw, and
Birbaumer (2001) for an overview, but only SMR-based BCIs are
considered in this paper.
One of the challenges in the development of BCI systems is

to minimize the time required before accurate BCI performance
is possible (subject training Elbert, Rockstroh, Lutzenberger, and
Birbaumer (1980), Rockstroh, Birbaumer, Elbert, and Lutzenberger
(1984), Birbaumer et al. (2000) or gathering calibration data in
off-line runs to feed machine learning (ML) algorithms (Blankertz,
Dornhege, Krauledat, Müller, & Curio, 2007; Blankertz & Losch
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et al., 2008)). In this paper we present an exploration of the
usefulness of several features for the use in ML-based BCIs, that
aim at providing accurate feedback as early as possible.
The features we propose in this manuscript are inspired by

the Hjorth parameters that have been previously used in BCI
experiments; for an overview please refer to Boostani and Moradi
(2004); Coyle, McGinnity, and Prasad (2006); Obermaier, Guger,
Neuper, and Pfurtscheller (2001) and Vourkas, Micheloyannis, and
Papadourakis (2000). We have generalized the Hjorth parameters
and obtained features that can be rapidly and easily computed.
They rely on the estimation of band power in wide bands and
use the frequency content of the signal itself, which makes them
more robust against over-fitting or non-stationarities. First, we
explore the situation in which immediate feedback is provided to
the subject without prior calibration measurement. This approach
is not new in the BCI literature and has already been proven as
useful for user training (see Blankertz & Vidaurre, 2009; Vidaurre,
Schlögl, Cabeza, Scherer, & Pfurtscheller, 2007). We compare
Time Domain Parameters (TDP) with the traditionally used band
power estimates (BPE). Second, we explore the transition between
calibration and feedback, in which a change in the frequency
content of the signal can be expected for some subjects. In this
setting, TDP and BPE are extracted from user-specific wide bands
and combined with different spatial filters. A regularized linear
discriminant classifier (RLDC) is used to estimate the separability
of the features.

2. Time Domain Parameters (TDP)

As TDP are inspired by the Hjorth parameters, we will present
the latter. The parameters introduced by Hjorth (1970) are three

http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
mailto:vidcar@cs.tu-berlin.de
http://dx.doi.org/10.1016/j.neunet.2009.07.020


1314 C. Vidaurre et al. / Neural Networks 22 (2009) 1313–1319
features defined as follows:

Activity = var(x(t))

Mobility =

√√√√Activity ( dx(t)dt )
Activity (x(t))

Complexity =
Mobility

(
dx(t)
dt

)
Mobility (x(t))

.

The first parameter, Activity, is the signal power (which is wide
band filtered), Mobility is the mean frequency and Complexity the
change in frequency. Note that the BPE is the same as the Activity,
only at some specific frequency bands.
In this paper, we propose TDP to test whether different

number of derivatives of the signal could improve the classification
performance. Therefore, the number of derivatives calculated p is
needed as parameter:

pi(t) = var
(
dix(t)
dt i

)
, i = 0, . . . , p.

Note that TDP of order 0 is BPE of the, usually, band-pass filtered
signal.
Although TDP features are defined in the time domain they

can be as well interpreted as frequency domain filters. Of course,
there are spectralmethods like Fourier transform,wavelet analysis
and autoregressive spectrum that are able to describe the whole
spectral density function. These have the disadvantage that a
rather large number of parameters are obtained causing difficulties
in the classification step: more features require more training data
and increase the danger of over-fitting.
In order to avoid the dimensionality problem, band power

estimates of one or two frequency bands are used in BCI research.
They often require the selection of specific frequency bands, with
the risk that changes outside of these are ignored. Another option
that has also been investigated in the BCI field is the use of
the (adaptive) autoregressive (AAR) parameters (instead of AR
spectrum). They reduce the number of features per channel to the
order of the AR model. In the past, model orders in the range of 3
to 9 (see Schlögl, Flotzinger, & Pfurtscheller, 1997; Schlögl, 2000;
Schlögl, Lee, Bischof, & Pfurtscheller, 2005) have been used. TDP
features seem to suggest a similar small number of parameters.
TDP have also another similarity with AR parameters, because
the AR model is originally defined in the time domain. There is
no need to know the spectral representation of the data, but the
representation in the time domain is sufficient to grasp the idea
of both, TDP and AR methods. A comparison between AAR and
BPE parameters can be found in Vidaurre, Schlögl, Cabeza, Scherer,
and Pfurtscheller (2005), where no significant differences between
both methods were found.
Since BPE or TDP features are not normally distributed, we

apply the logarithm to pp(t) in order to obtain features whose
distribution is approximately Gaussian, since this makes linear
classification more successful. The code for computing TDP as well
as other methods is publicly available in the BioSig-toolbox at
http://biosig.sf.net, (Schlögl & Brunner, 2008).
Finally, as subsequent derivatives of the signals are correlated,

in thismanuscript we used different subsets of derivative orders to
calculate the final features. Studied subsets always contained order
0 and the rest of derivative orders were combined. The proper
subset of derivative orders was found using cross-validation or
principal component analysis (PCA). The choice between one and
the othermethod, depended on the experimental setting. Formore
information see Section 4.5.
3. Data

Data were recorded in a one-day session from 80 healthy BCI-
novices (39m, 41f; age 29.9±11.5 years; 4 left handed). Data of 5
subjectswas disregarded due to problems during the experimental
session that affected the labeling of the classes. The subjects were
sitting in a comfortable chair with arms lying relaxed on armrests.
Brain activity was recorded from the scalp with multi-channel
EEG amplifiers using 119 Ag/AgCl electrodes in an extended 10–20
system sampled at 1000 Hz with a band-pass from 0.05 to 200 Hz.
The datawas filtered using a low-pass filterwith a cutoff frequency
of 40 Hz and down-sampled to 100 Hz.
First, the subjects performed a calibration measurement in

which every 8 s one of three different visual cues (arrows pointing
left, right, down) indicated to the subject which type of motor
imagery to perform: left/right hand or foot. Three runs with 25
trials of each motor condition were recorded. Automatic variance
based artifact rejection was made to discard noisy channels. Then,
the most discriminative pair of classes were selected based in log-
BPE features and the subjects performed a feedback measurement
with three runs of 100 trials each, although for some subjects only
two runs were recorded.

4. Spatial filtering

Different types of spatial filtering were investigated to prepro-
cess the data before extracting the features. All of them are com-
monly used in EEG-BCI systems.

4.1. Bipolar montage

Bipolar channels are widely used by several BCI-groups,
specially in a set of reduced channels (Krausz, Scherer, Korisek, &
Pfurtscheller, 2003; Scherer, Lee, Schlögl, Bischof, & Pfurtscheller,
2008; Vidaurre, Schlögl, Cabeza, Scherer, & Pfurtscheller, 2006).
Bipolar channels are computed subtracting the signals from two
neighboring electrodes. We extracted 3 bipolar channels over C3,
Cz and C4, using FC3-CP3, FCz-CPz and FC4-CP4, which is the most
typical arrangement.

4.2. Laplacian montage

Small laplacian derivations (McFarland, McCane, David, &
Wolpaw, 1997) are easy to calculate and extensively used in
EEG recordings. In this study each laplacian derivation was
calculated as follows: 4 surrounding channels, equally weighted,
were subtracted to the central one. Using laplacian channels we
computed 3 different spatial filters.

4.2.1. 3 laplacian channels
This spatial filter was computed over C3, Cz and C4, for direct

comparison with the bipolar channels.

4.2.2. 11 laplacian channels
Also over themotor area, the following channels were selected:

C1-2-3-4, Cz, FC3-4, FCz, CP3-4, CPz.

4.3. Common Spatial Patterns, CSP

CSP is a technique to analyze multi-channel data based on
recordings from two classes (tasks). It yields a data-driven
supervised decomposition of the signal x(t) parametrized by
a matrix W that projects the signal in the original sensor
space to a surrogate sensor space xCSP(t), (Blankertz, Tomioka,
Lemm, Kawanabe, & Müller, 2008): xCSP(t) = x(t) · W . Each
column vector of a W is a spatial filter. CSP filters maximize
the variance of the spatially filtered signal under one task while
minimizing it for the other task. Since the variance of a band-pass
filtered signal is equal to band power, CSP analysis is applied to

http://biosig.sf.net


C. Vidaurre et al. / Neural Networks 22 (2009) 1313–1319 1315
band-pass filtered signals to obtain an effective discrimination
of mental states that are characterized by ERD/ERS (even related
desynchronization/synchronization) effects. Detailed information
about this technique can be found in (Blankertz & Tomioka et al.,
2008). For our study CSP filters were individually selected for each
subject using the band-pass filtered signal. The number of filters
used was automatically selected and ranged between 2 and 6
filters.

4.4. Classification

A regularized linear discriminant classifier was used because of
the high-dimensionality of the features (in some of the settings)
compared to the number of trials available. Recall that the Linear
Discriminant Analysis (LDA) finds a one-dimensional subspace
in which the classes are well separated. This is formalized by
requiring that after the projection onto the subspace, the ratio
of the between-class variance to the within-class variance is
maximal. For the case of two classes, which we consider here, the
optimal subspace is defined by

w = 6−1 (µ1 − µ2) , (1)
where 6 is the sample-covariance matrix, and µ1,µ2 are the
sample class means. As the covariance matrix is often typically
poorly conditioned, we follow the approach by Ledoit and Wolf
(2004a, 2004b) and replace 6 in Eq. (1) by a shrinkage estimate
of the form
6λ = (1− λ)6+ λ6̃, λ ∈ [0, 1].
The matrix 6̃ is the sample-covariance matrix of a restricted sub-
model, and the optimal shrinkage intensity λ can be estimated
from the data. We use the following sub-model: all variances
(i.e. all diagonal elements) are equal, and all covariances (i.e. all
off-diagonal elements) are zero. (See Schäfer and Strimmer (2005)
for other alternatives, and their corresponding optimal λ).

4.5. Parameter selection

The CSP filters, the order and mixture of TDP components, the
frequency bands and time interval for applying the classifier when
necessary, had to be estimated. In this manuscript we study two
different settings and in each of them the parameterswere selected
in a different manner.

4.5.1. First setting, no previous subject data available
In this case only the feedback measurement was used to find

parameters. As no previous data was available for a particular
subject, the data of the other subjects was used to find parameters.
Here, the frequency bands and time interval to calculate the
features were fixed beforehand (see values in Section 5). However,
a proper subset of derivative orders (see Section 2) to calculate TDP
had to be fixed. This subset was selected by cross-validation in a
leave one ‘‘subject’’ out fashion: out of 75 subjects, 74 were used
to select the proper subset of derivative orders and one subject
was used to obtain a test error. The errors of each subset were
computed with cross-validation in the feedback measurement
of each subject. This procedure was repeated 75 times until
completing the full pool of subjects and the test error averaged.
The stability of the selected parameter is studied in Section 5.
Three spatial filters that can be calculated in an unsupervised

fashion were studied in this setting: 3 and 11 laplacian channels
and 3 bipolar channels.

4.5.2. Second setting, calibration to feedback transition
For this setting the parameters were found subject-specifically

using the calibration session. With log-BPE features, one or two
discriminative frequency bands and optimum trial time interval
were selected following the state of the art method described
in Blankertz and Tomioka et al. (2008). With log-TDP features,
wider frequency bandswere systematically chosen. For calculating
Table 1
Subsets of derivative orders found for TDP with each spatial filter (order 0 means
log-BPE) and number of iterations in which a specific subset was chosen.

TDP subsets of derivative orders selected during leave one subject out

Number of iterations Subset orders

58 [0 1 2 3 4 5 6]
3 bip 16 [0 2 3 4 6]

1 [0 1 2 4 5 6]
3 lap 74 [0 1 2 3 4 6]

1 [0 1 2 3 6]
11 lap 75 [0 1 2 3 6]

log-TDP, up to order 6 was used. The dimensionality of the
features was reduced using principal component analysis (PCA)
that retained a very large percent of the variance (99.5%). With
the selected features, the classifier was trained in the calibration
measurement and applied to the feedback measurement to obtain
a test error for each subject.
The spatial filters used were 3 and 11 laplacian channels

(unsupervised) and CSP (supervised).

5. Results

Before presenting our results, we want to remark that the
selection of tasks for the feedback measurement and the feedback
measurement itself was done based uniquely in subject-specific
log-BPE. Therefore the results are harder to interpret as a bias
toward BPE can be expected. The bias might be specially strong in
the second setting, the transition from calibration to feedback, and
with CSP as spatial filter.

5.1. First setting, no previous subject data available

In our experiments we computed the features filtering the data
different frequency bands and then estimated TDP from order 0 to
6. Different derivative order subsets were used, in which specific
derivative orders were concatenated to form a feature vector. The
proper order subset was chosen through leave one ‘‘subject’’ out.
The subset that performed best in 74 subjects was tested in the
one left. The procedure was repeated 75 times until completing all
subjects. log-TDP was extracted in the fixed wide band of 8–35 Hz
and the interval from 500 ms to 3500 ms after the cue. Log-TDP
was compared to log-BPE of oneµ band in 8–15 Hz, log-BPE of two
bands from 8–15 and 16–28 Hz, in theµ and β bands respectively,
and to log-BPE between 8–35 Hz. Three different spatial filters
were applied to the features. None of them needs previous subject
data to be calculated.
The first row of Fig. 1 depicts the scatter plot of error rates

obtained with log-TDP features vs the log-BPE error rates obtained
with oneµ band, two bands (µ andβ), and awide band. 3 laplacian
channels over C3, Cz and C4 were used to calculate the features
of this Figure. Log-TDP outperforms the other features when the
values are located below the diagonal. The second row of the same
figure shows the scatter plots of log-TDP using different types of
spatial filters.
In all three plots of the top row in Fig. 1 we can observe impor-

tant improvement in performance for some subjects, specially in
comparison to one narrow and onewide band (left and right plots).
Table 1 summarizes the results of subsets of derivative orders

selectedwith each spatial filter using ‘‘leave one subject out’’ cross-
validation. In each step, a subset of derivative orders was selected
using 74 subjects and tested in the remaining data-set. The results
of subset selected for 3 and 11 laplacian channels are extremely
stable, as the same subset was selected in all iterations (except
in one case with 3 laplacian channels). In the case of 3 bipolar
channels, still 58 out of 75 iterations returned the same subset of
derivative orders.
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Fig. 1. Analysis of feature performance when no data from the subject is available. The first row shows scatter plots of error rates obtained with log-TDP (y-axis) vs error
rates (x-axis) obtained with one µ band (left), two bands (center) and a wide band (right). The spatial filter used was 3 laplacian channels. The second row shows scatter
plots of error rates obtained with log-TDP comparing different spatial filtering methods. For the values below the diagonal, the method in y-axis outperforms the method in
x-axis.
Table 2
Mean error rates (%) and standard errors for log-BPE in 1 band, 2 bands, 1wide band
and log-TDP using different spatial filters. In this setting no previous data from the
subject was available.

Mean error rates (%) and standard errors of the mean
1 band
log-BPE

2 bands
log-BPE

wide band
log-BPE

log-TDP

3 bip 36.21± 1.45 33.30± 1.48 35.22± 1.40 31.97± 1.35
3 lap 30.82± 1.64 27.7± 1.59 29.54± 1.56 26.37± 1.64
11 lap 27.44± 1.61 24.24± 1.57 25.65± 1.58 22.81± 1.54

A summary of results is presented in Table 2, with mean error
rates and standard errors of the mean for each feature and spatial
filter. The study of significance can be found in Section 6. In this
table we see that TDP outperforms, at least in average, the rest of
the presented features.

5.2. Second setting, calibration to feedback transition

This setting was selected because the spectrum of the signal
can be expected to change for some of the subjects in the
transition from calibration to feedback conditions. This can be
due to several reasons, as e.g. differences in visual input (the
information presented in the screen is different in both settings)
or differences in mood or mental state due to the presence of
feedback or strategy change in response to the feedback, etc. As
example of this change, we chose one subject whose performance
improved with TDP features vs BPE. The top row of Fig. 2 reflects
the frequency spectrum in one channel during calibration and
feedback conditions, both calculated in the same time interval of
the trial. The bottom row shows the scalp plots with the spatial
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Fig. 2. The top row shows frequency spectra of one channel in calibration and
in feedback conditions of a subject who benefited from the use of TDP features.
The bottom row shows the scalp plots with the spatial distribution of signal power
between the two selected tasks.

distribution of signal power between the two selected tasks. The
signal greatly changed between the two conditions.
Given this setting, we tried log-TDP features to analyzewhether

they could be beneficial for this transition and compared them to
the state of the art methods, that is, subject-specific log-BPE in one
or two discriminative bands. The top row of Fig. 3 shows scatter
plots comparing the features (log-TDP and log-BPE) with each of
the spatial filters. The bottom row compares different spatial filters
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Fig. 3. Analysis of feature performance in the transition from calibration to feedback. The first row shows scatter plots of error rates obtained with log-TDP (y-axis) vs error
rates (x-axis) obtainedwith log-BPEwith 3 laplacian channels (left), 11 laplacian channels (center) and CSP (right). The second row shows scatter plots of error rates obtained
with log-TDP comparing different spatial filtering methods. For the values below the diagonal, the method in y-axis outperforms the method in x-axis.
Table 3
Mean error rates (%) and standard errors for log-BPE and log-TDP using different
spatial filters in the calibration to feedback transition.

Mean error rates (%) and standard errors of the mean
Log-BPE log-TDP

3 lap 32.44± 1.69 31.05±1.62
11 lap 29.62± 1.65 27.81±1.61
CSP 27.75± 1.94 26.76±1.89

between each other. For the values below the diagonal, themethod
in y-axis outperforms the method in x-axis. The top row of Fig. 3
reveals that TDP can importantly improve the performance of BPE
in some subjects, specially for 3 and 11 laplacian channels.
Table 3 summarizes the mean error rates and standard error

of means of log-TDP and log-BPE and the different spatial filters
applied. The study of significance can be found in Section 6.

6. Discussion

6.1. First setting, no previous subject data

Here the significance analysis of the results presented in
the previous section is performed. We carried out one-sided
signed-rank tests for paired samples to find out whether log-TDP
performed better than log-BPE and which spatial filter was better.
As three comparisons were done in both cases, the p-value was
corrected using the following formula: 1− (1−α)(1/nc), where α is
the original p-value, set at 5%, and nc is the number of comparisons,
in this case 3. Accordingly, the new p-value= 1.70%.
All p-values found are summarized in Table 4, where we see

that log-TDP significantly outperformed all BPE features. Log-
TDP produces better results than log-BPE in one band (narrow
or wide). The improvement in comparison to 2 bands is more
modest, around 1.3%. However, as these features are fast and easy
to compute, and the improvement is sustained across-subjects, we
think that they are a competitive choice to the log-BPE.
With respect to the spatial filters, 3 bipolar channels is clearly

not the choice. If the available number of channels allows it,
mounting 3 laplacian channels is fast and the improvement in
performance is big. Further improvement can be expected with 11
channels. Mounting those will depend of the time and hardware
available.
We also want to note here that the error rates were computed

by cross-validation in the feedback data-set of each subject. In
practice, when no data of the particular the subject is available,
one can construct a subject-independent classifier, using a pool of
subjects and then apply some adaptation, just as in Vidaurre et al.
(2007). In this way, reliable feedback can be achieved without the
need of a calibration measurement.

6.2. Second setting, calibration to feedback transition

Again in this setting the number of comparisons performed
was 3, and therefore the corrected p-value stayed at 1.70%. The
statistical tests applied are the same as in Section 6.1.
All p-values found are summarized in Table 5. Log-TDP

significantly outperformed all BPE features in all spatial filters.
The improvement is modest but consistent, being greater for 11
laplacian channels and smaller for CSP. In all cases, but specially
for laplacian channels, we can see that some subjects greatly
benefit from the use of log-TDP, specially those forwhose spectrum
changes in the transition from calibration to feedback (as in Fig. 2).
Reasons for TDP performing worse in combination with CSP could
be that themixture of channels was optimized for the filtered data,
without taking into account signal derivatives or that the feedback
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Table 4
p-values obtained with one-sided signed-rank test for paired samples. For the feature comparison: H0: log-TDP does not perform better than log-BPE. H1: log-TDP performs
better than log-BPE. For the comparison of spatial filters, we tested whether 3 and 11 laplacian channels outperformed 3 bipolar channels andwhether 11 laplacian channels
outperformed 3 laplacian channels.

Feature comparison

p-values in (%), limit of significance 1.70%
1band log-BPE vs log-TDP 2bands log-BPE vs log-TDP wband log-BPE vs log-TDP

3 bip 1.07e−06 4.80e−01 5.31e−07
3 lap 2.92e−05 1.60e−01 1.98e−06
11 lap 7.14e−04 1.40e−01 3.48e−05

Comparison of spatial filters

3 bip vs 3 lap 3 bip vs 11 lap 3 lap vs 11 lap

9.02e−04 1.11e−09 7.57e−04
Table 5
p-values obtained with one-sided signed-rank test for paired samples. For the
feature comparison: H0: log-TDP does not perform better than log-BPE. H1: log-
TDP performs better than log-BPE. For the comparison of spatial filters, we tested
whether 11 laplacian channels and CSP outperformed 3 laplacian channels and
whether CSP outperformed 11 laplacian channels.

Feature comparison

p-values in (%), limit of significance 1.70%
log-BPE vs log-TDP

3 lap 0.62
11 lap 0.10
CSP 1.51

Comparison of spatial filters

3 lap vs 11 lap 3 lap vs CSP 11 lap vs CSP

0.023 0.11 15.09

measurement was performed based in log-BPE features and the
results are biased toward this solution.
With respect to the spatial filters, surprisingly no significant

differences were found between 11 laplacian channels and CSP
filters. Interestingly, CSP filters performed worse than 11 laplacian
channels in almost all subjects with poor control of the system,
that is, over 30% of error (see Fig. 3). One can conjecture that CSP
over fits in these cases due to its supervised nature, whereas the
calculation of laplacian channels is unsupervised and can be more
robust to non-stationarities. A similar effect, although not that
clear, can be seen in the comparison of 3 laplacian channels with
CSP.
Finally, the errors are obtained applying the classifier trained in

the calibration to the feedback data. This is the reason for worse
average values in this setting comparing to the first (in which the
errors were computed by cross-validation in the feedback data,
with the parameters selected in all subjects except the one in test).
Further improvement can be expected by adapting the bias, in a
supervised manner like in Shenoy, Krauledat, Blankertz, Rao, and
Müller (2006) or in an unsupervised fashion as in Vidaurre, Schlögl,
Blankertz, Kawanabe, and Müller (2008).

7. Conclusion

In this manuscript we presented the Time Domain Parameters,
a set of features inspired by as well as defined in the time
domain, Hjorth parameters. They are easy and fast to calculate
and only a very low number of parameters needs to be selected.
We combined TDP with the most usual spatial filtering methods
to have a complete performance analysis. It was found that TDP
improved significantly the band power estimates in two different
experimental settings that are common in BCI research. The results
show that TDP is a useful feature when no previous data from the
subject is available, but also can be used in the transition from
calibration to feedback measurement. Regarding spatial filters,
subjects’ performancewith 3 laplacian channels is better thanwith
3 bipolar channels. In case of having the possibility to perform a
calibration measurement, either 11 laplacian channels or CSP can
be used. 11 laplacian channelswill not over-fit, but CSP reduces the
feature dimensionality. The choice will depend on the application
and the amount of data available to estimate covariance matrices.
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