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A B S T R A C T   

Background: To understand information coding in single neurons, it is necessary to analyze subthreshold synaptic 
events, action potentials (APs), and their interrelation in different behavioral states. However, detecting excit
atory postsynaptic potentials (EPSPs) or currents (EPSCs) in behaving animals remains challenging, because of 
unfavorable signal-to-noise ratio, high frequency, fluctuating amplitude, and variable time course of synaptic 
events. 
New method: We developed a method for synaptic event detection, termed MOD (Machine-learning Optimal- 
filtering Detection-procedure), which combines concepts of supervised machine learning and optimal Wiener 
filtering. Experts were asked to manually score short epochs of data. The algorithm was trained to obtain the 
optimal filter coefficients of a Wiener filter and the optimal detection threshold. Scored and unscored data were 
then processed with the optimal filter, and events were detected as peaks above threshold. 
Results: We challenged MOD with EPSP traces in vivo in mice during spatial navigation and EPSC traces in vitro in 
slices under conditions of enhanced transmitter release. The area under the curve (AUC) of the receiver operating 
characteristics (ROC) curve was, on average, 0.894 for in vivo and 0.969 for in vitro data sets, indicating high 
detection accuracy and efficiency. 
Comparison with existing methods: When benchmarked using a (1 − AUC)− 1 metric, MOD outperformed previous 
methods (template-fit, deconvolution, and Bayesian methods) by an average factor of 3.13 for in vivo data sets, 
but showed comparable (template-fit, deconvolution) or higher (Bayesian) computational efficacy. 
Conclusions: MOD may become an important new tool for large-scale, real-time analysis of synaptic activity.   

1. Introduction 

To fully understand the nature of the neural code, it is necessary to 
analyze the rules of single-neuron computations, by which neurons 
convert analogue synaptic input signals, excitatory postsynaptic poten
tials (EPSPs), into digital synaptic output signals, action potentials (APs) 
(Koch, 1999; Debanne et al., 2013). Ideally, one would like to probe 
single-neuron computations by analysis of subthreshold EPSPs and 
suprathreshold spikes in vivo in defined behavioral conditions. Whereas 
huge progress has been made on the experimental side, notably in the 
fields of in vivo patch-clamp recording (Lee et al., 2009; Pernía-Andrade 
and Jonas, 2014), in vivo extracellular measurements (Stark et al., 2012; 

Jun et al., 2017), and in vivo optogenetics (Scanziani and Häusser, 2009; 
Deisseroth, 2015), the development of techniques for adequate analysis 
has lagged behind. The main difficulties are: (1) the low signal-to-noise 
ratio, as synaptic events are often related to the activity of a small 
number of synapses, (2) the high frequency of synaptic events, leading to 
a high degree of temporal overlap, (3) the slow time course of the syn
aptic events, which often are recorded as EPSPs rather than excitatory 
postsynaptic currents (EPSCs), because of lack of sufficient 
voltage-clamp conditions, and (4) the variability in synaptic amplitude 
and kinetics, as events are often generated by synapses located on 
different dendritic compartments. Thus, reliable and efficient detection 
of synaptic activity in in vivo data sets remains challenging. 
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For the simpler but related problem of detection of spontaneous 
synaptic activity in vitro (Kavalali, 2015), several different methods were 
proposed. These include amplitude threshold methods, derivative-based 
methods (Maier et al., 2011), template-fit algorithms (Jonas et al., 1993; 
Clements and Bekkers, 1997; Chadderton et al., 2004), deconvolution 
methods (Pernía-Andrade et al., 2012), and Bayesian approaches that 
consider distributions of templates rather than single templates (Merel 
et al., 2016). However, these methods cannot be easily applied to in vivo 
data sets. In such conditions, none of the techniques reaches the sensi
tivity, reliability, and temporal resolution of manual analysis by an 
experienced expert, who has prior knowledge of the time course of the 
synaptic events and can relatively easily distinguish true events from 
experimental artifacts. On the other hand, manual scoring of large in vivo 
data sets is not practicable, because of the extremely time consuming 
nature of the analysis. Recently, machine learning-based techniques 
have been used to infer spiking activity from measured Ca2+ transients 
(Sasaki et al., 2008; Theis et al., 2016; Berens et al., 2018). However, 
whether machine learning-based strategies can be exploited for the 
detection of subthreshold synaptic events remains unclear. Furthermore, 
machine learning approaches are often computationally demanding, 
which may be a limiting factor for large-scale analysis of synaptic data. 

To analyze subthreshold synaptic activity in vivo with improved ac
curacy and efficiency, we developed a new detection method, rooted in 
the concepts of supervised machine learning (Murphy, 2012) and 
optimal Wiener filtering (Wiener and Hopf, 1931; Kailath, 1981: Hay
kin, 2001; Vaseghi, 2001). Optimal Wiener filtering is widely used in 
acoustic signal processing (e.g. speech detection, noise or echo cancel
ation) and image processing (e.g. compensation of optical and motion 
blur), but its application to neuroscience-related questions has been 
relatively restricted. Our method is comprised of three steps. First, short 
epochs of EPSP or EPSC data were manually scored by experts. Second, 
the detection algorithm was trained to predict the expert scoring. During 
training, an optimal set of filter coefficients was computed using the 
Wiener-Hopf equation. Finally, the approach was tested by 
cross-validation, splitting the scored data into various combinations of 
training and test sets. When benchmarked on experimentally recorded 
data sets, the new method greatly outperformed previous methods, for 
both in vivo and in vitro data sets. 

2. Methods 

2.1. Detection of synaptic events by machine learning and optimal 
filtering 

A number of detection methods for spontaneous synaptic events 
were previously proposed, including template-fit (Jonas et al., 1993; 
Clements and Bekkers, 1997; Chadderton et al., 2004), deconvolution 
(Pernía-Andrade et al., 2012), and Bayesian methods (Merel et al., 
2016). Although these methods work well in in vitro measurements and 
in vivo in anesthetized animals, it is difficult to apply them to in vivo 
recordings from awake, behaving animals. The main reasons are unfa
vorable signal-to-noise ratio, high frequency, and variable amplitude 
and time course of synaptic events. Thus, the detection performance of 
all available methods is substantially below that of a trained expert. 

To overcome these limitations, we developed a novel approach 
combining the detection power of machine learning with the computa
tional efficiency of optimal filtering. In previous methods, the algorithm 
detects putative events, which are individually validated by an expert 
user (Jonas et al., 1993; Clements and Bekkers, 1997; Chadderton et al., 
2004; Pernía-Andrade et al., 2012). In the new approach, the expert first 
manually scores a short stretch of data. This information is then used to 
train a detection algorithm, which is why the method is conceptually 
related to “machine learning”. Based on the training, an optimal filter is 
generated, which is able to convert input traces into output traces (“raw 
detection traces”) that closely resemble the manual scoring traces. To 
efficiently compute the optimal filter coefficients, we use the 

Wiener-Hopf equations (Wiener and Hopf, 1931; Wiener, 1949), which 
is why the method is related to “optimal filtering” or “Wiener filtering”. 
Finally, we apply the optimal filter to scored and unscored data, 
enabling validation of the method and large-scale, high-throughput 
analysis of subthreshold activity in vivo and in vitro. The new technique 
was termed MOD, which stands for Machine-learning Optimal-filtering 
Detection-procedure. 

2.2. Details of implementation of machine-learning optimal-filtering 
detection-procedure (MOD) 

2.2.1. Expert scoring 
To define synaptic events and distinguish them from baseline noise, 

two experts (one with in vivo recording and analysis background and one 
with in vitro recording and analysis background) independently scored a 
subset of data (~30 s at the beginning (S1) and ~30 s at the end of the 
recording (S2); Table S1). Events were manually scored in “SigViewer” 
(https://github.com/cbrnr/sigviewer; version 0.5.1), which allows us to 
set markers and annotations to the data and save them as separate event 
files. The experts were asked to put the event marker to a consistent 
fiducial point throughout the entire scoring period (e.g. onset or peak). 

To account for possible jitter in marker positioning, each time point 
was symmetrically extended around the marker by a total window 
length twin. This generated a so-called manual scoring trace of zeros (0) 
and ones (1), with the same length and sampling frequency as the 
original data. 

2.2.2. Optimal Wiener filtering 
The basic idea of MOD is to generate an optimal filter, which con

verts the original data into a raw detection trace closely resembling the 
manual scoring trace. As the data represented a discrete time series with 
a fixed sampling frequency, we used an optimal finite impulse response 
(FIR) filter, also known as “Wiener filter” (Kailath, 1981; Haykin, 2001; 
Vaseghi, 2001). The transfer function of such a filter (G(z)) in the z 
domain is represented by 

G(z) =
∑n

k=0
akz− k (1)  

where a0, a1, ..., an represent the filter coefficients, n + 1 is the order of 
the filter, and z is a complex number (Oppenheim and Schafer, 2010). 
The filter operation is then defined by 

d(t) = G ⊗ y(t) =
∑n

k=0
aky(t − k) (2)  

where y(t) denotes the recorded original data trace, d(t) is the raw 
detection trace, and G is the transfer function. The filter is considered 
causal, because it uses only sample points from “present” and “past” (i.e 
y(t), y(t− 1),… y(t− k)), but no sample points from the “future”. For an 
optimal filter, the raw detection trace d(t) should resemble the manual 
scoring trace s(t) as closely as possible. Thus, we needed to find the 
optimum filter coefficients a→=

[
a0,a1,..., an

]T that minimized the sum of 
squared errors 

∑
te(t)

2 with 

e(t) = s(t) − d(t) = s(t) − G ⊗ y(t) (3) 

As the amplitude of the signal component of the detection trace is 1, 
minimizing e(t) is equivalent to maximizing the signal-to-noise ratio. Eq. 
3 assumes that (1) signal and noise are additive, and (2) errors are 
reasonably well approximated by a normal distribution; no assumptions 
are made about the shape of the signal function. Under the assumption 
of stationary processes y(t) and s(t), the filter coefficients can be 
computed by solving the Wiener-Hopf equation (Wiener and Hopf, 
1931; Kailath, 1981; Haykin, 2001; Vaseghi, 2001) as 

Ry a→= rsy
̅→ (4) 
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where Ry is a Toeplitz matrix of the auto-correlation function of the 
original data y(t) with 

Ry =

⎡

⎢
⎢
⎣

ryy(0) ryy(1) ⋯ ryy(n)
ryy( − 1) ryy(0) ⋯ ryy(n − 1)

⋮ ⋮ ⋱ ⋮
ryy( − n) ryy(1 − n) ⋯ ryy(0)

⎤

⎥
⎥
⎦ (4a) 

and rsy
̅→ is a vector of the cross-correlation function between 

observed data y(t) and scoring trace s(t) with 

rsy
̅→ =

⎡

⎢
⎢
⎣

rsy(0)
rsy(1)

⋮
rsy(n)

⎤

⎥
⎥
⎦ (4b) 

Then, the filter coefficients a→=
[
a0,a1,..., an

]T are obtained by solv
ing the system of linear equations (Eq. 4) as 

a→= Ry
− 1 rsy

̅→ (5)  

where Ry
− 1 denotes the inverse of Ry. Both auto- and cross-correlation 

functions were estimated from the samples of the training data set 
(t ∈ trainSet). In order to avoid any estimation bias caused by non-zero 
mean, the overall mean values μy and μs were removed from y and s, 
respectively. The auto-correlation function was computed as 

where 〈x〉 is the expectation value of x. Thus, ryy(τ) is symmetric (i.e. 
ryy(τ) = ryy( − τ)) and has its maximum at τ = 0. Exploiting its sym
metry properties, the auto-correlation function needs to be computed 
only for lag values of 0 ≤ τ ≤ n. Moreover, the matrix Ry is positive 
definite (assuming the number of samples in the training set is suffi
ciently large, i.e. N ≫ n, where N is the total number of samples in the 
training set). The cross-correlation function is defined as 

The standard implementation of Wiener filter is that of a causal filter 
that uses ryy(τ), rsy(τ) for τ ≥ 0. In practice, we determined the filter 
coefficients for a series of time-shifted cross-correlation functions from 
r’sy(τ) = rsy(τ − δ) for τ ≥ 0 in the Wiener-Hopf equations such that 

rsy
̅→ =

⎡

⎢
⎢
⎣

rsy(0 − δ)
rsy(1 − δ)

⋮
rsy(n − δ)

⎤

⎥
⎥
⎦ (7) 

and we determined the detection trace according to the equation 

d(t) = G ⊗ y(t) =
∑n

k=0
aky(t − k + δ) (8)  

where δ represents a time shift. This implementation may introduce non- 
causal properties of the filter, because − k + δ can become > 0. In order 
to determine the optimum time shift, Wiener filtering was performed for 
various values of δ (=− 10 ms to 40 ms, varied in steps of 0.2 ms). The 

value that produced the highest detection performance was consistently 
applied to the experimental data (see below; Fig. S2). Biosig 3.5.0 
(http://biosig.sourceforge.net/) was used for loading the data and for 
the AUC, the ROC and the κ analysis. The NaN-toolbox 3.5.2 (https 
://octave.sourceforge.io/nan/) was used for handling of missing or 
invalid data samples when computing the auto- and cross-correlation 
functions according to IEEE 854-1987 standard. Finally, the raw detec
tion trace was low-pass filtered in forward and reverse direction using a 
Hann window of order 13, corresponding to an effective cutoff fre
quency of 1.075 kHz. 

2.2.3. Detection performance 
To quantify the performance of the detection algorithm, ROC curves 

were computed (Schlögl et al., 2007; Pernía-Andrade et al., 2012; Berens 
et al., 2018). These curves describe the relation between true positive 
rate (TPR) and false positive rate (FPR) for various levels of detection 
threshold. Next, the area under each ROC curve (AUC) was determined 
(Figs. 2C and F, 3 C, and 4 C). We used a fast algorithm based on sorting 
the sample values of the detection trace, such that every possible 
detection threshold was represented as a point in the ROC curve. For 
reasonable detection algorithms, the AUC could vary between 0.5 and 
1.0, with 1.0 corresponding to perfect detection and 0.5 representing 
randomness. 

In addition to allowing the benchmarking of different detection 

methods (Fig. 3D and E; Fig. 4D and E), AUC analysis permitted the 
optimization of free parameters in the analysis method, including the 
window twin of the scoring trace (Fig. S1), and the time shift δ and filter 
length n of the Wiener filter (Fig. S2). Finally, AUC analysis was used to 
probe the effect of additional preprocessing of the original data, such as 
low-pass and notch filtering. For further analysis, we used the values 
that produced the highest AUC values. 

2.3. Computing optimal detection threshold and binary detection trace 

The Wiener filtering approach provided a raw detection trace with 
optimal signal-to-noise ratio; however, it did not determine the detec
tion threshold. To find the optimal detection threshold (θopt), we used 
Cohen’s κ coefficient. Cohen’s κ was specifically developed for asym
metric problems, in which the number of observations in different 
classes are markedly different, as in our case, in which the number of 
zeros is much larger than the number of ones. Cohen’s κ was computed 
for every possible threshold (i.e. all points on the ROC curve). The 
threshold that maximized Cohen’s κ was then used to convert the raw 
detection trace into a binary detection trace (Fig. 1B). 

Cohen’s κ was computed as: 

κ =
p0 − pc

1 − pc
(9)  

where p0 is the observed agreement between manual scoring trace and 
binary detection trace, and pc is the agreement expected by chance 

ryy(τ) = 〈
(
y(t − τ) − μy

)(
y(t) − μy

)
〉 =

1
|trainSet|

∑

∀t∈trainSet

(
y(t − τ) − μy

)(
y(t) − μy

)
(6a)   

rsy(τ) = 〈(s(t − τ) − μs )
(
y(t) − μy

)
〉 =

1
|trainSet|

∑

∀t∈trainSet
(s(t − τ) − μs )

(
y(t) − μy

)
(6b)   
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Fig. 1. Flowchart of MOD analysis. (A) Flowchart of the MOD procedure. After the raw data was recorded, parts of the data sets were manually scored by experts. 
Using these manually scored events, the algorithm was then trained to produce an output that closely resembles the manual scoring trace. Optimal filter coefficients 
were then calculated based on the Wiener-Hopf equation, and the optimal filter was subsequently applied to the original data to generate a raw detection trace. 
(B) Input and output of the MOD procedure. Traces show, from top to bottom: (1) schematic original data trace, (2) manual scoring of individual synaptic events 
(scoring markers ‘+’) and manual scoring trace generated by applying a symmetric ±2 ms window to each marker, (3) raw detection trace generated by the MOD 
algorithm (yellow, unshifted; red, shifted; circles represent maxima of shifted trace; dotted horizontal line indicates threshold computed according to the maximum of 
Cohen’s κ; arrows indicate time shift δ, which compensates for causal properties of the Wiener filter and systematic differences in marker positioning between 
experts), and (4) binary detection trace. Note that the raw detection trace shows a substantially improved signal-to-noise ratio. 

Fig. 2. Test of MOD analysis on ground truth data obtained by cable model simulations. (A) Light micrograph of biocytin-labeled GC from in vivo recording 
data set. Reconstruction is superimposed in red. (B) Input and output of the MOD procedure. Traces show, from top to bottom: (1) simulated original trace, with 
signal-to-noise ratio of 0 dB (2) ground-truth scoring trace generated by applying a symmetric ±2 ms window to each marker, (3) raw detection trace generated by 
the MOD algorithm, and (4) detected synaptic events (detection markers ‘+’), superimposed with the original data. (C) ROC curve analysis of detection performance 
of MOD applied to synthetic data sets. TPR was plotted against FPR. ROC curves for different signal-to-noise ratios between − 12 and 20 dB. Noise was added ac
cording to a colored noise model. Note that the AUC is > 0.9 in many cases, demonstrating the accuracy and efficiency of the method. Inset, plot of AUC against 
signal-to-noise ratio. Note that the AUC remains high over a wide range of signal-to-noise ratios, even for signal-to-noise ratios < 1. (D–F) Similar plots as (A–C), but 
for in vitro EPSC data. Light micrograph of biocytin-labeled CA3 pyramidal neuron from in vitro recording data set. Reconstruction is superimposed in yellow. 
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(Cohen, 1960; Powers, 2012). Cohen’s κ was chosen over other mea
sures because it was well bounded between − 1 and 1. It showed clear 
maximum behavior as the threshold was shifted to higher values, and 
appeared to be particularly suitable for asymmetric problems, in which 
the absolute numbers of events in two classes were very different. 
Accordingly, several performance measures (including: mutual infor
mation, Youden index, accuracy, Matthews correlation coefficient, and 
F1 score) appeared to be less suitable (Fig. S4B), because either TPR was 
too low (e.g. accuracy) or FPR was too high (e.g. mutual information). In 
addition, sum of squared errors (SSE) is a widely accepted metrics for 
goodness-of-fit. We therefore computed sum of squared differences be

tween manual scoring trace and binary detection trace as SSE =
∑n

i=1 
(

yscore,i–ydetect,i

)2 
= FP * 12 + FN * 12 + TP * 02 + TN * 02 = FP + FN, 

where n is the total number of samples, yscore is the scoring trace, ydetect 
is the detection trace, and FP, FN, TP, and TN represent false positive, 
false negative, true positive, and true negative numbers of samples (Fig. 
S5A–D). The relationship between SSE and AUC was analyzed in scatter 
plots (Fig. S5E–H). 

2.4. Cross-validation 

A possible pitfall in machine learning approaches is over-fitting of 
the data (Bishop, 2006). In an extreme scenario, it is possible to find a 
perfect classifier for a given data set, if the number of free parameters is 
comparable to the number of events. However, it is unclear if the clas
sifier generalizes to new data. To rigorously test this, we used several 
schemes for cross-validation, which account for both within- and 
across-cell variation (Fig. 5). (1) Within-cell scheme (S1–S2): For each 
cell, S1 was used as training set and S2 as the test set. Subsequently, 
training and test sets were reversed. This cross-validation scheme tested 
whether the classification method generalized over the entire recording 
time. (2) Within-cell-split-half scheme (A1B2–A2B1): For each cell, 
scoring was performed at the beginning (S1) and at the end (S2) of the 
experimental recording time. Each section was then split into two 
halves, A and B. The training set was assembled from the first half of S1 
and the second half of S2 (i.e. A1B2), and the test set was composed of 
the second half of S1 and the first half of S2 (A2B1). Subsequently, 
training and test sets were reversed. This cross-validation scheme tested 
whether the classification method generalized to adjacent new data. (3) 
Leave-one-(cell)-out-method (LOOM): In this scheme the data from all 
but one cell (the training set) were used to build the classifier, and this 
classifier was applied to compute the detection trace of the unused cell 

Fig. 3. MOD permits efficient and accurate detection of EPSPs in vivo. (A) In vivo recording configuration. Whole-cell patch-clamp recording from dentate gyrus 
GCs in head-fixed animal running on a linear belt. The belt showed three partitions with different texture, providing spatial cues to the animal during the experiment. 
(B) A one-second segment of scored in vivo data. EPSPs were recorded under current-clamp conditions near the resting potential of the recorded cell. Top, raw data, 
together with the scoring from one expert. Center, raw detection trace from the MOD method; the markers (○) indicate peaks above threshold. Horizontal dotted line 
indicates the optimum threshold corresponding to the maximum of Cohen’s κ. Bottom, binary detection trace obtained by applying the optimum threshold to the raw 
detection trace. (C) ROC curve analysis of detection performance. TPR was plotted against FPR. Data were from six in vivo data sets; each data set was scored by two 
independent experts E1 (green) and E2 (blue). Note that the AUC is close to 0.9, demonstrating the reliability and efficiency of the method. (D, E) Comparison of the 
performance of MOD against previously published methods (TMP, template-fit; DEC, deconvolution; BAY, Bayesian detection). Summary bar graphs show the AUC 
values for six in vivo data sets based on two independent scorings (circles, individual data points; red line, median; box, IQR; whiskers, most extreme data points that 
are no more than 1.5 × IQR from box edge). Note that MOD outperforms the traditional methods TMP, DEC, and BAY for EPSPs recorded in vivo (* indicates P < 0.05, 
** P < 0.01). Results shown were computed using the cross-validation scheme “A1B2–A2B1” with twin =4 ms. 
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(the test set). The data sets were permuted until every set was included 
exactly once in the test set. This cross-validation method provided a 
benchmark of how well the detection performed on a new individual cell 
of the same type. Additionally, we performed cross-validation after 
adding additional pre-processing steps (200 and 1000 Hz low-pass filter, 
1-Hz high-pass filter, 50-Hz notch filter). Differences in the AUC were <
1.46 %, suggesting that preprocessing of the original data is neither 
necessary nor advantageous in the process. 

2.5. Computational efficiency 

Analysis of computation times was performed on a Supermicro 
computer with an X9DRT mainboard, and Intel Xeon CPU (E5-2670 v2 
@ 2.60 GHz, Sandy Bridge, with hyper-threading enabled), using Matlab 
or Octave (Table S2). To compare the results of different lengths of the 
raw and training data, the computational time of each data set was 
normalized to a length of 30 s of training data, and 600 s of total raw 
data. Computing the correlation functions was the computationally most 
expensive part of the method (~50 s total). Once the correlation func
tions were computed, solving the Wiener-Hopf equation for n = 1000 
was much faster (< 0.1 s total). The application of the filter to the raw 
data was again computationally expensive (~15 s total). Finally, the 
computation of ROC, AUC, and κ was very fast (< 0.1 s total). 

When quantified per time step, filtering required n+1 = 1001 fused- 
multiply-add operations, corresponding to a computation time of ~1 μs. 
This raises the intriguing possibility that a general classifier including 
the coefficients of the Wiener filter, the time shift δ, and the detection 
threshold θopt could be used for real-time filtering and detection of 
synaptic events during electrophysiological experiments. For such real- 
time applications, the best tradeoff between time shift (δ) and perfor
mance (AUC) should be set according to the results in Fig. S2. 

2.6. Generation of synthetic data sets 

To generate ground truth data sets of synaptic activity, EPSPs were 
simulated in detailed passive cable models derived from reconstructed 
granule cells (GCs) or CA3 pyramidal neurons, using Neuron version 7.6.2 
(Carnevale and Hines, 2006). Excitatory postsynaptic conductances were 
simulated at the dendrite, and EPSPs were measured at the soma. Excitatory 
postsynaptic conductances had a rise time constant τr =0.2 ms, a decay time 
constant τd =2.5 ms, and the synaptic reversal potential was Esyn = 0 mV. 
The time step of the simulations was set to 5 μs throughout. The number of 
segments was defined according to the "d_lambda rule”; the number of 
segments per section (nseg) was increased until the length of all segments 
was below 3.3 % of the alternating current length constant at 1,000 Hz 
(λ1000 Hz; Carnevale and Hines, 2006). Simulated somatic EPSPs were 

Fig. 4. MOD permits efficient and accurate detection of EPSCs in vitro. (A) In vitro recording configuration. Cell-attached patch-clamp recording from a hip
pocampal mossy fiber terminal, combined with whole-cell patch-clamp recording from a postsynaptic CA3 pyramidal neuron in an acute brain slice. A 1-s, 100-Hz 
stimulus train was applied to the presynaptic terminal. (B) A one-second segment of scored in vitro data. EPSCs were recorded under voltage-clamp conditions at a 
holding potential of − 70 mV. Top, raw data, together with the scoring from one expert. Center, raw detection trace from the MOD method, the markers (○) indicate 
peaks above threshold. Horizontal dotted line indicates the optimum threshold corresponding to the maximum of Cohen’s κ. Bottom, binary detection trace obtained 
by applying the optimum threshold to the raw detection trace. (C) ROC curve analysis of detection performance. TPR was plotted against FPR. Data were from six in 
vitro data sets; each data set was scored by two independent experts E1 (green) and E2 (blue). Note that the AUC is close to 0.95. Thus, the performance of MOD 
approaches that of an ideal detector for the in vitro data set. (D, E) Comparison of the performance of MOD against previously published methods (TMP, template-fit; 
DEC, deconvolution; BAY, Bayesian detection). Summary bar graphs show the AUC values for six in vitro data sets based on two independent scorings (circles, 
individual data points; red line, median; box, IQR; whiskers, most extreme data points that are no more than 1.5 × IQR from box edge). Note that MOD outperforms 
the traditional approaches TMP and DEC for EPSCs recorded in vitro (* indicates P < 0.05, ** P < 0.01). Results shown were computed using the cross-validation 
scheme “A1B2–A2B1” with twin =4 ms. 
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Fig. 5. Cross-validation of MOD. (A) Schemes of the 
three cross-validation approaches “S1–S2”, “A1B2–A2B1”, 
and “LOOM”. Top, in the “S1–S2” scheme, training and test 
sets are split such that the first segment is the training set 
and the last segment is the test set, and vice versa. Center, in 
the “A1B2–A2B1” scheme, the scoring at the beginning and 
the scoring at the end of the recording are each split into 
half, and combined such that half from the beginning and 
half from the end are included in the training set, and the 
other two halves in the test set. Bottom, “LOOM” is a 
scheme based on a leave-one-(cell)-out approach. Data 
from five cells were used as the training set, and the ob
tained classifiers were applied to the sixth data set. This 
approach was repeated until the data of each cell was 
included exactly once in the testing set. (B, C) Analysis of 
the performance of MOD for the three cross-validation 
methods for six in vivo data sets based on two indepen
dent scorings by expert E1 (B) or expert E2 (C). (D, E) 
Analysis of the performance of MOD for the three cross- 
validation methods for six in vitro data sets based on two 
independent scorings by expert E1 (D) or expert E2 (E). 
Note that the AUC was consistently high for all cross- 
validation methods and that the general classifier worked 
well on the in vitro data sets (* indicates P < 0.05, ** P <
0.01).   
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analyzed using Stimfit core algorithms adapted for Mathematica (version 
12.0; Guzman et al., 2014). For GCs, specific membrane resistance was set 
to Rm = 38,000 Ω cm2, specific membrane capacitance to Cm = 1 μF cm− 2, 
and axial resistance to Ri =194 Ω cm (Schmidt-Hieber et al., 2007). For CA3 
pyramidal neurons, specific membrane resistance was set to Rm =113,000 
Ω cm2, specific membrane capacitance to Cm = 1.13 μF cm− 2, axial resis
tance to Ri =268 Ω cm (Major et al., 1994; Rm and Cm were scaled by a factor 
of 1.5 to account for the high density of spines in CA3 pyramidal neurons); 
access resistance was set to 6.9 MΩ (Vandael et al., 2020). 

To test the reliability of EPSP or EPSC detection, Poisson trains of 
postsynaptic conductances were simulated over 300-s time periods. 
Synapses were placed on the center of each dendritic branch, and acti
vated using Neuron’s class NetStim. gsyn was set to 1 nS, and coefficient 
of peak amplitude variation was set to 0.1. Colored noise was produced 
by filtering of white noise with a 100-Hz first order low-pass filter, and 
added to the simulated traces. The signal-to-noise ratio, defined as the 
ratio between the event amplitude and the standard deviation of the 
noise, was varied between − 12 and 20 dB. The MOD detection algorithm 
was trained on the first half (150 s) of the simulation, and then tested on 
the second half of the data. For GCs, current-clamp recordings of EPSPs 
were simulated to mimic conditions of a previously recorded in vivo data 
set (Zhang et al., 2020). For CA3 pyramidal neurons, voltage-clamp 
recordings of EPSCs were simulated to replicate conditions of a previ
ous paired recording data set (Vandael et al., 2020). 

To test the reliability of MOD in distinguishing frequency and 
amplitude changes, EPSPs with rhythmically changing frequency or 
amplitude were simulated (Fig. 7). Synaptic events were defined as 
alpha function templates with time constants varying in the range of 
0.3–6 ms. The interevent intervals were drawn from an exponential 
distribution exp− λ*t, in which the event rate λ was varied as appropriate. 

2.7. In vivo recording 

To further test the accuracy and efficiency of MOD, we applied the 
new method to biological in vivo data (Fig. 3). Experiments were carried 
out in strict accordance with institutional, national, and European 
guidelines for animal experimentation, and approved by the Bundes
ministerium für Bildung, Wissenschaft und Forschung of Austria (A. 
Haslinger, Vienna; BMWFW-66.018/0007-WF/II/3b/2014; BMWF- 
66.018/0010-WF/V/3b/2015; BMWFW-66.018/0020-WF/V/3b/ 
2016). 

In vivo recordings from the dentate gyrus GCs were performed as 
described previously (Pernía-Andrade and Jonas, 2014; Bittner et al., 
2015; Gan et al., 2017; Zhang et al., 2020). Briefly, whole-cell patch-
clamp recordings were performed in male 8- to 10-week-old head-fixed 
C57BL/6 J mice running on a linear belt treadmill (Royer et al., 2012; 
Bittner et al., 2015). The head-bar implantation was performed under 
anesthesia by intraperitoneal injection of 80 mg/kg body weight keta
mine (Intervet) and 8 mg/kg xylazine (Graeub), followed by subcu
taneous injection of lidocaine. A custom-made steel head-bar was 
attached to the skull, using superglue and stabilized by dental cement. 
After one week of recovery and another week of mild water-restriction 
(2 ml per day), mice were trained to run on the treadmill for 7–9 
days. The day before recording, two small (~0.5 mm in diameter) cra
niotomies, one for the patch electrode and one for a local field potential 
(LFP) electrode, were drilled at the following coordinates: 2.0 mm 
caudal, 1.2 mm lateral for whole-cell patch-clamp recording; 2.5 mm 
caudal, 1.2 mm lateral for the LFP recording. The dura was left intact, 
and craniotomies were covered with silicone elastomer (Kwik-Cast, 
World Precision Instruments). Pipettes were fabricated from borosilicate 
glass capillaries (1.75 mm outer diameter, 1.2 mm inner diameter). 
Long-taper whole-cell patch electrodes (9–12 MΩ) were filled with a 
solution containing: 130 mM K-gluconate, 2 mM KCl, 2 mM MgCl2, 2 
mM Na2ATP, 0.3 mM Na2GTP, 10 mM HEPES, 18 mM sucrose, 10 or 0.1 
EGTA, and 0.3 % biocytin (pH adjusted to 7.3 with KOH; 310–312 
mOsm). Whole-cell patch-clamp electrodes were advanced through the 

cortex with 500–600 mbar of pressure to prevent the electrode tip from 
clogging. After passing the hippocampus CA1 subfield, the pressure was 
reduced to 20 mbar to search for cells in the target area. After a blind 
whole-cell recording was obtained, series resistance was calculated by 
applying a test pulse (+50 mV and − 10 mV) under voltage-clamp con
dition. Recordings were immediately discarded if series resistance 
exceeded 80 MΩ. All recordings were performed in the current-clamp 
configuration without holding current injection using a Heka EPC dou
ble amplifier. Signals were low-pass filtered at 10 kHz (Bessel) and 
sampled at 25 kHz with Heka Patchmaster acquisition software. Six in 
vivo recordings analyzed in the present paper were part of a previously 
reported data set (Zhang et al., 2020). 

2.8. In vitro recording 

Paired recordings from hippocampal mossy fiber terminals and CA3 
pyramidal neurons in hippocampal slices in vitro were performed as 
described previously (Bischofberger et al., 2006; Vyleta and Jonas, 
2014; Vyleta et al., 2016; Vandael et al., 2020). Transverse hippocampal 
slices (350–400 μm thick) were prepared from 19- to 23-day-old Wistar 
rats of either sex (weight: 55–65 g). Mossy fiber terminals were recorded 
in the non-invasive cell-attached configuration, while CA3 pyramidal 
neurons were examined in the whole-cell recording configuration (both 
in voltage-clamp mode). Presynaptic and postsynaptic recording pi
pettes were fabricated from 2.0 mm/1.0 mm (OD/ID) borosilicate glass 
tubing and had open-tip resistances of 10–20 MΩ and 3–7 MΩ respec
tively. For tight-seal, bouton-attached stimulation under voltage-clamp 
conditions, the presynaptic pipette contained a K+-based intracellular 
solution (120 mM K-gluconate, 20 mM KCl, 2 mM MgCl2, 2 mM Na2ATP, 
10 mM HEPES, and 10 mM EGTA, pH adjusted to 7.3 with KOH, 
297–300 mOsm). APs in mossy fiber terminals were evoked by brief 
voltage pulses (amplitude 800 mV, duration 0.1 ms). Postsynaptic 
recording pipettes were filled with an internal solution containing 130 
mM K-gluconate, 20 mM KCl, 2 mM MgCl2, 2 mM Na2ATP, 10 mM 
HEPES, and 10 mM EGTA (pH adjusted to 7.28 with KOH, 312–315 
mOsm). Postsynaptic membrane potential was set to − 70 mV. Post
synaptic series resistance ranged from 3.9 to 14.7 MΩ, median 8.5 MΩ. 
After a 100-s control period, a high-frequency stimulation (HFS, 100 Hz, 
1 s) was applied, followed by a 150-s test period. For MOD analysis, data 
before and directly after HFS were included. Data were acquired with a 
Multiclamp 700A amplifier, low-pass filtered at 10 kHz, and digitized at 
100 kHz using a CED power1401 mkII interface (Cambridge Electronic 
Design, Cambridge, UK). Pulse generation and data acquisition were 
performed using FPulse version 3.3.3 (U. Fröbe, Physiological Institute, 
University of Freiburg, Germany). Six in vitro recordings analyzed in the 
present paper were part of a previously reported data set (Vandael et al., 
2020). 

2.9. Statistics and conventions 

Statistical significance was assessed using a two-sided Wilcoxon 
signed rank test and a Kruskal-Wallis test at the significance level (P) 
indicated. Box plots show lower quartile (Q1), median (horizontal red 
line), and upper quartile (Q3). The interquartile range (IQR = Q3–Q1) is 
represented as the height of the box. Whiskers extend to the most 
extreme data point that is no more than 1.5 × IQR from the edge of the 
box and red crosses indicate outlier points (Tukey style). 

3. Results 

To detect synaptic events with high accuracy and efficiency, we 
developed a new method, which combines the detection power of su
pervised machine learning with the computational efficiency of optimal 
filtering. The basic work flow of the method is as follows (Fig. 1): First, 
experimenters were asked to manually score short epochs of the data 
containing synaptic activity (~30 s at the beginning and ~30 s at the 
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end of each recording). Expert scorings were extended by short time 
windows of duration twin, resulting in a binary “manual scoring trace”. 
Next, a supervised machine learning-based approach, based on training 
and cross-validation, was used to generate an optimal filter that, when 
applied to the data, produced a “raw detection trace”. For an ideal de
tector, the raw detection trace should closely mimic the manual scoring 
trace. To efficiently compute the optimal filter coefficients, the Wiener- 
Hopf equation was applied to scoring trace and raw data (Wiener and 
Hopf, 1931; Wiener, 1949; Kailath, 1981; Haykin, 2001; Vaseghi, 2001). 
As the Wiener filter had properties of a causal filter, i.e. computed data 
points in the raw detection trace from preceding sample points in the 
original data, raw detection trace and manual scoring trace were shifted 
by a time delay δ before comparison. Finally, the “raw detection trace” 
was converted into a “binary detection trace”, using a threshold value 
that maximized Cohen’s κ coefficient (Cohen, 1960). The optimal filter 
coefficients and the optimal detection threshold were then applied to 
both scored and unscored data (for details, see Methods). The new 
technique was termed MOD, which stands for Machine-learning Opti
mal-filtering Detection-procedure. 

3.1. MOD allows efficient and reliable event detection in synthetic EPSP 
or EPSC data sets 

To assess the performance of the new method, we first tested its 
accuracy and efficiency on synthetic data (Fig. 2). EPSPs were generated 
by simulating exponential conductance changes in cable models at 
random intervals, and resulting traces were superimposed with colored 
noise. Event frequency was set to ~10 Hz (Fig. 2B). Finally, the efficacy 
and reliability of the detection method was quantitatively probed by 
ROC curve analysis (Schlögl et al., 2007; Pernía-Andrade et al., 2012; 
Berens et al., 2018). The normalized TPR was plotted against the FPR, 
and area under the resulting curve (AUC) was computed (Fig. 2C). For 
an ideal detector, the AUC would approach one, whereas for complete 
randomness, the AUC would be as low as 0.5. As expected, the AUC 
approached 1 for high signal-to-noise ratio for all event frequencies and 
noise models tested. Remarkably, the AUC remained high even when the 
signal-to-noise ratios was lowered of values < 1 (Fig. 2C). Thus, MOD 
may be a promising technique to analyze in vivo intracellular recordings, 
in which signal-to-noise ratio is low (Lee et al., 2009; Pernía-Andrade 
and Jonas, 2014). To test whether the method was also suitable for 
analysis of EPSCs, we performed similar ground truth simulations in CA3 
pyramidal neurons to mimic a previously recorded voltage-clamp data 
set (Fig. 2D–F; Vandael et al., 2020). As expected, the method was also 
able to accurately retrieve synaptic activity under these conditions of 
increased resolution. 

3.2. MOD allows efficient and reliable EPSP detection in complex in vivo 
data sets 

Next, we tested the new method on biological experimental data. To 
rigorously test the algorithm, we applied MOD to EPSPs recorded from 
head-fixed mice in vivo during a spatial navigation task (Royer et al., 
2012; Bittner et al., 2015). Patch-clamp whole-cell current-clamp re
cordings were made from dentate gyrus GCs (Fig. 3A and B). These 
recording conditions were highly challenging for MOD, because 
signal-to-noise ratio was low, synaptic events were generated at high 
frequency, and mechanical artifacts originating from animal movement 
occasionally overlaid synaptic events. 

In biological data sets, the time points of generation of synaptic 
events are unknown. Thus, synaptic events were manually scored by two 
experts, one with in vivo recording and analysis experience (E1), and one 
with in vitro recording and analysis experience (E2). Subsequently, the 
MOD algorithm was trained based on these manual scorings. As for the 
synthetic data set, the efficacy and reliability of the method was quan
titatively probed by AUC analysis (Schlögl et al., 2007; Pernía-Andrade 
et al., 2012; Berens et al., 2018). In total, we computed ROC curves from 

six in vivo recordings scored by two independent experts (E1, green; E2, 
blue; Fig. 3C). On average, the AUC was 0.894 ± 0.015 (mean ± stan
dard deviation; 6 in vivo recordings, 12 data sets), with slightly, but 
significantly higher values for E1 than for E2 scoring (P = 0.0312). Thus, 
the new method was able to reliably detect synaptic events in in vivo data 
sets. 

To benchmark the performance of the MOD method in comparison to 
existing methods, we analyzed the same data by template matching 
(TMP; Jonas et al., 1993; Clements and Bekkers, 1997; Chadderton et al., 
2004), deconvolution (DEC; Pernía-Andrade et al., 2012), and a 
Bayesian detection method (BAY; Merel et al., 2016; Fig. 3D and E). For 
the TMP method, an alpha function template was used, whereas for the 
DEC method an instantaneous exponentially decaying template was 
employed (Pernía-Andrade et al., 2012). In both cases, templates with 
time constants ranging from 1 to 50 ms were tested, and the best per
forming AUC result was used to provide a maximally rigorous compar
ison with MOD. For the Bayesian detection method (Merel et al., 2016), 
the data were cut in 1-s segments, because longer segments showed 
excessive computation times. To optimize the chances of the algorithm, 
initial event times were set according to expert scoring. 2000 Gibbs 
samples were generated, and the first 20 % of the burn-in phase were 
rejected. To make the method accessible to the AUC analysis, the scoring 
trace resulting from the event time histogram was further processed by 
applying a maximum-filter with 4-ms window size (Lemire, 2006). 

Comparison of the AUC values of the four methods revealed that the 
MOD method was statistically superior to the template-fit and the 
deconvolution method for both scorings (P = 0.00376; Fig. 3D and E). 
On average, the degree of improvement, quantified from the ratio [1/(1 
− AUC)MOD] / [1 / (1 − AUC)alternative] (where alternative method is 
either TMP, DEC, or BAY), was 345 %, 207 %, and 516 % for E1 and 289 
%, 266 %, and 256 % for E2. In addition, the log10(SSE), computed for 
the same methods and the same data sets, was smallest for the MOD 
method (Fig. S5A and B). Thus, MOD is the method of choice for the 
analysis of subthreshold synaptic activity in in vivo data sets. 

3.3. MOD improves EPSC detection in in vitro data sets 

Next, we tested whether the new MOD method might also convey 
advantages for the analysis of synaptic activity in vitro. In particular, we 
wondered whether MOD might improve detection under conditions in 
which event frequency was increased. To test this, we made paired re
cordings from presynaptic mossy fiber terminals and postsynaptic CA3 
pyramidal cells (Fig. 4A). Mossy fiber terminals were stimulated non- 
invasively with a 1-s, 100-Hz train of pulses in the cell-attached mode, 
while adjacent CA3 pyramidal neurons were recorded in the whole-cell 
voltage-clamp configuration (Bischofberger et al., 2006; Vyleta et al., 
2016; Vandael et al., 2020). These recording conditions were also 
challenging for MOD, because EPSC frequency was enhanced during and 
after high-frequency stimulation (Fig. 4B). 

As for the in vivo data set, short epochs of data in six in vitro data sets 
were manually scored by the two experts. Subsequently, manual scoring 
was used to train the MOD algorithm. Finally, the detection efficiency 
and reliability was probed by AUC analysis (Fig. 4C). On average, the 
AUC was 0.969 ± 0.006 (6 in vitro mossy fiber bouton–CA3 pyramidal 
neuron recordings, 12 data sets), similar for scoring by E1 and E2 (P =
0.84). Benchmarking against previously published techniques, template- 
fit and deconvolution, revealed that MOD showed a significantly higher 
performance (P = 0.00376; Fig. 4D and E). On average, the degree of 
improvement, quantified from the ratio [1/(1 − AUC)MOD] / [1/(1 −
AUC)alternative] (where alternative method is either TMP, DEC, or BAY), 
was 399 %, 799 %, and 334 % for E1, and 733 %, 1401 %, and 185 % for 
E2. In addition, the log10(SSE), computed for the same methods and the 
same data sets, was smallest for the MOD method (Fig. S5C and D). Thus, 
MOD offered advantages not only for the analysis of subthreshold EPSPs 
in vivo data sets, but also for the detection of EPSCs in in vitro data sets. In 
comparison to TMP and DEC, MOD provided significantly better scores. 
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In comparison to BAY, MOD provided similar AUC values, but was 
computationally much more efficient (Table S2; Merel et al., 2016). 

3.4. Optimal parameter settings for the MOD algorithm 

We then examined how the settings of various parameters affected 
the accuracy and efficiency of MOD analysis. First, we varied the time 
window for manual scoring (twin; Fig. S1). For both in vivo and in vitro 
data sets, the highest AUC was obtained for twin =3 ms or 4 ms. Second, 
we varied the filter order, and plotted AUC against filter order over 
sample frequency, i.e. corresponding filter duration (Fig. S2). For both in 
vivo and in vitro data sets, a filter duration of at least 20 ms was required 
for accurate detection. Third, we explored how the temporal shift δ 
between manual scoring trace and raw detection trace would affect the 
reliability of MOD analysis (Fig. S2). For in vivo data sets, the optimal 
value of the time shift δ was ~20 ms. Thus, the method worked best 
when it relied on experimental data that occurred ~20 ms in the past 
before a given time point (Fig. S2A and B). However, for the in vitro data 
sets, the optimum value of time shift δ was reached at ~5 ms (Fig. S2C 
and D). These differences correspond to differences in the total duration 
of the synaptic events, which are slow EPSPs under in vivo conditions 
versus faster EPSCs under in vitro conditions. Finally, we analyzed how 
the power of the detection algorithm was affected when the duration of 
the scored epochs was reduced (Fig. S3). When total duration of the 
scored epochs was reduced from 60 s to 20 s or 10 s, the distribution of 
the AUC values changed only minimally, for both in vivo and in vitro data 
sets. Thus, for our experimental data, a total duration of scored epochs of 
10 s seemed to be sufficient to ensure reliable analysis. However, when 
the total duration of the scored epochs was reduced to values of 1–5 s, a 
component with AUC values < 0.8 appeared in the distributions. This 
indicates a higher probability that the trained filter would fail if the 
training data was very short. Thus, consistent results from MOD analysis 
cannot be guaranteed for such short scoring periods. In conclusion, these 
results indicate that reliable MOD analysis requires a twin of 3–4 ms, a 
filter duration of at least 20 ms, a time shift δ that approximately 
matches the time course of the underlying synaptic events, and a min
imal scoring period of ~10 s. 

3.5. Cross-validation of MOD suggests generalization to unscored data 

A potential problem with machine-learning approaches is their ten
dency to over-fit the data (Murphy, 2012). If training and test set are the 
same or overlap, the classifier may work extremely well on the trained 
data, but may fail to generalize to unscored data. To test whether the 
MOD method generalizes to new data, we applied three different 
cross-validation schemes (Fig. 5). In the “S1–S2” scheme, training and 
test sets were split such that the first segment (S1) was included in the 
training set and the last segment (S2) in the test set, and vice versa 
(Fig. 5A, top). In the “A1B2–A2B1” scheme, we concatenated the first 
half of S1 (A1) and the second half of S2 (B2) as training data, and the 
other two halves as test data (A2B1; Fig. 5A, center). Such a scheme may 
account for possible non-stationarities during the recording period. Both 
approaches (S1–S2 and A1B2–A2B1) used classifiers that were built 
from individual cells. Additionally, we used a cross-validation scheme 
based on a LOOM (Fig. 5A, bottom). Manually scored data sets from five 
cells were combined to form the training set, and the obtained classifier 
was applied to the data from the sixth cell. The procedure was repeated 
until each cell was included exactly once in the test set (Fig. 5A, bottom). 
This cross-validation scheme allowed us to test the performance of a 
“general classifier” when applied to unscored data sets. 

We then compared the results from three different cross-validation 
schemes for in vivo and in vitro data sets scored by both experts 
(Fig. 5B–E). For all cross-validation schemes, the AUC values were close 
to 0.9, indicating that the MOD detection algorithm generalized well to 
unscored data. Unexpectedly, the differences between the cross- 
validation schemes were only minimal. Remarkably, the AUC values 

derived from LOOM cross-validation analysis were only slightly lower 
than those computed by A1B2–A2B1 or S1–S2, suggesting that it may be 
possible to use a general classifier for future recordings obtained under 
similar conditions (Fig. 5B–E). This property of the MOD algorithm is 
potentially useful for large-scale analysis of synaptic activity, because it 
reduces the amount of manual scoring work. 

For a subset of experiments, the AUC was slightly higher for 
A1B2–A2B1 than for S1–S2 (Fig. 5B–E). This may be due to non
stationarities in recording conditions (e.g. input resistance or access 
resistance) or alterations in the behavioral state of the mice. Thus, expert 
scoring only at the beginning or the end of the recording may not be 
sufficient to provide adequate analysis of data over the entire recording 
period. Moreover, for the in vivo data analyzed by expert E2, the AUC 
values were slightly lower than for expert E1 (Fig. 5B and C). This may 
suggest that a classifier built from the scoring of expert E1 (who has 
extensive experience in the analysis of in vivo data) performs better than 
a classifier based on the scoring of expert E2 (who has experience in the 
analysis of in vitro, but not in vivo data). Thus, for building classifiers, it 
may be important to base the analysis on the scoring of experts with a 
high level of specific expertise. Finally, MOD also worked well with 
combinatorial expert scorings, in which individual scorings were com
bined in either an AND or an OR manner (Fig. S6). Higher AUC values 
were obtained with the AND than with the OR combination, suggesting 
that MOD worked particularly efficiently with consensus scoring. In 
conclusion, the MOD method can be used for automated large-scale 
analysis of synaptic activity, as required for the understanding of in
formation encoding in neuronal populations. 

3.6. MOD allows accurate detection of both time points and peak 
amplitudes 

Our results indicate that MOD allows us to accurately retrieve the 
time points of synaptic events in both in vivo and in vitro data sets. 
However, the method does not directly reveal information about peak 
amplitudes of synaptic events. As Wiener filtering does not change the 
integral of the signal, we reasoned that it might be possible to infer peak 
amplitudes of synaptic events from peak amplitudes of the raw detection 
trace after appropriate calibration. To determine the calibration factor, 
we performed event-triggered averaging for the in vivo data set, in which 
the EPSP amplitude was measured under current-clamp conditions 
(Zhang et al., 2020; Fig. 6). Both original traces (Fig. 6A) and raw 
detection traces (Fig. 6B) were aligned by the time points of the detected 
events, and averaged across traces. The amplitude calibration factor was 
then determined as the ratio of peak amplitudes of the two signals. To 
further corroborate linearity of the amplitude calibration, we plotted the 
peak amplitude of EPSP original traces against those of the raw detection 
trace. Scatter plot analysis revealed a linear dependency of original and 
detection trace data (Fig. 6C). Bland-Altman analysis further revealed 
that the two quantities are in excellent agreement, corroborating the 
reliability of our estimates (Fig. 6D). Similar results were obtained for in 
vitro data sets, in which the EPSC amplitude was measured under 
voltage-clamp conditions (Vandael et al., 2020; Fig. 6E–H). Taken 
together, these results indicate that MOD allows us to precisely deter
mine both time points and peak amplitudes of synaptic events. 

Finally, we tested whether MOD was able to distinguish changes in 
event frequency and peak amplitude when the two quantities were 
changing in an overlapping, time-dependent manner (Fig. 7). We 
simulated synaptic events with variable exponential time course, varied 
events frequency (F) according to a sine function, and amplitude (A) 
according to a cosine function. F-F analysis, in which the correlation 
between frequency of detected events and frequency of original data was 
examined, revealed that frequency modulation was accurately retrieved 
(Fig. 7A). Furthermore, F-A analysis, in which the correlation between 
frequency modulation of detected events and amplitude modulation of 
the original data was tested, indicated that frequency analysis was only 
minimally perturbed by concomitant amplitude changes (Fig. 7B). In 
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Fig. 6. Calibrated event amplitude measurements using MOD. (A, B) Detection-triggered averaging of EPSPs (A) and raw detection trace epochs (B). The main 
panel shows superposition of individual traces (black) and average trace (blue). Insets show average traces at expanded amplitude scale. (C) Scatter plot of peak 
amplitudes of EPSP original traces versus raw detection traces. Analysis of EPSP frequency with the MOD detection method. Continuous lines represent results of 
linear regression (with or without offset). Slope of regression lines reveals the calibration factor. (D) Bland-Altman plot of difference between raw EPSP amplitude 
and estimated EPSP amplitude, against mean of raw and estimated EPSP amplitude. Horizontal lines indicate mean and limits of agreement (mean ± 1.96 × standard 
deviation). Plots in (A–D) were from in vivo EPSP data of a single representative cell. (E–H) Similar plots as (A–D), but for in vitro EPSC data. 
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addition, A-F and A-A correlation analysis showed that amplitude 
changes were accurately retrieved, whereas overlaying frequency 
changes only minimally perturbed the results (Fig. 7C and D). In 
conclusion, these results indicate that MOD is able to dissect temporal 
changes in event frequency and peak amplitude, as required for a 
mechanistic analysis of single-neuron computations under in vivo 
conditions. 

4. Discussion 

Precise quantitative analysis of subthreshold synaptic activity in 
neurons in vivo and in vitro is essential for the understanding of both the 

biophysical properties of synaptic transmission and the synaptic mech
anisms of neural coding. However, detecting EPSPs and EPSCs remains 
challenging, especially under in vivo conditions. In this paper, we report 
a new method for detecting synaptic events based on machine learning 
and optimal filtering, termed MOD. AUC analysis indicated that the new 
method is superior to template-fit, deconvolution, and, at least for in vivo 
data sets, Bayesian methods. Under typical recording conditions, the 
new method can lead to a substantial increase in detection performance, 
as quantified by the (1–AUC)− 1 metric. Thus, the new method may be 
useful to generate new insights into the mechanisms of single-neuron 
computations and the cellular mechanisms of neuronal coding. 

Fig. 7. MOD analysis reliably distinguishes changes in EPSP frequency and peak amplitude. (A, B) Analysis of EPSP frequency with the MOD detection 
method. (A) Correlation between EPSP frequency of detected data and EPSP frequency of synthetic data. Degree of frequency modulation (FM) is plotted on ordinate, 
degree of amplitude modulation (AM) on abscissa; color indicates correlation between detected and simulated data; scale bar indicates correlation coefficient (R). (B) 
Correlation between EPSP frequency of detected data and EPSP amplitude of synthetic data. Left inset of traces, frequency of detected EPSPs versus location for 
different degrees of frequency modulation (FM, 0.0, 0.3, 0.5, 0.7, and 1.0). Top inset of traces, frequency of detected EPSPs versus location for different degrees of 
amplitude modulation (AM, 0.0, 0.3, 0.5, 0.7, and 1.0). (C, D) Similar data as shown in (A, B), but for analysis of EPSP amplitude. EPSP amplitude 1, standard 
deviation of colored noise 0.2; colored noise obtained by 100-Hz low-pass filtering. EPSP frequency was modulated according to a sine function, EPSP amplitude was 
varied according to a cosine function. Note that EPSP frequency in detected data was well correlated with EPSP frequency (A), but not amplitude in the simulated 
data (B). Conversely, EPSP amplitude in detected data was only minimally correlated with EPSP frequency (C), but highly correlated with EPSP amplitude in the 
simulated data (D). Thus, MOD analysis reliably distinguishes between changes in EPSP frequency and amplitude. 
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4.1. Advantages of MOD 

The new algorithm has several advantages. First, and foremost, it 
offers by far the highest area under the ROC curve. Thus, for any pre
viously specified FPR, a markedly smaller false negative rate can be 
obtained. Similarly, for any given false negative rate, a much smaller 
FPR can be achieved. The new algorithm is also superior judged with 
SSE-based goodness-of-fit criteria. Second, the threshold selection based 
on Cohen’s κ coefficient is fully automated and objective. Thus, the new 
method lacks free parameters, in contrast to template-fit methods, 
deconvolution algorithms, and Bayesian methods, which all rely on as
sumptions about template kinetics and detection thresholds (Jonas 
et al., 1993; Clements and Bekkers, 1997; Pernía-Andrade et al., 2012; 
Merel et al., 2016). Third, cross-validation used in the MOD algorithm 
provides quantitative information about the expected detection errors of 
unscored data. The new algorithm has obvious advantages for the 
analysis of subthreshold activity in vivo, but it is also useful for detection 
of synaptic events in vitro. While low-frequency miniature synaptic ac
tivity can be reliably detected by standard methods, high-frequency 
activity, for example during asynchronous transmitter release (Hefft 
and Jonas, 2005), is more difficult to analyze. Our results provide a 
proof-of-principle that such high-frequency activity is reliably detected 
with the new method. Another advantage of MOD is that analysis re
quires specification of only very few hyperparameters (window length, 
filter length), and the exact choice is non-critical (Figs. S1 and S2). All 
other parameters are derived from the data and the scoring; the filter 
coefficients by solving a convex optimization problem, and the threshold 
and delay by linear search approach. This is an advantage in comparison 
to the other methods, in which the templates (TMP and DEC) or the prior 
distributions (BAY) have to be specified. Finally, MOD is computation
ally efficient (Table S2), in particular in comparison to BAY in which 
computing time increases with number of events and number of sample 
points (Merel et al., 2016). 

4.2. Potential limitations of MOD 

An apparent disadvantage of the new method is that manual scoring 
of a subset of data is required to train the algorithm to obtain the optimal 
filter coefficients. However, manual scoring of relatively short time 
periods, ~10 s (Fig. S3), is sufficient to optimize the detection. 
Furthermore, our cross-validation analysis (LOOM; Fig. 5) suggested 
that in data sets obtained under similar experimental conditions, the 
same filter coefficients may be used across cells. Thus, manual scoring 
may be required only in a subset of representative recordings, and could 
be applied more widely on unscored recordings. 

Another potential disadvantage is that the MOD analysis is compu
tationally more demanding than template-fit (Jonas et al., 1993; Clem
ents and Bekkers, 1997; Chadderton et al., 2004) or deconvolution 
(Pernía-Andrade et al., 2012). However, this primarily applies to the 
training phase, in which the optimal filter coefficients are determined 
and optimal threshold and time shift values are found. In contrast, the 
filtering phase is comparatively fast, only requiring computation times 
of ~1 μs per time step (Table S2). Thus, MOD is a computationally 
efficient method, especially under conditions where large unscored 
portions of data need to be analyzed or general classifiers can be applied 
to unscored cells. 

A potential caveat is that MOD assumes linear superposition of 
synaptic events. For EPSCs recorded under ideal voltage-clamp condi
tions, this is entirely appropriate. However, for analysis of EPSPs, non
linearities may occur. Changes in driving force of glutamate receptors 
will reduce EPSP peak amplitude and detectability of synaptic events 
with increasing depolarization, while activation of active conductances 
may increase it. 

Finally, the performance of MOD may depend on the quality of the 
expert scoring. Our two expert scorings were similar but not identical. 
While systematic differences in the choice of the fiducial point were 

corrected by MOD via the time shift δ (Fig. S2), annotation jitter or 
inconsistent judgement of individual events may pose a problem. 
Interestingly, for the in vivo data set, the AUC values were consistently 
higher for expert E1 (having extensive experience in the analysis of in 
vivo data) than for expert E2 (having experience with in vitro, but not in 
vivo data). Thus, MOD may be able to learn better from a user with 
specific expertise. 

It may be argued that small errors in manual scoring propagate, 
leading to large errors in the detection trace. However, several obser
vations argue against this possibility. First, high AUC values can be 
obtained with both individual scorings, as well as with consensus scor
ings. Second, MOD behaves very similarly in simulated ground-truth 
data (Fig. 2) and in manually scored experimental data (Figs. 3 and 4). 

4.3. Future applications 

We used the MOD technique for the analysis of EPSPs in vivo in 
awake, behaving mice running on a linear belt and of EPSCs in vitro 
before and after high-frequency stimulation. However, several addi
tional applications are conceivable. The MOD method may be useful to 
analyze neuronal coding in invertebrates, in which analogue signaling is 
more prevalent than in mammals (Debanne et al., 2013). Furthermore, 
the MOD algorithm could be utilized for the analysis of intracellularly 
recorded spikes or spikelets (Epsztein et al., 2010). Finally, the 
computational efficacy of the filtering step of MOD may allow experi
menters to run the detection in real time. Although the current imple
mentation involves non-causal filtering (Eq. 8), a causal filter could be 
generated by introducing an additional delay between recording and 
detection. Our analysis of AUC as a function of time shift δ between 
manual scoring trace and raw detection trace indicates saturation at δ ≈
10 ms (Fig. S2). Thus, the delay could be set to relatively short values 
without compromising the power of the detection method. Therefore, 
MOD could be used in closed-loop in vivo experiments, in which 
real-time detection of synaptic events is coupled to either electrical 
stimuli or optogenetic manipulation of defined cell populations (Scan
ziani and Häusser, 2009; Grosenick et al., 2015). Thus, MOD not only 
may become important for data analysis, but also could be integrated 
into cutting-edge experimental methodology. 
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