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1 Introduction
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An EEG-based Brain-Computer Interface (BCT) could be used ag on additional communication
channel between human thoughts and the envirenment, The efficacy of such o BCL depends
mainly on the transmitted information rate, Shannon’s communication theory was used Lo gquan-
Lily the information rate of BCEH data, For this purpose, experimental EEG data from four BCI
experiments was analyzed of(<line. Subjects imaginated lelt and right hand movements during
EEG recording from the sensorimotor area, Adaptive nutoregressive (AAR) paramelers were
useed g features of single trial BEG and elassificd with linear discriminant analysis, The inteo-
trial woriation as well as the inter-trinl variability, the signal-to-noise eatio, the entropy of infor-
mation, and the information rate were estimated, The entropy difference was used as o measure
af the separability of two classes of EEG potierns,

Sehttiggetwdrter: Hirn-Computer Schnittstelle - ereignisbegogene Desynchronisierung
vies auloregressives Modell - zeitverinderliches Spoktrom
Informationstheorie - Entrapie

adapti-
nichistatieniive Sigoalverarbeitung

Eine EEG-basierende Gehirn-Computer-Schoittstelle (BOD kdnnte als susitzlicher Kommuni-
kationskanal ewischen dem menschlichen Denken und der Unnwelt verwendel weeden, Die Ef-
feletivitit einer solechen Kommunikation himgt entscheidend von der abertragharen Informati-
ansrate ab, Eratmals wurde die Informationsmenge eines BCImit Shannons Informationstheoric
quantifiziert. Es wurden experimentelle BCI-Daten off line analysiert, Versuchspersonen stell-
ten sich linke und rechte Handbewegungen vor, wihrend das EEG Ober dem sensomotorischen
Arcal abgeleitet wurde, Aus dem EEG wurden adaptive-autoregressive Parameter berechnet
und anschliefend mit dem Gewichisvektor einer linearen Diskriminante zusammoengelalt. Die
Wariabilitit, sowohl zwischen als auch innerhalb von Eingelversuchen, das Signal-Rausch-Ver-
hilinis, die Entropie der Information und die Informationsreate vom BCT wurden bestimmit, Ther
Entropicunterschied wurde als Mall fir die Unterscheidbarkeit von zwei Klassen von EEG-Mu-
atern verwendet.,

An EEG-based Brain Computer Interface (BCI) analy-
zes and classifies EEG patterns and transfers those
patterns into control signals. A BCI is an additional
communication channel between purely mental activi-
ty (thoughts or imaginations) and the surrounding
physical world. Because no muscle activation is invaol-
ved, the BCI can be used as an additional communica-
tion channel, which might be useful for handicapped
people [1-3]. The question is: How much information
can he transmitted by a BCI?

The information rate is also important in the lear-
ning process of the user. Usually, the various BCI ap-
proaches [1-11] rely on feedback. The amount of infor-
mation provided by the feedback signal determines the

subject's ability to learn (see Figure 1), A system with-
out a reliable classification output can not be used for
learning. Hence, one reason for unsuccessful BCIL at-
tempis might be the lack of information provided by
the feedback, For this reason, quantifyving the infor-
mation in the BCI output is important. In this work,
the information based on the principle of Shannon's
communication theory will be quantified,

It iz known that the amount of information of (cli-
nical) EEG recordings (Figure 1: A) is about 8-11 bits
[12] multiplied by the sampling rate and the number of
channels. This information rate is not useful, but the
relevant information needs to be extracted. Actually,
the information rate, obtained {rom the output of an
EEG-based BCI, is of interest. This paper introduces a
measurement for the Signal-to-Noise Ratio (SNR) and
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Figure 1. Scheme of a BCI with [ecdback. The EEG [rom the
subject’s scalp is recordecd (A); next it has to be processed on-
line (B); the extracted features are combined and classified
(C); the output can be used to control a deviee, e.g. & cursar on
a computer sereen (D) simultaneously, the output provides
fecdback to the subject.

the mutual information (MI) [13, 14] between a BCI
input and output. The SNE describes the ratio of the
variation of the output due to the task, and the variati-
ons that are not task-related (unspecific changes, nai-
se). The MI is the average amount of information that
an observation (output) provides about a signal (input)
[14]. In case af the BCI, it is of interest how much in-
formation about the input (cue on the computer sere-
en) can be gained by observing the output.

2 Data and methods

Data from a previous BCT study was used for the pre-
sent analysis. The experiment is described in detail in
[15-17]. The task was cued by visual stimuli on a com-
puter screen, From 3.0—-4.25 s an arrow pointing either
to the l=ft or to the right was displayed. Depending on
the direction, the subject was instructed to imagine a
movement of the left or right hand, From 6.0-T.0s
feedback was given; the feedback was calculated from
the band power of the most reactive frequency bands.
These frequency components were found by using the
Distinction Sensitive-LVQ algorithm [6]. The EEG da-
ta was recorded using two bipolar channels over left
and right central areas. The two EEG channels were
derived from two electrodes each placed 2.5 em anteri-
or and 2.5 em posterior to the eleclrode positions C3
and C4, respectively. The EEG signals were amplified
and bandpass filtered between 0.5 Hz and 35 Hz by a
Nihon Khoden amplifier, and then sampled and digiti-
zed at 128 Hz using 12 hits. The results of selected ses-
sions of 4 subjects (subject £3, session 10; £3, session 6,
{7, session B; g3, session T) with 20-79, 78-78, 80-80
and T6-75 {L)eft-(H)ight trials, respectively, are pre-
sented in [17].

An AAR model was chosen for feature extraction,
because it provides estimates with a time-resolution as
high as the sampling rate and the AAR estimation al-
gorithm can also be used on-line [18]. Furthermore, it
is not necessary to select subject-specific frequency
bands. The AAR parameters were estimated with the

recursive least squares (RL3S) algorithm as decribed in
[13, 16,17, 19]. The update cocfficient UJC = 0,007 and
a model order of p = 10 was chosen (Figure 1: Part B).

The AAR parameters were estimated for every
sammple time point. From each trial the AAHR parame-
ters were taken at a specific time point § from both
EECG channels C3 and C4 [16, 17]. The 210 (lwo chan-
nels, model order 10) AAR parameters span a 20-di-
mensional leature space. Using linear discriminant
analysis [20] a weight vector w, was found thal descri-
bes the maximal discriminating hyperplane between
the two classes L and R (left and right cue). The time
course of the error rate (with and without cross-vali-
dation) was caleulated. The time point with the lowest
error rate (Le largesl separability) gives the optimal
clagsification time point Te.

2.1 Time-varying signed distance (TS0 & Feature-of-
Interest

Mext, a weight veclor wy, was obtained by applying
LIDA to AAR parameters at time t= Te. This weight
vector wp is applied to the AAR parameters of both
EEG channels in the following way:

D,=la, % ....a, P 0 0, L -1 W (1}
Mote that the term -1 takes into account the offset or
threshold incorporated in wy,_. We call D, the time-
varying signed distance function (TSD), because I va-
ries in time with the AAR parameters; the sign of I,
describes whether the classification is left or right and
D, expresses the distance 1o the separating hyperplane
described as w .

The advantage of this procedure is that all time-
varving parameters are reduced o one dimension,
Mow D, is a one-dimensional, time-varying function
that can be caleulated for every time point £ on a
single-trial basis. Equation (1) is the most informative
linear projection (with respect to the class relation)
from multiple to one feature; the weight vector w,, in-
corporates the class information and expresses what
we are interested in. For the reason, this new feature is
the , feature-of-interest”. Note, once a weight vector w
is obtained (e.g from previous recorded data), the
TED can be also calculated on-line [18]. Accordingly,
the T5D is the classification output (Figure 1: Part C)
and can be used to control a device and provide feedb-
ack (Figure 1: Part I).

2.2 Signal-to-Noize Ratio SNR and Mutual Informati-
on MI

The distance D/ (1) is a measure for the classification.
In the ideal case, I = (0 if the i-th trial iz a left trial
and D < 0 for all right trials. In practice other pro-
cesses nol correlaled to the class-relation also influen-
ce D One can say D)® consists of two types of pro-
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Figure 2. Time courses displaying the separability between
two classes obtained in four subjects. The vertical lines indi-
cate the time point used to generate the weight vector. The ti-
me point t with the lowest error rate ERR10 was used. (a) In
the first column the time courses of the error rates ERR10,
(thick line) and ERR, (thin line) are shown. ERR(%) gives the
classification error with LDA of the EEG-channels C3 and C4
at time t. AAR(10) parameters were used as EEG features.
The thick line shows ERR10, calculated 8 times per second;
the thin line shows the time course of ERR, calculated at
every sample. The numbers indicate the lowest ERR10 and
the corresponding classification time. (b) The second column
shows the averaged TSD for the left and right trials. The TSD
is calculated as linear combination of AAR(10)-parameters of
the EEG channel C3 and C4. The average TSD curves (thick
lines) clearly show a different behavior during imagined left
and right hand movement. The thin lines represent the wit-
hin-class standard deviation (SD) of the TSD and indicate the
inter-trial variability of the EEG patterns. (c) The third co-
lumn shows the mutual information between the TSD and the
class relationship. The entropy difference of the TSD with
and without class information was calculated every time step.
This gives (a time course of) the mutual information in
bits/trial.

cesses, one correlated to the movement imagery task
containing useful information (signal) and processes
not related to the task (noise). The Signal-to-Noise ra-
tio (SNR) (for a fixed time point ¢ within a trial) is defi-
ned as follows:

2% var {Dg”}

- ie|lL, R} B
SNHK_}E’&‘"}{ Dg)}tg&r}{D?)} 1 (2)

where {L} and {R} are the sets of left and right trials,
and var{.} is the variance over all trials i.
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The aim is to extract information about the kind of
motor imagery (class) by observing output D. Accor-
ding to Shannon and Weaver [13], the mutual informa-
tion I is an entropy difference, whereas the entropy H
of a Gaussian process x is

H(x) = 0.5 +log, (2me o2) (3)

The mutual information between the BCI output D
and the class relationship can be determined by calcu-
lating the difference between the entropy for the total
variance and the within-class variance of D (for more
details see Appendix A). This leads to the following
formula for the mutual information for each possible
classification time t¢:

I,=0.5*log,(1+SNR,) (4)

3 Results

The time courses of the error rate ERR10, and ERR,,
the TSD (mean and standard deviation) for both clas-
ses, and the entropy obtained with 4 subjects are sho-
wn in Figure 2. The first column in (a) shows the time
courses of the error rate. In all 4 cases the decrease of
the error rate starts during presentation of the cue sti-
mulus (3.0-4.25 ). This means that the EEG patterns
become more separable. For every subject, the time
point with the best discrimination can be found. These
time points were used for calculating the classifier w,,.

The second column in Figure 2b shows the time
courses of the TSD. It can be seen clearly, that after
presenting the cue, the TSD is different for the two
tasks. Furthermore, a different temporal behavior for
every subject can be found. Especially in subject 7, a
crossing of the TSD can be observed. These results (ba-
sed however on an AAR(6) instead of an AAR(10) mo-
del) were discussed in detail in [17] and can be explai-
ned by the ,post-imaginary beta ERS*.

A novelty is that also the standard deviation (S.D.)
of the TSD is included in Figure 2(b). This shows the
within-class variability of the output. It is caused
mainly by the inter-trial variability of the EEG pat-
terns. The ratio between the average TSD of the two
classes on the one hand, and the S.D. of the TSD on the
other hand, yields an impression of the SNR of the BCI
output.

Figure 2¢ displays the time courses of the mutual
information between TSD and the cue (left or right).
The time course of the mutual information shows at
which point of time the patterns are most separable.
As expected, no information about the class relations-
hip can be obtained prior to cue presentation (starting
at 3.5 s) and in general, the mutual information dis-
plays a maximum when the error rate is minimal. Ho-
wever, there are also differences between the error ti-
me courses and the mutual information curves. In the
data set £310, the mutual information is larger than

1 bit per trial, although the error rate is not zero. Data
set £76 shows a larger mutual information at about
t = 7 s; this is surprising because the error rate is smal-
ler at ¢ = 5 s. The unexpected result in g37 is that (the
time course of) the mutual information does not in-
crease prior to t =5 s although the error rate already
decreases at 4 s. One explanation for these differences
might be that the EEG patterns at 4-5 s and 6-8 s are
different and the error rate is not the best criteria for
selecting the optimal discrimination.

The optimal time point for classification is 5.75, 6.0,
4.74 and 6.5 s for £310, £56, 76 and g37, respectively.
The task-related imagination starts at approx. 3.5s.
Hence, it can be said that the maximum information
rate is 1.1 bits/2.25 s, 0.8 bits/2.5 s, 0.4 bits/1.25 s and
0.8 bits/3.0 s. Overall, approx. 0.3-0.4 bits per second
were obtained in these experiments.

4 Discussion and conclusion

Basically, a single-trial analysis of EEG patterns was
applied considering intra-trial (time-course) as well as
inter-trial variability. Furthermore, a measure of in-
formation was introduced to analyze the BCI output
(= control signal). This measure estimates the channel
capacity (bit-rate) of a BCI. A limitation of the presen-
ted method is that the weight vector used for calcula-
ting the TSD and the derived measures like SNR and
MI were calculated from the same data set. This means
that no cross-validation was applied, and therefore the
results might be biased. This must be considered when
the presented entropy analysis is applied to BCI data.
In the presented case, the number of trials (151-160} is
much larger than the number of classification parame-
ters (2+10 = 20). For this reason, the bias due to over-
fitting not to large.

In the case of the two-class problem, 100 % accu-
racy (0% error) would provide 1 bit of information.
Therefore, one might argue that the amount of infor-
mation is described sufficiently by the error rate. Ho-
wever, the measure for the mutual information can al-
so give larger values than 1. Then the class-related va-
riability is larger than the background activity. More
information (than 1 bit) can be obtained, even within a
two-class paradigm. A large SNR and MI opens the
possibility of increasing the bit rate of a BCI and using
efficient coding schemes for e.g. letter selecting,
beyond binary decisions.

From a communication theory point-of-view [13], a
BCI experiment can be seen as a communication chan-
nel with added noise. It extracts relevant (useful) in-
formation, but might be the source of additional noise
too. First, the input represented by the cue (one of two
classes, 1 bit) is mentally processed by the user, Furt-
her, the EEG amplifier, AD converter, feature extrac-
tion method (e.g. AAR estimation) and the classifier
(linear combiner) contribute to the one-dimensional
output signal, which contains a part related to the task
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{usetul signal) and one that is not task-specific (noise).
The ratio between the signal and the noise corresponds
to the mutual information between the input (cue) and
the output.

The MI is also a measure for the quality of the feed-
back provided to the subject. Therefore, analyzing the
mutual information of the feedback might be an im-
portant step in BCI research. It can be used to measure
the improvement over time and for comparing diffe-
rent BCI systems. In summary, the proposed method
introduces a measure for the maximum amount of mu-
tual information and provides an estimate about the
amount of information transmitted by single trial EEG
patterns. The quantification of the transmitted infor-

-mation is an important criteria for a BCI. It is sugge-
sted that the entropy should be analyzed in all BCI ex-
periments.

Appendix A

Assuming that an observable process v, is given that
consists of a signal process u, and an additional noise
process n,

D® =y, =u, +n, (Al)
Without loss of generality and for the purpose of sim-
plicity, it can be assumed that the signal and noise

process are distributed normally and completely inde-
pendent; one can also say u, and n, are un-correlated.

u = N (i, 02) (A2)
n, = N(x,, 62) (A3)
z(uk—#u)'(ﬂk—ﬂn):o (Ad)

4

In case of linearity and independence, the variance o>

of the observed process v, is
ZYr

g% =0+ 0. (A5)

Next, we can define a signal-to-noise ratio (SNR)

SNR = c2 /02 = 6% /0% - 1 (AB)
The entropy H of a Gaussian process is:
H(x) = 0.5+log, (2mec?) (AT

The entropy difference between the variability of x
and the variability of x under the condition class c is
known, gives the maximum mutual information bet-
ween x and the class information c.

I=H(x) - H(x,c) (AB)

This results in the following equation

var {fo) }

ielL, R}
o} o))

where {L} and {R) are the sets of left and right trials, ¢
is the (fixed) time point and var{.} is the variance over
all trials i of set {.} as shown in equation (A9). The ma-
ximum mutual information is obtained if the noise
process is Gaussian, otherwise the mutual information
is smaller [14].

The denominator in (A9) is the variance of signal
plus noise, the denominator is the variance of the noise
{average of the within-class variance). Hence, the rela-
tionship between the SNR and maximum mutual in-
formation is

[7=0.5=log, (A9)

I=0.5+log,(1+SNR)=0.5 *10g2(o‘i/ai) (A10)
One can estimate the variance O'ZS from the obtained
data D with

e (A11)
where {S} is a set of irials and N the number of ele-
ments within the set {S}. To estimate the variance of
the noise process o2, we took the average variation
within classes. The total variance O'i is easily obtained
by calculating the variance over all trials.

ol = _Var{D“')} = #Z(D(” — ) ) ® (D‘” -y ]
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