DOI: 10.1111/cgf.14100

ACM SIGGRAPH / Eurographics Symposium on Computer Animation 2020

J. Bender and T. Popa
(Guest Editors)

Volume 39 (2020), Number 8

Making Procedural Water Waves Boundary-aware

S.Jeschke! C.Hafner? N. Chentanez!

INVIDIA

M. Macklin!

M. Miiller-Fischer! C. Wojtan?

2IST Austria

Figure 1: The left part shows a conventional real-time ocean wave simulator: the wave model is unaware of the boundary conditions on
the shore, so it unrealistically intersects the terrain. The right shows the same simulator when filtered through our model, avoiding terrain
intersections.

Abstract

The “procedural” approach to animating ocean waves is the dominant algorithm for animating larger bodies of water in
interactive applications as well as in off-line productions — it provides high visual quality with a low computational demand.
In this paper, we widen the applicability of procedural water wave animation with an extension that guarantees the satisfaction
of boundary conditions imposed by terrain while still approximating physical wave behavior. In combination with a particle
system that models wave breaking, foam, and spray, this allows us to naturally model waves interacting with beaches and rocks.
Our system is able to animate waves at large scales at interactive frame rates on a commodity PC.

CCS Concepts
e Computing methodologies — Procedural animation;

1. Introduction

Even after decades of algorithmic advances in computer anima-
tion, detailed simulations of large-scale bodies of water are ex-
tremely costly in terms of computational demand and memory. For
such scenarios, waves are typically modeled using linear wave the-
ory [Joh97], as it provides highly detailed simulations with compa-
rably low computational demand [Tes99]. This solution works per-
fectly for ideal situations with periodic domains, and no boundaries
or interacting obstacles. However, the behavior of procedural waves
interacting with a sloped obstacle (like a beach) is still an open

(© 2020 The Author(s)
Computer Graphics Forum (©) 2020 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

question. Previous procedural methods either emphasize realistic
behavior away from boundaries (think deep water ocean waves), or
model isolated phenomena like breaking waves. Furthermore, cur-
rent procedural wave tools tend to fail in visually disturbing ways,
like water penetrating solid obstacles and vice versa. In modern ani-
mation visual effects practice, these problems are manually covered
by artists; for example, they hand-design specific wave primitives
for beaches, use specific (steep) terrains at the water boundary, or
use computationally expensive off-line simulators in problematic
regions.

85U8D|7 SUOWWOD 3A 181D 3|cedl dde 8y} Aq peueA0b 818 3o 1e O ‘88N 4O S3|NJ Joj ARIg1T8UIIUO AB|IA UO (SUORIPUOD-PUR-SLUIBYWI0D" A3 |IMATe.q 1 [BUJU0//ST1Y) SUORIPUCD PUe SWS | 8U3 89S *[£202/T0/ET] U0 A%iqiT8ul|uo AB|IM ‘PUY 80UBIS 4O 8INHISU| A 00THT JBO/TTTT OT/I0p/W0D" A8 |IM Alelq1jeuluo//S)y Wouy papeo|umoq ‘8 ‘0202 ‘6398297T

48 S. Jeschke et.al. / Making Procedural Water Waves Boundary-aware

This paper presents a strategy for efficiently eliminating such vi-
sual artifacts from procedural wave models. We introduce a gener-
alized transformation of wave trajectories called wave cages; these
cages are designed to warp the original procedural wave motion in
a way that satisfies solid boundary conditions and avoids interpene-
tration artifacts, while exactly preserving the original wave motions
in open water. This strategy makes the popular procedural wave
model applicable to more general scene configurations, and its low
computational overhead preserves real-time performance even for
large-scale scenes.

2. Related work

This section discusses a number of existing techniques for animat-
ing water waves interacting with obstacles.

Grid-based Navier-Stokes simulation methods Regular grid-
based 3D fluid simulation [Bril5] can offer great accuracy and
realism at the expense of vast computational resources. At large
scales, the conservation of volume and other physical properties
also remains a challenge. Attempts have been made by using adap-
tive grids such as octrees [LGF04, FWD14], tetrahedral meshes
[CFL*07, ATW13], non-uniform rectilinear grids [ZLC*13], and
sparse paged grids [AGL*17] to name a few. Despite constant
progress, these methods are currently unsuitable for animating de-
tailed ocean scale wave motion at interactive frame rates.

Particle-based methods An excellent recent survey about parti-
cle based liquid simulation with Smoothed Particle Hydrodynamics
(SPH) can be found in [KBST19]. Position based fluids were pro-
posed in [MM13]. For these methods, the number of particles re-
quired grows linearly with the volume of simulated liquid. A num-
ber of works use multi-resolution particles to try to address this
issue [KAD*06, BG11]. Multiple scales of particles are used for
simulating breaking waves in [DCG11]. While these methods can
produce highly detailed liquid surfaces and small splashes, interac-
tive performance is still limited to relatively small-scale scenes.

2.5D approaches Researchers have developed a number
of 2.5D methods which simplify the Navier-Stokes equations
by assuming the water surface is a heightfield. For exam-
ple, several researchers solve the wave equation on a 2D
grid [KMO90, Tes99] or utilize pipe models [OH95, vBBKOS].
Other researchers employ Lagrangian representations, such as
wave particles [YHKO7] and wave packets [JW17]. The shallow
water equations (SWE) are useful when the water wavelength is
much larger than the water depth. SWE discretizations are usually
Eulerian [CL95, LvdP02, HHL*05, WMTO07, ATBGO8], but some
researchers have proposed Lagrangian 2D SPH discretizations as
well [LH10, SBC*11]. [JSMF*18] use a wavelet representation that
discretizes waves as functions of space, frequency, and direction to
handle local interactions with wind and obstacles, and [SHW19]
use fundamental solutions to animate wave-obstacle interactions.
A recent method computes Lagrangian waves on top a moving wa-
ter surface to add detail to an existing simulation [SSJ*20].

Procedural waves We use the term “procedural” wave models
when referring to closed-form scripted behaviors of water waves.
Computer graphics applications often accumulate many simple
wave behaviors, typically with a fast summation algorithm like the

FFT, in order to animate rich ocean details with little computational
expense. Researchers tend to use circular wave trajectories for ani-
mating deep oceans [MWMS87, Tes99] and ellipsoidal surface mo-
tions for animating waves on a sloped terrain [Pea86, FR86]. Tools
for visual effects and game development, like NVIDIA’s Wave-
Works [Che20] typically combine these procedural wave motions
with artist-friendly authoring tools in order to hand-tune wave be-
havior. Although some techniques allow for reflections and diffrac-
tions around obstacles [GLS00, JW15], none of these methods can
actually prevent individual waves from intersecting the terrain.

3. Background

Linear wave theory [Joh97] provides the basis for modern ocean
wave animation. Following [Tes99], the model describes the mo-
tion of a point 1 (x,) on the water surface as a summation of many
independent waves at different frequencies:

N A i SoxY — . .
7 (1) = Z (—kiAi sin(k; -x —wit+¢;) ')
i=1

Ajcos(k;-x —wit+¢;)

Here, the wavevector k; is a two-dimensional frequency vector
with magnitude k; and direction]:Ti. A; is the wave amplitude, w;
is the angular frequency, ¢; is the initial phase offset, and N is
the total number of wave frequencies. Points on the wave surface
evolve in circular motions, and a summation of these circles pro-
duces beautiful patterns known as “Gerstner”” waves.

Subsequent work by Biesel and others
[Bie52, CHHOS, CHCHO6] improved upon the Gerstner model
by deriving the motion of waves above an infinitesimally sloped
sea floor. Instead of summing over circular motions as in Eq. (1),
this model produces a sum of ellipsoidal wave trajectories aligned
with the sloping direction of the terrain. Although this is a
significant improvement over the Gerstner model and has proved
a great success in computer graphics [FR86], it still falls short of
satisfying the demands of modern computer animation. The Biesel
model assumes an infinitesimally small slope in the terrain, which
causes the solution to blow up as the water depth tends to zero
(i.e., the visually interesting point where the water surface splashes
against the terrain). Furthermore, both Gerstner and Biesel models
can exhibit virtually unbounded wave heights when all of the
individual waves happen to constructively interfere with each
other, practically guaranteeing unphysical terrain penetrations.
Despite these problems, the Biesel model probably represents
the theoretical limit of procedural wave models derived from
first principles—any generalization beyond infinitesimal slopes
would likely have to deal with refracting and breaking behaviors,
which may be impossible to describe with a closed-form periodic
trajectory. Consequently, we do not expect to find a closed-form
wave solution for waves interacting with arbitrary terrain.

In this paper, we propose a geometric approach to remove the
most problematic limitations of existing procedural wave solu-
tions such as FFT methods or water surface wavelets [JSMF*18]—
we bound procedural wave motions within ellipsoidal wave cages
aligned with the slope of the terrain. In contrast to the procedural
models discussed above, this simple constraint guarantees that the
water surface never penetrates the sea floor, and it prevents unreal-
istic behaviors where the water meets the shore.

(© 2020 The Author(s)
Computer Graphics Forum (©) 2020 The Eurographics Association and John Wiley & Sons Ltd.

85US017 SUOLULLIOD dAR.1D) 3|deddde) Ag pausenoh afe sajolie O 8sn JO S9Nl 10} Akeiq1T 8UlUuO A3|IM UO (SUOIPUOD-pUe-SLLBY WO A8 | 1M Aleid Ul |uo//Sdy) SUORIPUOD Pue SWS L 84} 89S *[€202/TO/ET] U0 Afeigiauljuo A8|1M ‘puy 30UsI0S JO aimiisu| AQ 00THT BO/TTTT OT/I0p/0D A3 1m Afelq 1jpuUo//sdny woly papeoiumod ‘8 ‘0202 ‘659829 T

S. Jeschke et.al. / Making Procedural Water Waves Boundary-aware 49

o s <

Figure 2: Top: 2D example illustrating unconstrained Gerstner
wave motion. Note the intersections with the underlying terrain.
Middle: For each black sample point located at sea level, we fit a
wave cage (blue ellipses) that is as large as possible without in-
tersecting local terrain. The water surface is only allowed to move
within the space of interpolated wave cages, preventing all inter-
sections except at the water line. Bottom: Spatially smooth wave
cages prevent unrealistic distortions near the terrain.

4. Method Overview

To make waves boundary-aware, we define wave cages that allow
us to locally constrain wave motion to lie within a prescribed el-
lipsoidal boundary (Section 5). Wave cages are dimensioned based
on the proximity to the local terrain, which they are not allowed
to intersect (Section 6). By confining wave motion to these fitted
cages, we guarantee that waves do not penetrate the sea floor or
any surrounding obstacles. Finally, we ensure that wave motions
blend smoothly over space (Section 7), and explain how to recon-
struct the new warped water surface (Section 8). The wave cage
fitting process is outlined in Fig. 2.

5. Wave cages

This section introduces our concept of a wave cage which smoothly
warps an unbounded, terrain-penetrating periodic wave trajectory
into a bounded path that is guaranteed to avoid terrain intersec-
tions. We store cage parameters at each node p of a 2D regular grid

located at sea level z = 0. as

We define an or-
thonormal local a3
coordinate frame
of each wave cage
A (x) = [ay,a3,a3] and
align the cage with the
terrain by setting a3z as the terrain surface normal, a; pointing
towards the closest water line, and ay as the direction orthogonal
to ay and a3, as seen in the inset. We can define an ellipsoid
aligned with this cage by associating a “radius” with each axis:
r(x) = [r1,r2,r3]7 creates the ellipsoid fz/r% +§72/r§ +22/r§ =1

(© 2020 The Author(s)
Computer Graphics Forum (© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Figure 3: Wave cage transformation example in 2D. The coordi-
nates of a given point 1 are first scaled to fit in the unit circle (here
depicted in red), giving the “normalized” point n,,. Projecting n,,
onto each ellipse axis and multiplying the resulting coordinates
with the respective radii-scaled axes riay and roay provides the
final point 11, within the wave cage.

in frame-aligned coordinates (£,3,Z). We interpolate frame
parameters at any point on the (x,y,0) plane using RoSy field
interpolation [ZHTO7]. Note that our ellipsoidal cages resemble
the oriented solid particles of [MC11], who had a similar goal of
warping physical simulation primitives to align with boundaries.

Our next task is to map a potentially unbounded motion to one
that is guaranteed to lie within this ellipsoidal cage. As input to
our method we assume that a procedural wave model has displaced
every point of the planar water surface at rest by some displacement
vector 7. We first choose to soft-clip the wave displacement i such
that it is bounded by a unit sphere, and then deform the sphere
into an ellipsoid. We start by applying a sigmoidal soft-clipping
function

n .
ne () = {mtanh(snnll), ity %0, N

0, otherwise,

where s is a user parameter controlling the steepness of the non-
linear compression of the wave as it approaches the sphere bound-
ary. We empirically choose s = 0.5 for all of our examples. This
operation bounds the magnitude of n,, such that ||n,,|| < 1.

We then transform this normalized displacement into the space
occupied by the ellipsoidal wave cage using the map

n.(x.n) = ARAT 5, (1), with R =diag(ri,r2.73), (3)

where A (x) = [ay,a3,a3] is the matrix of local cage axes as de-
fined above. Fig. 3 illustrates these steps. We note that the non-
linear cage mapping described here is not necessarily optimal, and
other choices may be equally effective. We chose this particular
transformation because it imposes guaranteed bounds while pre-
serving excellent behavior for the most common smaller waves,
and because it has analytic derivatives that prove useful in surface
shading and additional physics/particle simulation (Appendix A).
We also note that this mapping exhibits no singularities, so (unlike
the Biesel model) it will generally have bounded velocities every-
where.

85US017 SUOLULLIOD dAR.1D) 3|deddde) Ag pausenoh afe sajolie O 8sn JO S9Nl 10} Akeiq1T 8UlUuO A3|IM UO (SUOIPUOD-pUe-SLLBY WO A8 | 1M Aleid Ul |uo//Sdy) SUORIPUOD Pue SWS L 84} 89S *[€202/TO/ET] U0 Afeigiauljuo A8|1M ‘puy 30UsI0S JO aimiisu| AQ 00THT BO/TTTT OT/I0p/0D A3 1m Afelq 1jpuUo//sdny woly papeoiumod ‘8 ‘0202 ‘659829 T

50 S. Jeschke et.al. / Making Procedural Water Waves Boundary-aware

Figure 4: Water surfaces (blue) resulting from a constant in-
put wave displacement u = [0,0,1]7, filtered through terrain-fitted
wave cages. Left: using unsmoothed cages from initial fitting (Sec-
tion 6) distorts the surface considerably. Right: using smoothed
cages (Section 7) removes distortions and results in a smooth sur-
face. The black grid projected onto the terrain indicates the spacing
of wave cage samples.

6. Boundary-aware wave cages
Our goals in choosing wave cage radii r are that

e Gerstner wave motion is preserved as much as possible,

e points on the waterline may slide across the terrain, but no new
water-terrain intersections appear (cf. Fig. 1),

e and the resulting motion is smooth.

Thus, r should be as large as possible, so water motion is not un-
duly restricted, but small enough to avoid terrain penetration of the
water surface. Inspired by the interference-aware geometric mod-
eling approach of [HPSZ11], we achieve these goals by growing a
small ellipsoidal cage until it intersects the terrain.

We start from r = 0, and it-
eratively increase the radii start-
ing with r; and r,. The expan-
sion stops when either a maxi-
mal value is reached, or the pen-
etration depth of the ellipsoid
into the terrain exceeds a small
user-defined threshold d, typi-
cally on the order of 10 cm. Without this threshold, curved terrain
at the waterline (see inset) would immediately halt cage growth
at radius zero, because even a small ellipsoid would intersect the
terrain a little bit. This would result in the waterline “sticking” to
the beach. The threshold d bounds the penetration depth (hatched
red) without sacrificing the characteristic sliding behavior of waves
washing up on a beach. We further investigate the effects of this
threshold parameter in Section 8 and our supplemental video. Af-
terward, we analogously grow r3 without additional thresholding.
For points on the waterline, this yields 3 = 0, effectively constrain-
ing waves to slide along planar terrain.

‘We choose to initially grow the two tangential directions 7 and
rp because typically ri,r, > r3 close to the waterline, so they ac-
count for most of the interesting wave motions. As shown in Fig. 2

Figure 5: Left: Jagged water boundary from linear interpolation
after projecting vertices onto the terrain. Right: Problem solved by
cutting and retessellating triangles that cross the waterline.

(middle), cages are also fitted at grid points below the terrain—the
same construction rules apply, but the roles of terrain and air are
reversed.

7. Cage Smoothing

The cages constructed in the previous section vary smoothly over
space, except near sharp terrain features and at the waterline—
observe the cage size difference between points below and above
the terrain in Fig. 2 (middle). This will make the water surface look
distorted and introduce amplitude variations not present in the input
waves. To mitigate this issue, we smooth r in a way that preserves
the flat appearance of low-frequency waves.

In our wave cage model, waves with infinite wavelength will pro-
duce displacements of the form 5, (x,r,u) = ARATu, for some
u € R3. This equation results from Eq. (3) after replacing the soft-
clipped input wave 77, by a constant vector u. Fig. 4 shows a wave
of this type for a fixed value of u before and after smoothing.

Our goal is to smooth the water surface 7, for all such u, so we
solve the linearly constrained quadratic optimization problem

min /[(l—a)/ IV Ge.r)12 du+a|lr — 7 |,
r Q S2

s.t. r3 = 0 on 39,
0<ri<rinQ,Vie{l,2,3},

“

where || - || is the Frobenius norm. The first term in the energy pe-
nalizes high variations of 7, by integrating over all possible input
wave directions u with ||u|| = 1. The second term keeps r close
to the initial radii 7 that were determined by the steps in Sec-
tion 6. The weighting factor @ = a(x) is chosen close to 1 where
/SZ ||V1]u||12: du is already small prior to smoothing, and close to 0
where heavy smoothing is required.

At the waterline (where the sea level intersects the terrain), we
apply the Dirichlet b.c. r3 =0 to retain sliding wave behaviors along
the shore. The component-wise inequalities on r are imposed to en-
sure that ellipsoids may not increase in size and intersect the terrain
after smoothing.

It can be shown that this problem is equivalent to a linearly

(© 2020 The Author(s)
Computer Graphics Forum (©) 2020 The Eurographics Association and John Wiley & Sons Ltd.

351801 SUOWILLIOD BAERID) 3 edt|dde au Aq pauBA0B 9.8 SO VO 8N JO 3N 10) AFRi1T2UIIUO 3|1 L0 (SUOTIPUGY-PUR-SLLLBIALIOY" A3 | 1M ARR.q B 1[UO//Sd1Y) SUORIPUOD PUE SWLS L 3 385 *[£202/T0/ET] U0 ARIqIT8UIIUO ABIM ‘PUY 80UBIDS JO @IMIsu| AQ 00THT JBO/TTTT OT/I0p/LI0Y A3 | IM ARRqjpU1UO//:SANY O} POPEOIUMOQ ‘8 ‘0Z0Z ‘6G98L9VT

S. Jeschke et.al. / Making Procedural Water Waves Boundary-aware 51

Figure 6: Drone view of a beach scene, showing no interpenetra-
tion of water and beach.

constrained Dirichlet energy minimization problem of the form
min, f9(||Vr||%_ +rT Cr +p||r —7||?) dx. Thus, it has a unique so-
lution and can be discretized using standard finite differencing. We
solve the system off-line using Jacobi iterations, as described in
Appendix B. Fig. 2 (bottom) shows the result of this step in a 2D
example.

8. Water surface representation

‘We model the water surface as a regular grid mesh with a spacing of
16 meters. It is then dynamically subdivided by the DirectX 11®)
Tessellation stage. We animate the water surface using a procedu-
ral wave model [JSMF*18] and filter it through our wave cages.
The approach outlined so far gives satisfying results with only mi-
nor visible intersections, but two potential sources of visual arti-
facts remain. First, the penetration depth threshold d used in the
initial cage fitting process (Section 6) can lead to small overlaps
with the terrain. Second, the waterline may look jagged due to the
finite resolution of the water mesh, as shown in Fig. 5 (left) and the
supplemental video.

Both problems can be remedied by slightly modifying the tes-
sellated water mesh. To fix any remaining intersections, water ver-
tices below the terrain are displaced to lie above the terrain instead.
We do this by sampling the tangent plane of the terrain at the lo-
cation of the vertex, and projecting the vertex onto it. To prevent
z-fighting, the vertex is further moved along the terrain normal by
a small amount.

Jagged edges occur in Fig. 5 (left) because our implementa-
tion only evaluates the wave displacement 7, at the vertices of
the water mesh. Vertex positions below the terrain are then back-
projected, and finally linearly interpolated across triangles. This or-
der of operations—first projection, then interpolation—leads to the
artifacts between projected and non-projected vertices. To remove
them, we explicitly intersect the (undisplaced) water mesh with the
terrain and retessellate boundary faces to generate vertices lying
precisely on the waterline. Evaluating 7. directly at these vertices
without interpolation removes the artifacts as seen in Fig. 5 (right),
even for a low-resolution water mesh. Note that using these mesh

(© 2020 The Author(s)
Computer Graphics Forum (© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Figure 7: Another view of the complex beach scene.

processing steps on Gerstner or Biesel waves without wave cages
does not resolve their issues; this is illustrated in the supplemental
video.

9. Implementation and Results

We base our implementation on water surface wavelets [JSMF* 18]
because they scale to large scenes and allow local control over
wave orientation. Timings were taken on a laptop with NVIDIA®
GeForce RTX 2080 MAX-Q graphics hardware.

The pre-processing steps from Sections 5-7 take a few seconds
with timings given in Table 1. They need to be performed only
once per scene, where our GPU shader implementation makes them
suitable for execution at program startup. The parameters s and d
are independent of grid resolution, and need not be adapted.

Table 1: Timings in ms for the preprocessing steps that automati-
cally compute the cages.

Grid resolution 2562 10242 40962

Initial cage fitting (Section 6) 0.2 1.5 15.1
Cage smoothing per iter. (Sec. 7) 1.9 20 324
Cage smoothing 100 iterations 1919 1995.8 32436

The memory footprint of our method is minimal: we only need
the local coordinate frame A and the cage radii r at every grid point
of the terrain. Usually, the terrain normal is already in memory for
shading, so a single extra scalar is required to define A uniquely.
Due to the small overhead and ease of implementation of the regu-
lar grid data structure, we did not feel the need to optimize the data
structure further. However, it should be possible to interpolate wave
cage parameters on a sparser data structure if one wishes to do so.

Table 2 compares the rendering costs of Gerstner or Biesel waves
with those incurred by using wave cages. The extra cost arises in
the vertex shader, to evaluate the wave displacement according to
Eq. (3), and in the pixel shader, to evaluate the water surface normal
(see Appendix A). In both shader stages, the wave cage parameters

85U8D|7 SUOWWOD 3A 181D 3|cedl dde 8y} Aq peueA0b 818 3o 1e O ‘88N 4O S3|NJ Joj ARIg1T8UIIUO AB|IA UO (SUORIPUOD-PUR-SLUIBYWI0D" A3 |IMATe.q 1 [BUJU0//ST1Y) SUORIPUCD PUe SWS | 8U3 89S *[£202/T0/ET] U0 A%iqiT8ul|uo AB|IM ‘PUY 80UBIS 4O 8INHISU| A 00THT JBO/TTTT OT/I0p/W0D" A8 |IM Alelq1jeuluo//S)y Wouy papeo|umoq ‘8 ‘0202 ‘6398297T

52 S. Jeschke et.al. / Making Procedural Water Waves Boundary-aware

Figure 8: Wave cages can also filter dynamically generated waves
like this boat wake.

are interpolated from neighboring points on the grid. Our unopti-
mized implementation renders the entire test scene, including water
wave animation, particle system, and scene geometry, with 2xM-
SAA, at a speed of 70 fps at 720p, or 55 fps at 1080p.

Figures 1, 6, 7, and 9 as well as the supplemental video show how
water animation with wave cages interacts with various types of en-
vironments, such as steep cliffs, gently sloped beaches, and narrow
channels. Wave cages can also filter animations that are generated
dynamically, making them a good fit for use in interactive applica-
tions like virtual reality and computer games. For example, Fig. 8
illustrates how wave cages enable boat wakes [JSMF*18] to roll up
a beach naturally, without generating intersection artifacts, and the
supplementary video shows the same scene in motion. Finally, the
video also illustrates how:

e wave cage animation compares to Gerstner and Biesel waves
(see the teaser image, Fig. 9, and from 0:10 in the video),

o letting the water wave amplitude fall off to zero towards the wa-
terline does not yield plausible results (0:27),

o the compression factor s in Eq. (2) impacts the animation (1:40),

o the penetration depth threshold d (see Section 6) controls behav-
ior at the waterline,

e cage smoothing improves visual quality (2:17),

e terrain back-projection and waterline re-tessellation remove re-
maining artifacts (2:33).

Our implementation is available as an executable binary that lets
the user control the camera in the test scene shown in the video.

Extensions. In addition to the terrain that serves as an input to
the wave-cage fitting process, the designer may optionally specify
a “details” layer. This layer contains geometry that is too small to
meaningfully interact with larger waves, such as small-scale rocks,

Table 2: Timings in ms for the water surface rendering pass with
and without our wave cages.

Screen resolution (2x MSAA) 720p 1080p

Without wave cages 2.9 5.5
Wave cages 6.5 11.6

Figure 9: Top: Gerstner waves interpenetrate the terrain. Bottom:
the same animation frame filtered through our wave cages.

very narrow columns, or beach debris. As such, it does not con-
strain the construction of wave cages, but interactions between
waves and details are picked up by the particle system to improve
visual fidelity. We illustrate this idea by animating waves colliding
with rocks in our supplementary video.

The particle system is driven by the geometry, velocity, and
acceleration of the water surface. It models spray from breaking
waves, and foam from collisions between the water surface, the ter-
rain, and the details layer. In addition, the particle system drives a
textured foam layer on the water surface. Details on these exten-
sions can be found in the supplemental document.

10. Limitations and Future Work

At the waterline, our wave cages compress the motion to lie on
a plane; we currently rely on a depth offset variable d (Section 6)
and projecting mesh vertices (Section 8) to enable interactions with
curved terrains. However, we could imagine solving these prob-
lems with a more detailed curved cage instead. Our implementation
also assumes the terrain is a heightfield, and it would be interest-
ing to explore extensions to arbitrary 3D terrain geometry. Cur-
rently, we compute cages once as a pre-process and assume static
terrain; we would like to explore dynamic cage computation in the
future, which may allow interesting interactions with moving ob-
stacles like boats.

Another limitation of the method, which we highlight in our
video, is that our mesh processing takes place per vertex. Thus,
we can guarantee that vertices of the water surface will never in-
tersect the terrain, but that does not guarantee that all points within
each triangle will be intersection-free. The problem is lessened if

(© 2020 The Author(s)
Computer Graphics Forum (©) 2020 The Eurographics Association and John Wiley & Sons Ltd.

85U8D|7 SUOWWOD 3A 181D 3|cedl dde 8y} Aq peueA0b 818 3o 1e O ‘88N 4O S3|NJ Joj ARIg1T8UIIUO AB|IA UO (SUORIPUOD-PUR-SLUIBYWI0D" A3 |IMATe.q 1 [BUJU0//ST1Y) SUORIPUCD PUe SWS | 8U3 89S *[£202/T0/ET] U0 A%iqiT8ul|uo AB|IM ‘PUY 80UBIS 4O 8INHISU| A 00THT JBO/TTTT OT/I0p/W0D" A8 |IM Alelq1jeuluo//S)y Wouy papeo|umoq ‘8 ‘0202 ‘6398297T

S. Jeschke et.al. / Making Procedural Water Waves Boundary-aware 53

we increase mesh resolution, but per-pixel computation might be
required to fully solve the problem.

In addition, the approach presented here is purely geometric; it
inherits the geometry of an existing procedural wave solver and
warps it according to our constraints. It cannot currently prevent
the tendency of Gerstner and Biesel waves from folding over them-
selves if their horizontal amplitude is too large. In the future, we
would like to incorporate physical behaviors into the wave cages,
to help remedy wave fold-overs, and to allow more realistic wave
breaking and obstacle interactions.

Lastly, we note that we made no efforts to increase the efficiency
of our spatial data structures. Although our video demonstrates that
aregular grid implementation can simulate detailed waves interact-
ing with large and complex island topography in real time, we be-
lieve this scaling can be improved even further in the future. Since
many of the wave cage parameters are either constant or slowly-
varying away from the waterline, we imagine that sparse data struc-
tures may be particularly effective at compressing data.

Acknowledgements

We wish to thank the anonymous review-
ers and the members of the Visual Comput-
ing Group at IST Austria for their valuable
feedback. This project has received funding from the European
Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme under grant agreement
No. 638176 and No. 715767.

References

[AGL*17] AANJANEYA M., GAO M., L1U H., BATTY C., SIFAKIS E.:
Power diagrams and sparse paged grids for high resolution adaptive lig-
uids. ACM Trans. Graph. 36,4 (July 2017). 2

[ATBGO8] ANGST R., THUREY N., BOTSCH M., GROSS M.: Ro-
bust and Efficient Wave Simulations on Deforming Meshes. Computer
Graphics Forum 27 (7) (October 2008), 1895 — 1900. 2

[ATW13] ANDO R., THUREY N., WOIJTAN C.: Highly adaptive liquid
simulations on tetrahedral meshes. ACM Trans. Graph. 32,4 (2013). 2

[BG11] BARBARA S., GROSS M.: Two-scale particle simulation. ACM
Trans. Graph. 30,4 (2011), 1-8. 2

[Bie52] BIESEL F.: Study of wave propagation in water of gradually vary-
ing depth. In Gravity Waves (Nov. 1952), p. 243. 2

[Bril5] BRIDSON R.: Fluid simulation for computer graphics. AK Pe-
ters/CRC Press, 2015. 2

[CFL*07] CHENTANEZ N., FELDMAN B. E., LABELLE F., O’BRIEN
J. F., SHEWCHUK J. R.: Liquid simulation on lattice-based tetrahedral
meshes. In Proceedings of SCA (2007), pp. 219 —228. 2

[CHCHO6] CHEN Y.-Y., Hsu H.-C., CHEN G.-Y., HWUNG H.-H.:
Theoretical analysis of surface waves shoaling and breaking on a sloping
bottom. part 2: Nonlinear waves. Wave Motion 43, 4 (2006), 339 — 356.
2

[Che20] CHEBLOKOV T.: Nvidia waveworks, 2020. URL: https://
developer.nvidia.com/waveworks. 2
[CHHO5] CHEN Y.-Y., HWUNG H.-H., HsU H.-C.: Theoretical analysis

of surface waves propagation on sloping bottoms: Part 1. Wave Motion
42,4 (2005), 335 -351. 2

(© 2020 The Author(s)
Computer Graphics Forum (© 2020 The Eurographics Association and John Wiley & Sons Ltd.

[CL95] CHENJ. X., LOoBO N. D. V.: Toward interactive-rate simulation
of fluids with moving obstacles using navier-stokes equations. Graph.
Models Image Process. 57,2 (1995), 107-116. 2

[DCG11] DARLES E., CRESPIN B., GHAZANFARPOUR D.: A particle-
based method for large-scale breaking wave simulation. MG&V 20, 1
(Jan. 2011), 3-25. 2

[FR86] FOURNIER A., REEVES W. T.: A simple model of ocean waves.
SIGGRAPH Comput. Graph. 20, 4 (Aug. 1986), 75-84. 2

[FWD14] FERSTL F., WESTERMANN R., DicK C.: Large-scale liquid
simulation on adaptive hexahedral grids. IEEE Transactions on Visual-
ization and Computer Graphics 20, 10 (Oct 2014), 1405-1417. 2

[GLS00] GONZATO J.-C., LE SAEC B.: On modelling and rendering
ocean scenes. The Journal of Visualization and Computer Animation 11,
1 (2000), 27-37. 2

[HHL*05] HAGEN T. R., HJELMERVIK J. M., LIE K.-A., NATVIG
J. R., HENRIKSEN M. O.: Visual simulation of shallow-water waves.
Simulation Modelling Practice and Theory 13, 8 (2005), 716-726. 2

[HPSZ11] HARMON D., PAN0OZZO D., SORKINE O., ZORIN D.:
Interference-aware geometric modeling. ACM Trans. Graph. 30, 6
(2011), 137. 4

[Joh97] JOHNSON R. S.: A Modern Introduction to the Mathematical
Theory of Water Waves. Cambridge Texts in Applied Mathematics. Cam-
bridge University Press, 1997. 1,2

[JSMF*18] JESCHKE S., SKRIVAN T., MULLER-FISCHER M., CHEN-
TANEZ N., MACKLIN M., WOJTAN C.: Water surface wavelets. ACM
Trans. Graph. 37,4 (July 2018). 2,5, 6

[JW15] JESCHKE S., WOJTAN C.: Water wave animation via wavefront
parameter interpolation. ACM Trans. Graph. 34, 3 (May 2015), 27:1-
27:14. 2

[JW17] JESCHKE S., WOJTAN C.: Water wave packets. ACM Trans.
Graph. 36, 4 (July 2017). 2

[KAD*06] KEISER R., ADAMS B., DUTRE PH., GUIBAS L., PAULY
M.: Multiresolution particle-based fluids. Technical Report 520, De-
partment of Computer Science, ETH Zurich, 2006. 2

[KBST19] KOSCHIER D., BENDER J., SOLENTHALER B., TESCHNER
M.: Smoothed particle hydrodynamics techniques for the physics based
simulation of fluids and solids. In Eurographics 2019 - Tutorials (2019).
2

[KM90] KASS M., MILLER G.: Rapid, stable fluid dynamics for com-
puter graphics. ACM Trans. Graph. 24, 4 (Sept. 1990), 49-57. 2

[LGF04] Losasso F., GiBou F., FEDKIW R.: Simulating water and
smoke with an octree data structure. ACM Trans. Graph. 23, 3 (Aug.
2004), 457 — 462. 2

[LH10] LEE H., HAN S.: Solving the shallow water equations using
2d sph particles for interactive applications. The Visual Computer 26
(2010), 865-872. 2

[LvdP02] LAYTON A. T., VAN DE PANNE M.: A numerically efficient
and stable algorithm for animating water waves. The Visual Computer
18,1(2002), 41-53. 2

[MC11] MULLER M., CHENTANEZ N.: Solid simulation with oriented
particles. ACM Trans. Graph. 30,4 (July 2011). 3

[MM13] MACKLIN M., MULLER M.: Position based fluids. ACM Trans.
Graph. 32,4 (July 2013). 2

[MWMS87] MASTIN G. A., WATTERBERG P. A., MAREDA J. F.: Fourier
synthesis of ocean scenes. IEEE Comput. Graph. Appl. 7,3 (Mar. 1987),
16-23. 2

[OH95] O’BRIEN J. F., HODGINS J. K.: Dynamic simulation of splash-
ing fluids. In Proceedings of Computer Animation (may 1995), vol. 95,
pp. 198 —205. 2

[Pea86] PEACHEY D. R.: Modeling waves and surf. SIGGRAPH Com-
put. Graph. 20, 4 (Aug. 1986), 65-74. 2

85US017 SUOLULLIOD dAR.1D) 3|deddde) Ag pausenoh afe sajolie O 8sn JO S9Nl 10} Akeiq1T 8UlUuO A3|IM UO (SUOIPUOD-pUe-SLLBY WO A8 | 1M Aleid Ul |uo//Sdy) SUORIPUOD Pue SWS L 84} 89S *[€202/TO/ET] U0 Afeigiauljuo A8|1M ‘puy 30UsI0S JO aimiisu| AQ 00THT BO/TTTT OT/I0p/0D A3 1m Afelq 1jpuUo//sdny woly papeoiumod ‘8 ‘0202 ‘659829 T

https://developer.nvidia.com/waveworks
https://developer.nvidia.com/waveworks

54 S. Jeschke et.al. / Making Procedural Water Waves Boundary-aware

[SBC*11] SOLENTHALER B., BUCHER P., CHENTANEZ N., MULLER
M., GROSS M. H.: Sph based shallow water simulation. In VRIPHYS
(2011). 2

[SHW19] ScHRECK C., HAFNER C., WOJTAN C.: Fundamental solu-
tions for water wave animation. ACM Transactions on Graphics (TOG)
38,4 (2019), 1-14. 2

[SSJ*20] SKRIVAN T., SODERSTROM A., JOHANSSON J., SPRENGER
C., MUSETH K., WOJTAN C.: Wave curves: Simulating lagrangian wa-
ter waves on dynamically deforming surfaces. ACM Transactions on
Graphics (TOG) 39, 4 (2020). 2

[Tes99] TESSENDORF J.: Simulating ocean water. SIGGRAPH course
notes (1999), 1-19. 1,2

[VBBKO8] STAva O., BENES B., BRISBIN M., KRIVANEK J.: Inter-
active terrain modeling using hydraulic erosion. In Proc. SCA (2008),
pp- 201-210. 2

[WMTO07] WANG H., MILLER G., TURK G.: Solving general shallow
wave equations on surfaces. In Proc. SCA (2007), pp. 229-238. 2

[YHKO7] YUKSEL C., HOUSE D. H., KEYSER J.: Wave particles. ACM
Trans. Graph. 26, 3 (July 2007), 99 — 107. 2

[ZHTO07] ZHANG E., HAYS J., TURK G.: Interactive tensor field design
and visualization on surfaces. IEEE Transactions on Visualization and
Computer Graphics 13, 1 (Jan. 2007), 94-107. 3

[ZLC*13] ZHU B.,LU W., CONG M., KIM B., FEDKIW R.: A new grid
structure for domain extension. ACM Trans. Graph. 32, 4 (July 2013). 2

Appendix A: Derivatives within a wave cage

The final water surface is given by o (x) = xe| +yer +n.(x,n(x)),
with x = (x,y) a point on the water surface at rest, and 7, the cage-
transformed wave displacement vector defined in Eq. (3). To shade
o in a rendering framework, we need to compute the surface nor-
mal, which is derived below. Additionally, we provide first and sec-
ond time derivatives of 5., which are useful for spawning foam
particles or other secondary simulations.

The (unnormalized) surface normal is given by

_do 0o dn, dn,
n—axxay—(e1+dx)><(e2+ Dy)’

where the total derivatives are computed as
dn. _ on

on
= +ARAT 2.
dx ox ox
The first term in the sum involves the spatial derivatives of A and
r, which are quantities stored on the simulation grid, and can be
computed by sampling. However, neglecting this term does not lead
to visual artifacts, because the characteristic look of light reflected
on the waves is captured by the second term. Similarly,
9 d 02 92
De _ ARATEI gng Ze _ ggaT 20
ot ot ar? ar?
for time derivatives. We note that 57,, depends on x and ¢ only indi-
rectly through the Gerstner wave displacement 5 defined in Eq. (1).
Thus we can compute first derivatives of 1, as

(%)

’

@\ a
= (2= i) e+ s it 0.
sn’, otherwise.

where a; = tanh (s||57]]), and as = ssech?(s||5|). To compute the
derivatives of i, wrt x, y, or ¢, replace 5’ with the corresponding

derivatives dn/dx, dn/dy or dn/dt. This enables the computation
of normals and velocities of surface points.

The acceleration can be computed from

7\ 2 ” 7112 ’
ar _ ' *_nn’+ln’ll _anm
o (7 “2)[(3(\mn2) Tl)” 2||n\\2”]

_)2 .
912 +ﬁ (q”—Zsaz—(”")) ifg#0,

lIn1I?
sn”, otherwise,

where n’ and 5’ refer to the first and second time derivatives of 7.

Appendix B: Jacobi’s Method for Cage Smoothing

Section 7 describes an optimization problem for smoothing the grid
of wave cage radii r in order to preserve the behavior of waves with
large wavelengths during animation. These types of waves have dis-
placement fields i, = ARAT y for some constant u € R3, so the
goal is to smooth these surfaces on average for all # with ||u|| = 1.

Of course, this optimization problem can be solved using stan-
dard methods, such as sequential quadratic programming. Here, we
describe an alternative that requires no heavy-duty numerical solver
and can be implemented in a few lines of code.

First, approximate the integral over $2 with a sum over a finite
set of samples U = {u,-}lf‘=1 that are distributed uniformly over the
sphere (we use n = 20). This transforms the integrated energy into
a sum over the Dirichlet energies of n different surfaces n,, (u;).

Jacobi’s method for minimizing a Dirichlet energy on a regular
grid proceeds by iteratively replacing the function value at a point
by the average function value of its neighbors. This is a fixed-point
iteration method, because the minimizer of the Dirichlet energy is
harmonic, i.e., the function value at a point is exactly the average
function value of its neighbors.

We adapt this method for our energy. In the following, let x; be
the position of the i-th node of the grid, N; the indices of its neigh-
bors, and r; = {r; 1,r; 2,r; 3} its cage radii in the current iteration.
Then iterate the following steps:

1. For each node i of the grid:

a. Foreach k € {1,...,n}, let
1
Pk = il Z ny(xj.rj,ug),
JEN;
which is the average wave displacement of the node’s neigh-
bors associated with the wave uy,.
b. Compute #; € R3 as the minimizer of
n
Iy (ei Fivug) = Pl
k=1
i.e., choose ¥; such that the wave displacements 7,, at node
i are closest to the average wave displacements of its neigh-
bors in a least-squares sense. Note that 7, is linear in r, so
this can be done by solving a single 3-by-3 linear system.
c. Set the new value of r; to (1 —a;)#; + @;F; and clamp its
components to satisfy 0 < r; ; <7y ; for j € {1,2,3}.

(© 2020 The Author(s)
Computer Graphics Forum (©) 2020 The Eurographics Association and John Wiley & Sons Ltd.

85US017 SUOLULLIOD dAR.1D) 3|deddde) Ag pausenoh afe sajolie O 8sn JO S9Nl 10} Akeiq1T 8UlUuO A3|IM UO (SUOIPUOD-pUe-SLLBY WO A8 | 1M Aleid Ul |uo//Sdy) SUORIPUOD Pue SWS L 84} 89S *[€202/TO/ET] U0 Afeigiauljuo A8|1M ‘puy 30UsI0S JO aimiisu| AQ 00THT BO/TTTT OT/I0p/0D A3 1m Afelq 1jpuUo//sdny woly papeoiumod ‘8 ‘0202 ‘659829 T

