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Figure 1: A bunny is dropped down a flight of stairs. Due to work softening, portions of the bunny become soft and droop.

Abstract

We present an extension to Lagrangian finite element meth-
ods to allow for large plastic deformations of solid materi-
als. These behaviors are seen in such everyday materials
as shampoo, dough, and clay as well as in fantastic gooey
and blobby creatures in special effects scenes. To account
for plastic deformation, we explicitly update the linear basis
functions defined over the finite elements during each simu-
lation step. When these updates cause the basis functions to
become ill-conditioned, we remesh the simulation domain to
produce a new high-quality finite-element mesh, taking care
to preserve the original boundary. We also introduce an en-
hanced plasticity model that preserves volume and includes
creep and work hardening/softening. We demonstrate our
approach with simulations of synthetic objects that squish,
dent, and flow. To validate our methods, we compare simu-
lation results to videos of real materials.
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1 Introduction

Over the last decade, computer graphics researchers have
developed simulation methods to animate such materials
as rigid bodies, thin shells, water, smoke, cloth, and hair.
While initial approaches focused on such simplified mate-
rial models as ideal fluids (no elastic deformation) and ideal
solids (no plastic deformation), recently researchers have be-
gun developing techniques to simulate materials that behave
according to more sophisticated and physically realistic mod-
els. Materials that incorporate both plastic and elastic de-
formations such as chewing gum, toothpaste, shaving cream,
shampoo, bread dough, and modeling clay are frequently
encountered in everyday life, while more fantastic materi-
als, such as exploding marshmallow men, melting faces, and
slime monsters can be found in special effects. We present
extensions to standard finite element methods that allow
these techniques to simulate the large plastic flow required
to create such examples.

Finite element methods are commonly used to animate elas-
tic bodies in computer graphics. These methods are par-
ticularly well-suited to elastic deformations because they
compute an explicit deformation function, thereby allowing
them to reverse deformations exactly. However, the defor-
mation function becomes ill-conditioned in the presence of
large plastic flow and causes the simulation to become nu-
merically unstable. In this paper, we present an extension to
Lagrangian finite element methods to allow for large plastic
deformations of solid materials. We account for plastic defor-
mation by explicitly updating the linear basis functions de-
fined over the finite elements. Unfortunately, these updates
may cause the basis functions to become ill-conditioned.
When that occurs, the simulation domain is remeshed and
a new high-quality finite-element mesh is constructed. The
resulting mesh preserves the details of the boundary while
improving the quality of the tetrahedral elements. After
remeshing, simulation variables are transferred to the new
mesh.

We also introduce an enhanced plasticity model for simulat-
ing large viscoplastic deformations. Our model guarantees
that the plastic deformation preserves volume, incorporates
time-dependence (viscoplasicity), and includes work hard-
ening or softening, which occurs when plastic deformation
increases or lowers resistance to further plastic deformation.

1



ACM SIGGRAPH 2007, San Diego, CA, August, 5–9, 2007

Figure 2: Several animations inspired by special effects. The material properties of the marshmallow man (middle) were
changed, producing a noticeable change in behavior part way through the animation to mimic “crossing the streams.”

Our method produces realistic animations of a variety of
materials that exhibit complicated behavior, as can be seen
in Figures 1 and 2. We also compare our simulation results
with real-world video of bread dough and a cornstarch solu-
tion.

2 Related Work

Several approaches for simulating viscoplastic materials al-
ready exist. Terzopoulos and Fleischer [1988] introduced
viscoplastic materials to the computer graphics community.
This work was extended by Terzopoulos et al. [1989] to
model changes in material properties brought on by heat-
ing. Since this early work, three primary approaches have
been developed for modeling viscoplastic materials: Eulerian
methods, finite element methods, and meshless methods.

Eulerian methods were introduced to graphics by Gok-
tekin et al. [2004] who added elastic forces to a standard
fluid simulator. In this approach, the deformation rate is
computed from the gradient of the velocity field and then
integrated across time to arrive at a measure of deforma-
tion. They then applied elastic forces proportional to the
divergence of the computed deformation. Naturally, this
approach is extremely useful for animating materials that
largely behave like fluids but demonstrate limited elastic be-
havior. However, because no direct deformation function
is available and the volumetric shape of the object is not
explicitly represented, Eulerian methods cannot reverse de-
formations exactly, and the shape will drift over time. This
approach was also used by Losasso et al. [2006] who extended
the model to account for rotation of the advected elasticity.

Finite element methods are commonly used to compute the
motion of ideal elastic solids. O’Brien et al. [2002] extended
these methods with a simple plasticity model, thereby in-
creasing the range of materials that could be simulated.
However, the numerical calculation becomes ill-conditioned
when the material undergoes substantial elastic or plastic de-
formation, a situation that causes the simulation to become

unstable. More recently, Irving et al. [2004], built on the
work of Müller et al. [2002] and Müller and Gross [2004], to
create a finite element method that robustly handles inverted
elements, thereby making finite element methods much more
attractive for computer graphics applications. Their ap-
proach uses the singular value decomposition to separate the
rotational and scale components of the deformation gradient.
Arbitrary elastic deformation can be handled by constrain-
ing the resulting deformation gradient matrix to be well-
conditioned. Unfortunately, this approach does not address
the problems that result from ill-conditioned basis matrices.
Consequently, it can handle only limited amounts of plastic
flow. The primary contribution of our paper is to maintain
well-conditioned basis matrices by recomputing the simula-
tion mesh. Although remeshing during finite element sim-
ulations has not been considered in the graphics literature,
it has been considered in other disciplines [Borouchaki et al.
2005; Mauch et al. 2006]

An interesting alternative to finite element methods was pro-
posed by Clavet et al. [2005]. In their approach, an object
is treated as a mass spring system in which the springs are
dynamically inserted and removed. This process is similar
in spirit to our remeshing procedure. Their springs explic-
itly model viscous and elastic forces and include a model of
plastic flow. They demonstrate a wide range of materials
handled by their method.

Meshless simulation methods have proven to be extremely
versatile and are capable of simulating a wide variety of ma-
terials and phenomena. Early work in meshless methods was
done by Desbrun and Gauscuel [1995], who calculated elastic
forces using dynamically determined neighborhoods to allow
behavior that is similar to plastic flow. Müller et al. [2004]
described an effective meshless method for simulating elasto-
plastic materials. For small plastic flow, they store the built-
up plastic strain and then remove it before computing elastic
forces. For situations with large plastic flow, they switch to
a method that stores and maintains the elastic strain instead
of the plastic strain. They update the elastic strain every
timestep by advecting the particles and adding the elastic
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Figure 3: A bunny is dropped on a metal bar. Due to work hardening, portions of the bunny become more elastic and jiggle.

strain generated during the timestep. This approach is sim-
ilar to the Eulerian methods, but rather than integrate de-
formation rate across time, as in Eulerian methods, they di-
rectly compute deformation during each timestep. However,
because they cannot directly compute total deformation, er-
rors in the accumulated deformation may build up over time.
Nevertheless, their approach produces excellent results and
handles a wide range of materials. Pauly et al. [2005] used
a similar approach to plasticity in their work on modeling
fracturing materials. They also introduced the idea of up-
dating the shape functions for each simulation particle, al-
though their updates were prompted by changes in topology
rather than plastic flow. Keiser et al. [2005] introduced a
unified meshless approach to materials running the gamut
from solids to fluids. To achieve creep, they enhanced the
moderate plasticity model proposed by Müller et al. [2004]
with a flow rate.

3 Dynamics Simulation

Our goal is to simulate elastic deformable bodies that un-
dergo very large viscoplastic flow. We begin with a La-
grangian finite element method for elastic bodies based on
the one presented by Irving et al. [2004]. We then incor-
porate a new viscoplasticity model that explicitly updates
the basis matrices used by the finite element method. Fi-
nally, when these basis matrices become ill-conditioned, we
use a tetrahedral meshing technique to generate a new high-
quality simulation mesh and transfer simulation variables to
this new mesh.

3.1 Finite Element Method

Our finite element simulations require objects discretized
into volumetric tetrahedral meshes. Each tetrahedral ele-
ment has a three-dimensional linear basis that describes its
deformation. We denote the world coordinates of the four
nodes that define an element by x0, x1, x2, and x3. For
every tetrahedron, we then define a matrix X such that
Xij = xij − x0j , where i = 1, 2, 3 varies over three of the
four nodes in the element and j = 1, 2, 3 varies over the
three dimensions of space. At the start of the simulation
we compute the basis matrix β = X−1

0 . Given a deformed
state, X, we can then compute the deformation gradient F
for the element as

F =
∂x

∂u
= Xβ. (1)

Following Irving et al. [2004] we diagonalize F

F = UF̂V T , (2)

where U and V are rotations, and compute the first Piola-
Kirchhoff stress P̂

P̂ = 2µ(F̂ − I) + λTr
(
F̂ − I

)
I (3)

where λ and µ are material parameters. Finally, we can
compute forces due to a single element on node ni as

gi = UP̂V T
∑

j

AjNj (4)

where the AjN j are the area weighted normals of the faces
incident to node ni, in the element’s rest state. See Irving et
al. [2004] for further details.

3.2 Plasticity Model

Classical approaches to plasticity [Hill 1950; Simo and
Hughes 1998] generally assume an additive model of plas-
ticity, where total strain is divided into plastic and elastic
parts:

εtotal = εe + εp. (5)

This basic model has been adopted by a number of computer
graphics researchers [O’Brien et al. 2002; Goktekin et al.
2004; Müller et al. 2004; Keiser et al. 2005; Pauly et al.
2005]. A fundamental calculation in this approach is the
computation of the strain deviation tensor:

ε′ = ε − Tr (ε) I. (6)

The plastic strain is then computed as a percentage of ε′.
This computation is motivated by the desire to prevent plas-
tic deformation from producing a change in volume, and it
is accurate for infinitesimal strains. However, as pointed
out by Simo and Hughes [1998] and in graphics by Irving et
al. [2004], this decomposition loses its physical meaning for
finite strains. A multiplicative plasticity model is more ap-
propriate:

F = F e · F p. (7)

By forcing det(Fp) = 1, we can guarantee that plastic de-
formation does not change the volume of the element. Intu-
itively, this constraint means that when an element becomes
thinner in one dimension, other dimensions will grow in such
a way that the total volume of the element is conserved.

To compute the plastic strain for a given element, we first
use the diagonalized deformation gradient F̂ to compute

F̂
∗

= (det(F̂ ))−1/3F̂ , (8)

where det(F̂
∗
) = 1. We then compute

F̂ p = (F̂
∗
)γ , (9)
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Figure 4: Views of the simulation mesh before and after
remeshing. The left column shows the meshes before remesh-
ing; the right column shows the meshes directly after remesh-
ing. The top images show the surface mesh and the bottom
images show a cross section of the volume mesh. Notice that
remeshing automatically merges the two objects.

where γ is a function of the current stress (P ), the yield
stress (PY ), the flow rate (ν), and hardening parameters (α,

K). Because F̂
∗

is diagonal, we can easily perform exponen-
tiation by taking the power of the values on the diagonal.
The exponent γ(·) takes the form

γ(P , PY , ν, α, K) = min

(
ν (‖P ‖ − PY − Kα)

‖P ‖ , 1

)
. (10)

The Kα term in this model enables work hardening and soft-
ening. As the simulation progresses, α, which is initialized
to zero, is incremented in each element by the norm of the
stress,

α̇ = ‖P ‖. (11)

The parameter K controls the amount of work hardening or
softening. Positive K results in hardening, while negative K
results in softening. Work hardening refers to an increase in
mechanical strength due to plastic deformation and occurs
in many metals. In contrast, materials that experience work
softening flow more easily after undergoing plastic deforma-
tion. Although materials that demonstrate work softening
are somewhat less common in the real world, we expect that
such materials will be useful in special effects. This plas-
ticity model has the following three properties: it preserves
volume, allows work hardening/softening, and incorporates
viscoplasticity or creep with a flow rate parameter.

After the plastic deformation has been computed, we update
the basis functions to remove this permanent deformation,

β := βV F̂
−1

p V T . (12)

We multiply by the rotation matrix V T rather than UT

to avoid rotating F = Xβ when we update the basis ma-
trix. After the basis matrix has been updated, the object
no longer has a rest configuration. Although each individual
element does have a rest state, which can be found by invert-
ing β, these rest states are generally inconsistent. Because
updating β changes the rest state, we must also recompute
the area-weighted face-normals used in Equation (4) based
on the new rest state. This relationship between plastic de-
formation and the direction of internal forces is ignored by
plasticity models that do not update the finite-element basis
functions.

4 Remeshing Deforming Objects

After substantial plastic flow, the β matrices will become
ill-conditioned. The diagonalization approach introduced by
Irving et al. [2004] is effective for handling degenerate and in-
verted finite elements, but it is not robust to ill-conditioned
basis functions. Our solution to this problem is to generate
a new tetrahedral mesh when the condition number of the
worst β matrix exceeds a threshold or when the condition
number of a β matrix has changed significantly since the last
remesh. Remeshing is done between timesteps and, conse-
quently, is independent of the timestep size. See Figure 4
for visualizations of a mesh before and after remeshing.

Our remeshing procedure is based on the variational tetra-
hedral meshing approach introduced by Alliez et al. [2005].
This approach treats tetrahedral mesh generation as an op-
timization problem. The following pseudo-code summarizes
the approach:

1. Read the input boundary mesh ∂Ω
2. Compute sizing field η
3. Generate initial sites xi inside ∂Ω
4. Do
5. Construct Delaunay triangulation({xi})
6. Move sites xi to their optimal positions x∗i
7. Until (convergence or stopping criterion)
8. Extract interior mesh

The approach of Alliez and colleagues has also been success-
fully used for smoke simulations by Klingner et al. [2006].
However, our problem of remeshing deforming objects dif-
fers from the problems considered by these authors. Al-
liez et al. [2005] created a static mesh from a high-resolution
polygonal mesh and did not address deforming objects.
Klingner et al. [2006] considered deforming meshes, but a
secondary high-resolution representation of the mesh bound-
ary allowed them to resample the boundary every timestep
without smoothing it. During our simulations of plastic flow
we have no canonical shape to refer to, and the boundary
of the tetrahedral mesh for the current timestep is the only
representation of the boundary. To avoid excessive surface
smoothing and other artifacts, we must take extra care in
dealing with the boundary during remeshing.

Handling the boundary is one of the most important and dif-
ficult problems in computer graphics simulations, regardless
of the simulation method selected. In grid-based Eulerian
liquid simulation, researchers have struggled with represent-
ing the liquid surface and a wide variety of techniques have
been proposed [Enright et al. 2002; Zhu and Bridson 2005;
Hieber and Koumoutsakos 2005; Bargteil et al. 2006]. In
meshless simulation approaches [Müller et al. 2004; Pauly
et al. 2005], researchers generally do not represent the sur-
face with simulation particles. Instead, a high density of
surface particles, called surfels, are used to ensure a high-
quality representation. In our method, we have modified
the approach of Alliez and colleagues [2005] to handle de-
forming boundaries. In particular, we have modified their
approach to handling the boundary during vertex optimiza-
tion (step 6) and when extracting the interior mesh (step 8).
Throughout this discussion we will refer to the poor-quality
input mesh as the old mesh and the mesh generated by the
remeshing procedure as the new mesh.
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Sliver SplinterCap Wedge

Figure 5: This figure illustrates the four types of tetrahedra
we attempt to remove. Small dihedral angles are shown in
red and large dihedral angles are shown in blue.

4.1 Optimizing Boundary Vertices

When optimizing vertex locations, vertices on the boundary
must be specially handled. Alliez et al. [2005] suggest that
the initial surface be finely sampled. Then, during each op-
timization step, each surface sample si searches for the near-
est mesh vertex, xi. Each mesh vertex is then moved to a
weighted average of the si for which it was the closest mesh
vertex (if any such si exist). This approach ensures that
mesh vertices that are close to the boundary are snapped to
points near the boundary, making it likely that the Delau-
nay triangulation does not include faces that intersect the
boundary, but rather includes faces that lie on the bound-
ary. This procedure resamples and smoothes the surface as
a side effect. To avoid unwanted smoothing, we apply this
procedure only if it moves additional vertices to the surface.
In this way we guarantee that no vertices get very close to
the boundary without being snapped to the boundary, but
we also limit surface smoothing.

4.2 Extracting the Mesh

The Delaunay triangulation creates tetrahedra for the entire
convex hull of the point set xi, but many of these tetrahedra
are outside of our nonconvex simulated object and must be
deleted. Our goal is to extract a mesh whose surface closely
matches the surface of the old mesh. Additionally, we would
like the tetrahedra in the new mesh to be high quality. Fi-
nally, we require that the surface mesh be manifold. To
achieve these goals we perform the following steps:

1. Remove elements outside the surface.

2. Remove poorly shaped elements.

3. Add and remove elements to ensure that the surface is
manifold.

The first step is accomplished by computing the volume over-
lap of each element in the new mesh with elements in the old
mesh. We make use of a hierarchical axis-aligned bounding
box structure to speed up these computations. Any element
that has overlap volume less than half of its volume in the
new mesh is removed. After this step, at least half of every
element remaining in the new mesh overlaps the old mesh.

Because the meshing procedure is not free to move boundary
vertices, it tends to generate slivers and other ill-conditioned
elements on the boundary. These elements contain very little
volume but negatively affect the simulation; therefore we
delete poorly shaped elements in the second step if their
removal does not introduce surface artifacts.

We begin by identifying all ill-conditioned elements and clas-
sifying them based upon the number and location of their

small dihedral angles. We identify four types of tetrahe-
dra (see Figure 5), using the naming scheme introduced by
Cheng et al. [1999]:

• Slivers contain four small dihedral angles.

• Caps contain three edges with small dihedral angles, all
incident to one triangle.

• Splinters contain two non-incident edges with small di-
hedral angles.

• Wedges contain exactly one small dihedral angle.

Other types of poorly shaped tetrahedra exist, but as
pointed out by Shewchuk [2002], only elements with small
dihedral angles negatively affect conditioning, so we ignore
the other poorly shaped elements. An edge has a small dihe-
dral angle if the inner product of the unit normals of the two
incident faces is less than some threshold (in our implemen-
tation, -0.8). Correct classification is extremely important
because the rules determining whether a tetrahedron can be
safely deleted differ for each class of tetrahedra. Thus, we
not only consider how many small dihedral angles a tetra-
hedron has but also the relative location of these dihedral
angles. For example, if a given tetrahedron has three small
dihedral angles but they are not all incident to a single face,
we treat this tetrahedron as a sliver rather than a cap. Sim-
ilarly, if a tetrahedron has two small dihedral angles around
a face, we treat the tetrahedron as a cap or a sliver depend-
ing on whether the face’s third dihedral angle is less than or
greater than 90◦.

After classifying the poorly shaped tetrahedra, we attempt
to delete them. Each class of tetrahedra can be deleted if
certain criteria are met:

• Slivers may be deleted if two faces that share an edge
with a large dihedral angle are on the surface.

• Caps may be deleted if the face incident to the three
small dihedral angles is on the surface.

• Splinters may be deleted if any faces are on the surface.

• Wedges may be deleted if either face incident to the
small dihedral angle is on the surface.

After deleting an element the surface may contain cosmetic
artifacts, such as small dimples, but these rules ensure the
surface does not contain folds or other artifacts that will
affect the stability of the simulation. The algorithm cycles
through the lists of classified tetrahedra until no more el-
ements can be safely deleted. Often a handful of slivers
remain.

The third step ensures that the surface mesh is manifold.
Having a manifold surface mesh avoids problems with self-
collisions and allows the creation of signed-distance fields.
We guarantee that the surface is manifold by ensuring that
each vertex and each edge in the surface mesh is manifold.

Non-manifold vertices are rare but do occur, particularly
when the mesh becomes very thin or objects merge. A
non-manifold vertex can be identified by considering graphs
where the nodes correspond to tetrahedra and where there
is an edge between two nodes if the corresponding tetra-
hedra share a face. There are two such graphs: one con-
structed from tetrahedra adjacent to the vertex in the cur-
rent mesh, the other constructed from tetrahedra that have
been deleted but were adjacent to the vertex before deletion.
The vertex is manifold if, and only if, both these graphs are
connected. If one of the graphs is not connected, we remove
the smallest connected component. To remove a connected
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Figure 6: An image from an animation with many topo-
logical merges. Each object contains only 4200 elements, but
by the end of the animation the system contains more than
200,000 elements.

component from the graph constructed from tetrahedra cur-
rently in the mesh, we delete the tetrahedra correspond-
ing to the nodes in the connected component. To remove a
connected component from the graph constructed from the
deleted tetrahedra, we return tetrahedra to the mesh.

We address non-manifold edges by examining a topological
structure called the link [Dey et al. 1999]. The link of an
edge is an ordered list of mesh vertices connected to both
endpoints of the edge. Any two consecutive vertices in this
list, together with the two edge vertices, specify one of the
tetrahedra that surround the edge. If a link has no gaps,
the edge is in the interior of the mesh. If a link has one gap,
then the edge is on the surface. A link with more than one
gap indicates a non-manifold edge. We examine the link of
every edge in the mesh. If a non-manifold edge is found,
tetrahedra are either inserted or removed, depending on the
quality of the potentially added tetrahedra and the volume
of the potentially deleted tetrahedra, until the edge is once
again manifold.

We repeatedly search for and fix non-manifold vertices and
edges until none remain. We avoid infinite loops by disallow-
ing the addition or deletion of tetrahedra that have already
been considered. To guarantee that progress can always be
made, we always allow the removal of tetrahedra to fix non-
manifold vertices, even if these tetrahedra were previously
added to fix some other topological problem. We do not
have a proof that this process terminates, but we have not
found that to be a problem in practice.

During this step of extracting the mesh interior, the topol-
ogy of the new mesh is created. If in the old mesh two
regions were touching or nearly touching, the remesher may
add tetrahedra between them, thereby joining the surfaces.
Similarly, if a region of the mesh has become very thin, its
elements may be deleted, resulting in a hole or tear. Thus,
topological changes are handled implicitly by our remesh-
ing procedure. This approach is similar to the level set
approaches employed by grid-based Eulerian methods and
suffers from the same drawbacks. Explicitly dealing with
topological changes, perhaps with the method developed by
Brochu [2006], is an area of future work.

4.3 Transferring Simulation Variables

After constructing a new simulation mesh, we transfer the
simulation variables from the old mesh to the new one.

There are two types of simulation variables: those stored
per element and those stored per node. The per element
variables that we must transfer are the deformation gradi-
ent F and the work hardening/softening variable α. Given
a tetrahedron in the new mesh, we compute its simulation
variables by finding all the tetrahedra in the old mesh with
which it overlaps. We then set the new variable to be the av-
erage of the simulation variables stored in the old tetrahedra,
weighted by the volume of the overlap with each old tetra-
hedron. While averaging is straightforward for the scalar α,
transferring F is more difficult.

Instead of transferring F directly, we compute and transfer
Green’s strain, G = 1/2(F T F−I). F can then be computed
in each of the new elements by performing an Eigen decom-
position of 2G + I. This approach of averaging strain has
been used before in the graphics literature by Goktekin et
al. [2004], Müller et al. [2004], and Losasso et al. [2006].

After we have transferred F to the new mesh, we compute
a β matrix for each element:

β = X−1F . (13)

We then compute the rest state for each element. Specifi-
cally, we compute area-weighted face normals (used in the
computation of forces, see Equation (4)) and desired volume
for each element. Finally, we compute the mass of each node.

We also need to transfer variables stored per node; velocities
are the only such variable in our system. If a node in the
new mesh sits inside a tetrahedron in the old mesh, we use
barycentric interpolation to compute the value for the new
node. Otherwise, the new node lies slightly outside the old
mesh. In this case, we find the nearest point to the new node
on the old surface and interpolate the velocity there.

5 Implementation Details

For self-collisions or collisions between finite element meshes,
we run the cloth collision algorithm of Bridson et al. [2002]
on the surface of our simulation mesh. This algorithm en-
sures that our tetrahedral meshes will never self-intersect, an
important invariant required to avoid complications during
re-meshing. For collisions with rigid bodies and immovable
objects, we project penetrating vertices onto the surface of
the object and apply friction, similar to the procedure in
Irving et al. [2004].

We integrate our simulations through time with the variable
timestep Newmark integrator used by Bridson et al. [2003].
To decide when to reduce the timestep in our adaptive in-
tegrator, we check for drastic changes in the edge lengths
of any tetrahedron. When an edge length has changed by
more than some threshold within a single timestep, we back
up the simulation and divide the timestep in half. The vol-
ume preservation and extra damping due to high plasticity
make it difficult to detect instabilities merely by inspecting
edge lengths,so we also reduce the timestep whenever sud-
den accelerations occur. After several successful simulation
steps have been executed without encountering instabilities,
we double the timestep size.

When computing forces, we do not compute plastic updates
for inverted or degenerate elements, similar to how Irving et
al. [2004] sacrificed accuracy for stability by altering the elas-
tic forces for inverted elements. This adjustment helps to en-
sure the stability of our simulations by avoiding unreliable
force calculations on elements with negligible volume.
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6 Results

We have used our finite element approach to simulate mate-
rials that exhibit a wide range of behaviors. The figures and
the accompanying video demonstrate our results.

We demonstrate work softening by dropping a bunny down
a set of stairs in Figure 1. Each time the bunny strikes a
stair, that portion of the bunny softens. By the time the
bunny comes to rest, several body parts are very soft while
others remain hard. Figure 2 shows several examples of our
method inspired by special effects. The models in these ex-
amples have on the order of 100,000 elements and interact
with complicated collision geometries. Figure 3 shows an-
other example with the bunny model this time falling onto a
metal bar. This example also demonstrates work hardening;
at the beginning of the simulation the bunny easily deforms
plastically, but after limited flow it deforms only elastically.

We have tested our method on examples with more than
200,000 elements (Figure 6). This particular example took
more than a week to run on a 3.0 GHz Pentium 4, remeshed
about 75 times, and took roughly 13% of the total simula-
tion time for remeshing. The running times of our imple-
mentation are long, in part because we have not removed
debugging code or optimized our implementation. After op-
timization, we expect the running speed to be only 10-20%
longer than that of Irving et al. [2004]. This additional time
should be enough to perform periodic remeshing and the ad-
ditional matrix operations required to update the rest state.

To test the tunability of our material parameters, we used
a high-speed camera (1000 fps) to record the motion of a
star-shaped piece of dough as it strikes the ground (Figure 7
bottom). By adjusting the flow rate and the yield stress
parameters, we were able to match the basic behavior in a
simulation, (Figure 7 top). Note that the material parame-
ters do not need to be kept constant. Some materials, such
as cornstarch, will act either in an elastic or in a flowing
manner depending on the stress. Figure 8 shows a real (bot-
tom) and a simulated (top) ball of cornstarch. The material
bounces when it first strikes the ground due to the high
stress, but when it comes to rest it flows readily. To achieve
this behavior we extended our plasticity model by varying
the flow rate, ν, based on stress, P . At high stresses the flow
rate was low and at low stresses the flow rate was high.

7 Discussion

In this work, we have chosen to use a linear strain model, pri-
marily for stability reasons. However, our general approach
of updating the elements’ basis functions and remeshing and
our plasticity model are not dependent on this choice and
would apply equally well to St. Venant-Kirchhoff or other
strain models as well as to non-linear stress-strain relation-
ships. We also note that our plasticity model is easily gener-
alized by replacing our constants with functions as was done
for the cornstarch example (Figure 8).

While we have found our particular remeshing strategy suf-
ficient, we acknowledge that it is far from perfect for solving
our problem. For example, though we were careful to pre-
serve the mesh boundary during remeshing, each remeshing
step does resample the surface, smoothing it as a side ef-
fect. Overly aggressive remeshing does produce noticeable
artifacts; however, these artifacts are largely hidden by flow
and other motion in the case of moderate remeshing. These
problems suggest two areas of future work. Because we can

Figure 7: A comparison between simulated (top) and real
(bottom) bread dough.

Figure 8: A comparison between simulated (top) and real
(bottom) cornstarch solutions. The first bounce induces only
elastic deformations; however, under smaller stress, the so-
lution flows, forming a puddle.

measure locally how much volume is lost, we would like to
find a way to replace this lost volume. Alternatively, we
could use a secondary, high-resolution representation of the
surface. The general meshing problem has been receiving
more attention in the computational geometry community
and the recent work of Shewchuk [2005], Labelle [2006], and
Hudson et al. [2006] might lead to alternative approaches to
remeshing in finite element simulations.

Several approaches have been used for animating materi-
als that undergo large plastic flow, including Eulerian grids
and particle-based approaches. We offer a new approach
that uses tetrahedral finite elements, periodic re-meshing,
and deformation state inheritance to simulate elastic and
plastic deformation. Each of these approaches have differ-
ent trade-offs in terms of advantages and drawbacks. Our
finite element approach can more easily simulate highly elas-
tic and nearly rigid objects than can Eulerian grid methods.
Because we retain connectivity between elements, our ap-
proach does not incur the cost of nearest neighbor searches
that tend to dominate particle-based approaches.
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