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Figure 1: Liquid streaming out of a closed container with holes. Our solver calculates the complex formation of bubbles without explicitly
solving for the gas phase. Each of the images shows FLIP particles colored by the stream function on the left, and the surface on the right.
The simulation ran with a 256×256×128 resolution, 54 seconds per time step, and 3.9 minutes per video frame.

Abstract

This paper presents a liquid simulation technique that enforces the
incompressibility condition using a stream function solve instead
of a pressure projection. Previous methods have used stream func-
tion techniques for the simulation of detailed single-phase flows,
but a formulation for liquid simulation has proved elusive in part
due to the free surface boundary conditions. In this paper, we intro-
duce a stream function approach to liquid simulations with novel
boundary conditions for free surfaces, solid obstacles, and solid-
fluid coupling.

Although our approach increases the dimension of the linear sys-
tem necessary to enforce incompressibility, it provides interesting
and surprising benefits. First, the resulting flow is guaranteed to be
divergence-free regardless of the accuracy of the solve. Second, our
free-surface boundary conditions guarantee divergence-free motion
even in the un-simulated air phase, which enables two-phase flow

simulation by only computing a single phase. We implemented this
method using a variant of FLIP simulation which only samples par-
ticles within a narrow band of the liquid surface, and we illustrate
the effectiveness of our method for detailed two-phase flow simu-
lations with complex boundaries, detailed bubble interactions, and
two-way solid-fluid coupling.
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1 Introduction

We wish to simulate the motion of a liquid surrounded by air. The
inviscid, incompressible Navier-Stokes equations describe this mo-
tion:

Du

Dt
= −1

ρ
∇p+ g (1)

∇ · u = 0 (2)

where u is the fluid velocity field, t is time, ρ is fluid density, p is
fluid pressure, and g is a body acceleration. The first equation de-
scribes the evolution of fluid momentum over time, and the second
equation constrains the fluid motion such that it conserves mass.
The typical approach to enforcing Eq. (2) is to find a pressure p
whose gradient projects the velocity field into a divergence-free
state. This projection can also be interpreted as a kinetic energy
minimization problem [Batty et al. 2007]:

minimize
p

∫
Ω

1

2
ρ||u∗ − ∆t

ρ
∇p||2dV (3)



where ∆t denotes the time step size, and u∗ is the intermediate
velocity after advection [Bridson 2008], Ω is the fluid domain, and
V is the liquid volume. The solution yields a Poisson problem for
the pressure:

∇ ·
(∆t

ρ
∇p

)
= ∇ · u∗ (4)

One can prevent flow through the boundary by enforcing the bound-
ary condition u · n = v · n (with surface normal n and boundary
velocity v). At the liquid’s free surface, a common approach is to
assume that the momentum of the liquid dominates that of the sur-
rounding air to such an extent that the air pressure is negligible,
resulting in the Dirichlet boundary condition p = 0. Alternatively,
one can avoid this free-surface approximation by simulating the en-
tire air phase as well as the liquid phase, resulting in a two-phase
flow computation.

Unfortunately, actually solving Eq. (4) in this way can lead to a
few frustrating numerical errors. The p = 0 condition at the free
surface does not enforce incompressibility of the air phase, so the
coupling between air and water is unrealistic and it results in ar-
tifacts like collapsing bubbles. The alternative of simulating the
entire air phase in addition to the liquid phase requires a delicate
treatment of the fluid interface [Boyd and Bridson 2012; Hong and
Kim 2005] and it requires additional memory and computational
effort to handle the relatively unimportant invisible air domain. In
addition, the pressure projection is incapable of exactly enforcing
the incompressibility condition. Eq. (4) relies on the solution to a
linear system which necessarily accumulates numerical errors. In
practice, researchers usually use an iterative solver which only sat-
isfies Eq. (4) up to some tolerance. Consequently, Eq. (2) is only
approximately satisfied at any given moment, and the fluid volume
drifts over time.

We propose a stream function approach to solving the incompress-
ibility condition. The Helmholtz-Hodge decomposition states that
our intermediate velocity field is composed of three parts:

u∗ = ∇Θ+∇×Ψ+ γ (5)

where the first term is the gradient of a scalar field, the second term
is the curl of a vector field, and the third term is a harmonic vector
field which is neither a curl nor a gradient. Removing the first com-
ponent gives us a divergence-free vector field u = ∇×Ψ+ γ. In-
stead of solving for the gradient term and subtracting from u∗, we
propose to solve for Ψ, which directly gives us u. This approach
provides several contributions to the computer graphics commu-
nity:

• We derive free-surface boundary conditions which enable, for
the first time, a stream function approach to liquid simulation.

• We derive solid boundary conditions for two-way solid-fluid
coupling.

• Our resulting flow is guaranteed to be divergence-free regard-
less of the accuracy of the solve.

• Our approach enforces incompressibility even in the un-
simulated air phase, enabling realistic two-phase flow sim-
ulation by computing only a single phase.

• We provide an implementation of our method based on FLIP.

2 Related work

Solving the Navier-Stokes (NS) equations in computer graphics
was popularized by Foster and Metaxas [1997], as well as the sta-
ble fluids approach [Stam 1999]. While the latter made the flow

∇× u Ψ

Figure 2: A 2D illustration of the vorticity (left) and stream func-
tion (right) of a 2D water drop with constant downward velocity.

divergence free using an FFT, most follow up papers have resorted
to a MAC discretziation [Harlow and Welch 1965]. For these and
many other types of solvers, the pressure projection is crucial for
making the flow incompressible as well as for introducing visually
interesting motions. Thus, a large part of work has focused on im-
proving it, e.g. with fast iterative solvers [Zhu et al. 2010; Ferstl
et al. 2014] and by introducing flexible ways to couple multiple
grids [English et al. 2013]. A variety of different discretizations
have been proposed over the years, many of them using tetrahedral
meshes [Klingner et al. 2006; Batty et al. 2010],

Elcott and colleagues [2007] proposed a discretization based on
generic simplices while focusing on preserving circulations in the
flow. They also arrive at a stream function solve for the velocity
update of their algorithm. We will outline similarities between this
work and ours below, but one important difference is that their work
focuses on smoke phenomena with static boundaries, while we tar-
get liquid simulations and support moving rigid bodies. The work
by Elcott et al. is based around vorticity as a central quantity for flu-
ids, and while vorticity and stream function are both vector-valued,
they have different content: vorticity is defined as ω = ∇ × u,
while the stream function Ψ relates to velocity by u = ∇×Ψ. Fig-
ure 2 illustrates this difference. Unlike vorticity, the stream func-
tion does not have an obvious physical meaning. However, both
are related, and the stream function can be used to convert vorticity
into a velocity (as is done in [Elcott et al. 2007]). Many variants
of vorticity formulations have been proposed, e.g., based on La-
grangian vortex filaments [Angelidis and Neyret 2005; Weißmann
and Pinkall 2010], vortex particles [Gamito et al. 1995; Selle et al.
2005], vortex sheets [Pfaff et al. 2012; Brochu et al. 2012], or with
tightly coupled rigid bodies [Vines et al. 2014]. These methods fo-
cus on single-phase fluid simulation, but the algorithm of Golas et
al. [2012] uses a grid vortex-particle hybrid and can simulate liq-
uids by resorting to a pressure-based solve near the free surface and
solid boundaries. Bridson et al. [2007] use an analytically com-
puted stream function, making heavy use of the fact that the result-
ing velocity is guaranteed to be divergence-free.

While our algorithm is based on an Eulerian representation, a sig-
nificant amount of work also covers Lagrangian representations
[Ihmsen et al. 2014]. These are particularly popular for simula-
tions of liquids, and most grid-based methods have also employed
grid-particle hybrids to improve mass conservation, e.g. particle
level-sets [Enright et al. 2003], or so-called FLIP methods [Brid-
son 2008]. We will make use of the latter for our simulations, but
our approach is agnostic to the particular choice of surface track-
ing method. We believe FLIP is a good choice due to its wide
spread use in industry [Budsberg et al. 2013] and academia [Boyd
and Bridson 2012; Ando et al. 2013].

Although our approach makes use of a free surface model and
simulates only the liquid phase, the special properties of stream



functions move it close to two-phase simulations. Simulations of
multiple phases have, e.g., been investigated for level-set surfaces
[Losasso et al. 2006], as well as volume fractions [Kang et al. 2010]
and mesh-based surface tracking [Da et al. 2014]. There are also
many papers from the field of particle-based simulations that target
multiple phases [Müller et al. 2005; Ren et al. 2014]. Boyd and
Bridson [2012] introduced a FLIP simulation model that employs
two distinct velocity fields for the liquid and gas phases. Large
density variations are notoriously difficult for both vortex methods
and two-phase fluid formulations, especially when the Atwood ra-
tio (ρliquid−ρair)/(ρliquid+ρair) approaches 1. While our model also
becomes stiffer with large density jumps, it becomes highly stable
and efficient when the Atwood number actually equals one. No
previous approach shares this property, and it allows us to create
divergence-free motion for the gas phase without explicitly simu-
lating it.

The idea of using stream functions has also been proposed in var-
ious works of the computational fluid dynamics community. Like
vorticity formulations, they are not widely used for simulating liq-
uids. Attempts have been made to push the density difference of
multi-phase simulations using vortex-in-cell methods [Brecht and
Ferrante 1989; Stock et al. 2008], where stream functions are also
used for a conversion of vorticity to velocity. Many papers fo-
cused on two-dimensional stream function formulations, e.g., for
lid-driven cavity studies [Barragy and Carey 1997]. While so called
velocity-vorticity formulations are more widely used [G. Guj 1993],
the advantages of stream function formulations have been demon-
strated, e.g., for duct flows [Wong and Reizes 1984] and for ac-
curate boundary handling [Wang and Zhang 2011]. Similar to
works from computer animation, these publications focus purely
on single-phase flows.

3 Stream function solver

For simplicity of exposition, we will assume that our domain is a
subset of R3 with a simple boundary, so that the harmonic com-
ponent γ in Eq. (5) is zero, and thus the divergence-free velocity
field is u = ∇×Ψ. We will use this idea to replace the pressure
projection in a standard Navier-Stokes simulation. Following the
time-splitting approach in [Bridson 2008], we wish to solve:

u = u∗ − ∆t

ρ
∇p (6)

We multiply by ρ, substitute u = ∇×Ψ, and take the curl of both
sides to remove p:

∇× (ρ∇×Ψ) = ∇× (ρu∗) (7)

The solution to Eq. (7) is the solution to the following quadratic
kinetic energy minimization problem:

minimize
Ψ

∫
Ω

1

2
ρ||u∗ −∇×Ψ||2dV (8)

This equation is a kinetic energy minimization, but it can also be in-
terpreted as the search for the unique incompressible velocity field
∇ × Ψ which is as close as possible to u∗ in the weighted least
squares sense (with weights equal to ρ dV/2). The least squares
problem is solved exactly by taking the gradient with respect to Ψ
and setting it to zero, yielding Eq. (7).

The curl operator ∇× has a non-trivial nullspace, as illustrated by
the operation∇×(Ψ+∇ϕ) = ∇×Ψ+∇×∇ϕ = ∇×Ψ, where
ϕ denotes an arbitrary scalar field. Therefore, an infinite number
of vector fields have the same curl, and thus there are an infinite
number of solutions to Equations (7) and (8). Enforcing a specific

divergence on Ψ removes this null space. Specifically, we can pin
down ϕ by enforcing an extra requirement ∇ ·Ψ = 0, which is
equivalent to adding a specific regularizer to Eq. (8):

minimize
Ψ

∫
Ω

1

2
ρ||u∗ −∇×Ψ||2dV +

1

2
ρ(∇ ·Ψ)2dV (9)

This regularizer acts exactly on the nullspace of the original prob-
lem, so that a solution to Eq. (9) will also optimally solve Eq. (8).
Discretizing the curl in Eq. (9) with the matrix [∇×] and the diver-
gence with [∇·] (described in more detail in Section 5.1) gives:

minimize
[Ψ]

( 1

2
([u∗]− [∇×][Ψ])T [ρ][V ]([u∗]− [∇×][Ψ])

+
1

2
([∇·][Ψ])T [ρ][V ]([∇·][Ψ])

)
(10)

where [ρ] and [V ] are diagonal matrices denoting density and cell
volume. Taking the derivative of Eq. (10) with respect to [Ψ] and
setting it to zero yields a symmetric positive-definite linear system:

(
[∇×]T [ρ][V ][∇×] + [∇·]T [ρ][V ][∇·]

)
[Ψ] = [∇×]T [ρ][V ][u∗]

(11)
We re-scale this equation by dividing both sides by the volume of
a grid cell and the density of liquid. This effectively transforms
[V ] into an identity matrix [I] (because we discretize it on a regular
grid) and leads to values between 0 and 1 for ρ.

Next, we introduce a change of variables [ρ] = [I] + [∆ρ]; the
previously-mentioned re-scaling sets liquid density to 1, so [∆ρ]
encodes the deviation from liquid density, and it must be negative.
Substituting [∆ρ] into Eq. (11) and applying the vector calculus
identity [∇×]T [∇×] + [∇·]T [∇·] = [∇2] (where [∇2] is the vec-
tor Laplacian operator1), the linear system transforms into a variant
of a vector-valued Poisson equation:(
[∇2]+ [∇×]T [∆ρ][∇×]+ [∇·]T [∆ρ][∇·]

)
[Ψ] = [∇×]T [ρ][u∗]

(12)
Note that on the right hand side of this equation, we simplified
[∆ρ] + [I] back to [ρ] (both for brevity, and because it is intuitive
to implement this way).

If we make the assumption that ρ=0 (and thus [∆ρ]=−1) in the air
phase, then the entries of the linear system completely disappear
outside of the liquid. The intuition here is that the air will automati-
cally be divergence-free for any Ψ, and further varying Ψ within the
air phase has no effect on the kinetic energy minimization because
the air is massless. Within the liquid domain, the matrix entries are
identical to those of a standard vector Laplacian matrix, and the ∆ρ
terms are only non-zero in the narrow band near the liquid surface.
Furthermore, the incompressibility constraint is implicitly satisfied
within the air domain for free.

In the above exposition, we assumed that the harmonic component
γ in Eq. (5) was zero, and we leave it set to zero for the simula-
tions shown in Section 6. However, domains with non-trivial topol-
ogy could be handled as described in [Elcott et al. 2007]: by first
explicitly generating a harmonic vector field basis for the domain,
and then projecting out and preserving the harmonic component of
u∗ before the stream function solve. Alternatively, we can simply
treat complex boundary geometry as a dense two-way coupled rigid
body, as we explain in Section 4.3.

1Note that we do not use ∆ for the Laplacian; ∆ will be reserved for
changed quantities.



4 Boundary conditions

Suitable boundary conditions are essential in any fluid simulation.
This section describes how to set free-surface and solid boundaries
for our stream function solver.

4.1 Liquid-air interface

Unlike other methods that must treat the free surface with special
boundary conditions, our method handles the liquid-air interface
automatically. By simply dropping the density ρ to zero in the
air domain, the system matrix already incorporates the necessary
boundary condition at the liquid-air interface. Surface tension ef-
fects can be integrated by adding a force σH to u∗ at the liquid-
air interface, where σ is the surface tension strength and H is the
mean curvature normal of the interface. Surface tension can be an
important visual cue for flows on small scales, but as we will aim
for large-scale, splashing flows in Section 6, none of our examples
includes surface tension forces.

The assumption in Section 3 that ρair = 0 corresponds to setting
the Atwood ratio to 1. In contrast to most methods, which become
unstable as the Atwood ratio approaches unity, our method actually
becomes more stable and computationally simpler.

4.2 Static solid boundaries

The simplest way to handle solid boundaries in our framework is to
set the density ρ to a large value within the solid domain. How-
ever, the resulting large density variations cause slower conver-
gence and potential numerical instabilities. Instead, we can ensure
u = 0 at a solid boundary by setting the stream function equal
to the gradient of a scalar potential, Ψ = ∇ϕ̂, where ϕ̂ contains
the degrees of freedom along the surface of the solid. This way,
∇×Ψ = ∇× (∇ϕ̂) = 0, so the u = 0 condition is enforced by
construction. To handle more accurate free-slip boundary condi-
tions, we use fractional weighting of the fluid velocity, as explained
in Section 5.1.

4.3 Rigid body coupling

Let xc, uc and ω be the center of mass, translational velocity, and
angular velocity of a rigid body. The rigid body’s velocity ŭ evalu-
ated at location x is given by:

ŭ = ω × xrel + uc (13)

where xrel = x − xc, the distance relative to the body’s center of
mass. Within the solid domain, we find a stream function Ψ̆ that
satisfies∇× Ψ̆ = ŭ, which is given by:

Ψ̆ = −1

2
diag

y2 + z2

z2 + x2

x2 + y2

ω +

 0 0 y
z 0 0
0 x 0

uc +∇ϕ̂ (14)

where∇ϕ̂ denotes the gradient of a scalar field ϕ̂, and x, y, z are the
components of xrel. Instead of solving for the unconstrained stream
function within the solid, the degrees of freedom are replaced by the
scalar field ϕ̂ and the spatial constants ω and uc. The correspond-
ing density and the velocity for the resulting linear system are given
by those of the rigid body. The resulting ω and uc are then used
to integrate the rigid body dynamics in between fluid time steps.
While this two-way rigid body coupling approach is similar to that
of Carlson et al. [2004], ours is monolithically coupled, while theirs
is weakly coupled using a pressure projection followed by a rigidity
solve.

( ),, , ( ),, , ( ),, ,

Fluid Volume
Fraction

Solid Area
Fraction

Figure 3: Discretization overview

To use a rigid body as a scripted kinematic solid boundary, we sim-
ply fix ω and uc to the prescribed values and set ρ = 1 within the
rigid body. This reduces the degrees of freedom within the solid
to ϕ̂, which can be solved just as in Section 4.2. The details of
how we discretize these solid boundary conditions are discussed in
Section 5.1.

4.4 Arbitrary solid boundary motions

Sections 4.2 and 4.3 describe how to constrain Ψ to achieve spe-
cific boundary motions. In principle, such an approach can be ex-
tended to any motion that can be represented as a stream function.
Boundary motion that does not conserve volume (and thus cannot
be represented by a stream function) is not straightforward in our
framework and requires future research.

5 Computation

This section will explain several practical aspects, such as how to
discretize the equations and how to realize a working implementa-
tion of our approach.

5.1 Discretization

The computational domain is represented by a regular voxel grid,
storing components of Ψ on cell edges, components of u on cell
faces, and the scalar field ϕ̂ on vertices (Figure 3, top). The lo-
cation of these variables is consistent with discrete exterior calcu-
lus [de Goes et al. 2013], which locates 0-forms on vertices, 1-
forms on edges, and 2-forms (fluxes) on faces.

In fact, our [∇×] and [∇·] can be computed in the same man-
ner as the discrete exterior calculus operators defined by Elcott et
al. [2007] for tetrahedral meshes. Our curl operator [∇×] is a rect-
angular matrix mapping edges to faces. The y component of the



Figure 4: Liquid glugging down a closed container: 128×256×128 resolution, 18 seconds per time step, and 1.5 minutes per video frame.

curl is defined as ∂Ψx
∂z
− ∂Ψz

∂x
(Figure 3 bottom left), and the x and

z components are defined similarly. The divergence operator [∇·]
is a rectangular matrix mapping edges to vertices by summing up
the vector components on the oriented edges adjacent to each vertex
(Figure 3, bottom right).

We also evaluate the fractions of a cell occupied by liquid (for
the liquid-air boundary conditions) and solid obstacles (for solid
boundary conditions). Our implementation stores different signed
distance functions to implicitly represent the liquid and solid sur-
faces. We store the liquid distance function (the fluid level set) at
cell centers. We directly use [ρ] for liquid volume fractions, which
is valid if we normalize liquid density to 1 and air density to 0 as
explained in Section 3.

While there are many ways to approximate the solid volume frac-
tion [Batty et al. 2007], we use the ghost-fluid-style technique of
computing the extent of the fluid on the line segment between cell
centers [Gibou et al. 2002]. We store the solid distance function
on cell vertices, and we compute the solid area fraction of a face
using the area given by a “marching squares”-style contour extrac-
tion [Lorensen and Cline 1987] (See Figure 3 middle). We truncate
each fraction to zero if it is smaller than 0.01, and we switch to the
solid boundary condition from Section 4.2 if the solid fraction is
larger than 0.99.

5.2 Tolerating convergence errors

Given the solid boundary conditions described in Section 4.2, we
define our stream function as:

[Ψ] = [Z]

[
Ψ̂

ϕ̂

]
(15)

where Ψ̂ is the stream function within the liquid, ϕ̂ is the scalar
within the solid boundary, and [Z] is a matrix mapping liquid re-
gions to Ψ̂ and solid regions to the gradient of ϕ̂. The boundary
conditions in Section 4.3 are handled analogously by adding rigid
body degrees of freedom.

We can then solve for [Ψ] using the ideas in Section 3, which
works perfectly well when solving the system accurately. How-
ever, when allowing for errors, perhaps by terminating the iterative
system solve early, the inaccuracies manifest as spurious damping.
The iterative solve begins with an initial guess whose curl is zero
and converges to the correct solution whose curl is the desired ve-
locity field. Terminating this process early yields a blend between
the correct solution and zero motion. To allow for errors without
any spurious damping, we reformulate the solution vector as off-
sets ∆Ψ̂ and ∆ϕ̂ from the vector potential at the previous time
step, Ψt−∆t:

[Ψ] = [Z]

[
∆Ψ̂

∆ϕ̂

]
+ [Ψt−∆t] (16)

In addition to avoiding spurious damping, the resulting velocity
field u = ∇ × Ψ will also be divergence-free by construction,
even in the presence of numerical errors.

5.3 Implementation details

The only difference between our method and previous time-
splitting algorithms for liquid simulation [Bridson 2008] is the use
of a stream function solve instead of a pressure solve; we re-use ex-
isting algorithms for advection, extrapolation, etc. Here, we explain
how we implement the stream function solver.



Algorithm 1: Stream function projection
input : velocity field after advection u∗,

narrow-banded levelset function of fluid θF and solid θS
output: divergence-free velocity field u

1 if first time called then
2 Pre-compute [Z] from θS
3 Pre-compute [P ]← Eq. (17)
4 Pre-compute [B]← [Z]T [∇×]T

5 Set
[
Ψ̂t−∆t

ϕ̂t−∆t

]
← 0

6 Compute diagonal density matrix [ρ] and [∆ρ] from θF
7 Compute matrix [Q]← Eq. (18)
8 Compute matrix [K]← [P ] + [Q]
9 Assemble the linear system in Eq. (19)

10 Solve the linear system Eq. (19) by PCG

11 Compute
[
Ψ̂t

ϕ̂t

]
←

[
∆Ψ̂

∆ϕ̂

]
+

[
Ψ̂t−∆t

ϕ̂t−∆t

]
12 Compute [u]← [∇×][Z]

[
Ψ̂t

ϕ̂t

]

We first compute a matrix [P ] which encodes the solid boundaries:

[P ] = [Z]T [∇×]T [ 1
A
][∇×][Z] + [Z]T [∇·]T [ 1

A
][∇·][Z] (17)

where [ 1
A
] denotes a diagonal matrix where entries are the recipro-

cal of the area occupied by liquid (the compliment of the solid area
calculated in Section 5.1). Thus, A=1 for regions completely inside
the liquid and A=0 inside a solid. As mentioned earlier, we switch
to the solid boundary condition in Section 4.2 when A<0.01.

The [Z]T [∇·]T [ 1
A
][∇·][Z] term serves as a regularizer in the orig-

inal problem. We do not compute it near solid boundaries in order
to avoid a denser matrix; this optimization does not change the so-
lution. Away from solid boundaries, [P ] is a standard Laplacian
matrix [∇2], which can be efficiently encoded. [P ] can be pre-
computed, but we must reassemble it whenever solid boundaries
change. We also pre-compute [B] = [Z]T [∇×]T for assembling
the right hand side of the final system. We then compute a matrix
[Q] to encode density jumps:

[Q] = [Z]T [∇×]T [∆ρ

A
][∇×][Z] + [Z]T [∇·]T [∆ρ

A
][∇·][Z].

(18)
which must be re-computed each time step. Note that [Q] is non-
zero only in a narrow band around the liquid-air interface. We sum
these matrices to get [K] = [P ] + [Q]. Here, [K] is non-zero only
inside the bulk of the liquid, and zero for both air and the static
solid boundaries not touching the liquid. The linear system for our
stream function is then

[K]

[
∆Ψ̂

∆ϕ̂

]
= [B][ρ][u∗]− [K]

[
Ψ̂t−∆t

ϕ̂t−∆t

]
. (19)

which we solve for ∆Ψ̂ and ∆ϕ̂ each time step. We per-
form this solve using a preconditioned conjugate gradient (PCG)
method2 [Bridson 2008]. The steps of this stream function projec-
tion are reviewed in Algorithm 1.

6 Results

To reduce the overhead for particle tracing, we seed FLIP particles
only near the free surfaces, as proposed by Chentanez et al. [2014].

2With MIC(0) parameters τ = 0.97 and σ = 1.0

The PCG solver uses a residual tolerance of ∥r∥2/∥r0∥2 < 10−4

(with current residual r and initial residual r0) for all examples. We
ran our examples on several different Linux workstations (2.70GHz
Intel Xeon E5-2697 or 3.3GHz Intel Core i7-3960X).

The setup of Figure 4 illustrates the effect of an incompressible
gas phase around the liquid. Without explicitly simulating the sec-
ond phase, our solver captures the violent splashes caused by the
air moving in the opposite direction of the liquid. In the figures
throughout our paper, the particles are color-coded to visualize the
three components of the stream function (normalized per frame).

The wall with holes that is shown in Figure 1, exhibits a similar
effect: the container behind the wall is closed, so that air has to
enter through the same holes the liquid tries to escape from. For
this example, the matrix assembly per time step took 11.5 seconds
on average, while the PCG solver took 16 seconds. A regular pres-
sure solve results in a comparatively boring pouring motion for this
example (shown in the accompanying video). Note that this is an
example of a high-genus geometry, and the velocity field can poten-
tially have a non-zero harmonic component γ. Our result illustrates
that flows without visual artifacts are possible even when setting
γ to zero. To illustrate that our method results in flows that settle
down over time, the energy of this simulation is shown in Figure 8.

The simulation of Figure 6 highlights the capabilities of our solver
to preserve the gas phase explicitly: a single large bubble rises in
a long tube of liquid. The complex deformations and breakup ef-
fects are captured by the divergence-free motion our stream func-
tion solver computes for the region around the liquid.

Figure 5 highlights the ability of our stream function solver to
handle non-grid-aligned solid boundaries, a two-way coupled rigid
body, and bubbles in a strongly coupled manner. As the rigid body
coupling leads to residual terms for the fluid and rigid bodies be-
ing combined in one vector, we modified our PCG settings for this
example: we use an accuracy threshold of ∥r∥∞ < 10−1, and we
perform at most 103 iterations.

We compared our algorithm with a naive two-phase flow algorithm
(a FLIP-based variable-density pressure solver without any special
treatment of the liquid-air density jump) in Figure 7. A density dis-
parity of 1000× in the naive solver contributes to a stiffer and less
stable linear system, causing very high CFL numbers, slower solver
convergence, and errors in volume conservation. The FLIP advec-
tion also experiences unphysical shearing and a visibly disturbing
“mist” of particles around the liquid-air interface. In contrast, our
method remains stable and treats the interface appropriately without
any special treatment of FLIP particles.

As discussed in Section 5.2, our method produces divergence-free
velocity fields regardless of the accuracy of the stream function
solve. Indeed, our supplementary comparison video shows how our
method gets less accurate as the solve accuracy decreases, while
still generating divergence-free velocities.

7 Discussion and Limitations

The linear system Eq. (19) at the heart of our method solves a
vector-valued Poisson equation, so it has about three times more
unknowns than a standard pressure solver. Unlike some previous
work for smoke simulation, our free surface and solid boundary
conditions strongly couple the three stream function components
together, and we were not able to split the system into three in-
dependent scalar Poisson equations. Consequently, our method is
more expensive than a standard pressure solver. However, we no-
ticed that the change of variables in Section 5.2 dramatically in-
creased efficiency by only computing the deviation from a previous



Figure 5: Interaction with a two-way coupled rigid body: 256×128×64 resolution, 49 seconds per time step, and 1.5 minutes per frame.

solution. The entire stream function projection (including matrix
assembly and PCG) was 5.6 times slower than a regular single-
phase pressure projection. Ultimately, one whole time-step of our
method was about 3.0 times slower (on average) than a time-step of
a solver using a regular pressure projection.

It is difficult to compare the timings of our method directly with a
two-phase flow solver, because setting the air density to zero (as we
do) makes such models unstable. When using a finite air density
in a two-phase flow model, large density jumps induce large CFL
numbers near the interface, which must be treated with a careful
choice of smaller time steps. In addition, the size of the compu-
tational domain can become arbitrarily different from ours, as we
only simulate the liquid phase.

The introduction of our divergence regularization term in Eq. (9)
is likewise motivated by the runtime of our method. Omitting this
term would make the linear solver converge poorly, or not converge
at all. Another practical consequence of this specific regularizer is
that makes the matrix significantly sparser within the liquid.

As discussed in Section 4.4, our strategy of encoding the obstacle
motion with a stream function limits us to divergence-free velocity
fields. We will leave it for future work to extend these boundary
conditions to more general cases, e.g., arbitrarily deforming elastic
bodies. Compressible flows cannot be handled directly by our
stream function solver and require the treatment of an additional
gradient term in the Helmholtz-Hodge decomposition (Eq. (5)). We
also have not yet addressed inflow/outflow boundary conditions, but
we believe this should be possible in our method provided that the
boundary conditions integrate to zero total flux and thus conserve
volume. It may also be possible to sidestep these restrictions by
making the flow locally compressible.

We believe one of the most interesting aspects of this work is the
insight that stream-function solves are a viable alternative to regular
pressure solves. Furthermore we have demonstrated that, contrary
to popular opinion, free-surface boundary conditions can be seam-
lessly integrated into a stream-function solver. Having the stream
function available during fluid simulations has interesting implica-
tions. For example, the velocity computed from the stream function
is by construction always divergence-free up to the numerical pre-
cision of the curl operator. Thus, it would be possible to construct
interpolation schemes that are guaranteed to uphold this property,
in contrast to interpolations of velocity data, which currently intro-
duce divergence errors.

8 Conclusion and Outlook

We have presented a stream function approach to enforcing incom-
pressibility in a liquid simulation. Our approach has many theoret-
ical benefits, including guaranteed divergence-free velocity fields
regardless of the accuracy of the solve, and a straightforward exten-
sion to rigid-body coupling. Our novel variable-density formulation
yields a dramatic drop in computation in the limit that air density
tends to zero, while still satisfying the incompressibility constraint
everywhere.

In the future we would like to generalize the circulation-preserving
advection algorithm of [Elcott et al. 2007] to work with density
jumps. We may also be able to only track fluid variables at the
liquid-air interface. Combining such a strategy with an analytical
stream function could allow large-scale two-phase liquid simula-
tions without any volumetric computations.
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