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This paper presents a method for simulating water surface waves as a dis-
placement �eld on a 2D domain. Our method relies on Lagrangian particles
that carry packets of water wave energy; each packet carries information
about an entire group of wave trains, as opposed to only a single wave crest.
Our approach is unconditionally stable and can simulate high resolution
geometric details. This approach also presents a straightforward interface
for artistic control, because it is essentially a particle system with intuitive
parameters like wavelength and amplitude. Our implementation parallelizes
well and runs in real time for moderately challenging scenarios.
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1 INTRODUCTION
The motion of water surface waves is well-modeled by the two-phase
incompressible Navier-Stokes equations. The general form of these
equations is analytically and computationally intractable for detailed
water surface geometry, so researchers traditionally apply a small-
amplitude assumption that e�ectively linearizes the problem and
restricts the waves to a height-�eld de�ned over a two-dimensional
domain. This version of the water surface wave problem admits
sinusoidal wave solutions that have a speed depending on their
wavelength and water depth. However, although greatly simpli�ed
by the small-amplitude assumption, the problem is still too complex
to solve analytically.

Research in computer graphics has approached this linearized
water wave problem in a number of ways. Several methods have
made progress by enforcing additional assumptions like shallow
water [Kass and Miller 1990], in�nite depth [Mastin et al. 1987;
Tessendorf 2004b], omitting solid boundaries, or assuming static
solid boundaries [Fournier and Reeves 1986; Jeschke and Wojtan
2015]. Other approaches use numerical techniques for solving partial
di�erential equations in order to time-step through the water sur-
face wave dynamics [Canabal et al. 2016; Tessendorf 2004a]. These
approaches handle far more general scenarios, but they introduce
nontrivial problems relating to stability, energy conservation, spatial
resolution, and artistic control. Lastly, some methods approximate
the waves themselves as Lagrangian particles [Yuksel et al. 2007].
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Fig. 1. We introduce a new water wave simulation algorithm inspired by
wave packet theory. Our method can simulate accurate wave behaviors at
real-time rates (top) and highly detailed wave scenarios o�line (bo�om).

This approach has the potential to handle very general scenarios
with moving boundary geometry, but it produces solutions closer
to those of a constant-speed wave equation, as opposed to a fully
dispersive water wave equation.

We aim to leverage the potential of Lagrangian wave particles, but
in a manner that plausibly simulates water wave dispersion. Instead
of associating each particle with a single wave crest, we associate
each particle with a packet of wave energy consisting of an entire
spectrum of wavelengths and wave trains. We then describe how
this wave packet moves and deforms to approximate the behavior
of linearized water surface waves.

This paper makes the following contributions:

• Wave packets We introduce the concept of wave pack-
ets to computer graphics and describe their dynamics for
dispersive water waves.

• Visual detail Our method improves upon previous La-
grangian particle approaches by exhibiting more visual de-
tail (measured in wave crests per computational degree of
freedom), and by incorporating qualitative wave behaviors
like dispersion, di�raction, refraction, re�ection, dissipation
from the literature.
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• E�cient computation The method is unconditionally
stable, requires no arti�cial damping, is independent of
grids or spatial resolution parameters, and is inherently
parallel.

• Novel control parameters We introduce new mecha-
nisms which allow artists to directly control wave spectra
and computational complexity, exposing a straightforward
trade-o� between visual detail and computational speed.

2 RELATED WORK

2.1 Computer Graphics Literature
The animation of water surface waves has interested computer
graphics researchers since at least 1980 [Schachter 1980]. As stated
in the introduction, the main strategy since then has been to ap-
ply a multitude of assumptions to the Navier-Stokes equations
in order to express the motion of the ocean in the form of sinu-
soidal waves [Hinsinger et al. 2002; Mastin et al. 1987; Tessendorf
2004b]. While such assumptions sacri�ce the ability to simulate ar-
bitrary �uid motion, they lead to extremely e�cient computational
methods. Subsequent work augmented these simple models with
more interesting boundary conditions, splashes, spray, and break-
ing waves [Fournier and Reeves 1986; Gonzato and Le Saëc 1997;
O’Brien and Hodgins 1995; Peachey 1986; Thuerey et al. 2007a,b;
Ts’o and Barsky 1987]. The excellent survey by Darles et al. [2011]
covers this ocean simulation literature in more detail.

Several novel approaches to water surface wave simulation have
emerged in the past decade. Jeschke and Wojtan [2015] general-
ized the above analytical methods to handle complex boundaries
while respecting wave behaviors like dispersion and di�raction.
However, their method requires pre-computation and does not ad-
dress moving boundaries. Instead of using the analytical Fourier
solution, other researchers have explored two-dimensional Euler-
ian simulation [Tessendorf 2004a]. Subsequent research extended
this method by addressing the accumulation of numerical errors
over time [Tessendorf 2014] and more accurately capturing disper-
sive e�ects [Canabal et al. 2016]. Boundary-only approaches also
show promise for e�ciently simulating more general ocean wave
behavior, though they currently require orders of magnitude more
computation [Da et al. 2016; Keeler and Bridson 2014].

The “Wave Particles” approach of Yuksel et al. [2007] is most
similar to ours. It represents each wave crest with its own set of
particles, allowing wave re�ections and interactions with dynamic
objects. It is also straightforward to implement, parallelize, and
control. Nevertheless, the one-particle-per-crest approach can be
expensive when simulating long wave trains or high-frequency
waves. Similarly, it is di�cult for this method to simulate wave
dispersion, because it adds a new dimension to the problem (one
particle per crest, per wavelength). The method also implausibly
transports wave energy at the phase speed instead of the group
speed. Lastly, the approach does not address how to handle wave
e�ects like refraction, di�raction, dispersion, or re�ection o� non-
planar boundaries, although the subsequent dissertation [Yuksel
2010] provides useful insights on how to extend the method toward
these aims. The Wave Particle approach has inspired follow-up work
on background �ows [Cords 2008], and the method’s controllability

Fig. 2. Our method can e�iciently add subtle detail like rain ripples (le�) or
boundary reflection waves (right) to existing scenes.

and speed have made it an excellent candidate for simulating water
in video games [Gonzalez-Ochoa 2016].

However one chooses to simulate surface water waves, the results
can be used in many di�erent applications. Previous researchers
have used waves as boundary conditions or guide shapes [Nielsen
and Bridson 2011; SideFX 2013], or as a type of physics-based pro-
cedural texture [Chentanez and Müller 2010]. Wave simulation pa-
rameters can also be tuned to achieve a desired look [Horvath 2015;
Nielsen et al. 2013]. Researchers have also combined water surface
wave simulations with fully three-dimensional simulations [Kim
et al. 2013; Mercier et al. 2015; Thuerey et al. 2010; Yang et al. 2016;
Yu et al. 2012]. We show how our method can augment some existing
2D simulations in Figure 2.

2.2 Physics Literature
The idea of considering Lagrangian water wave packets as a fun-
damental primitive, while novel to computer graphics, has a long
history in theoretical physics. It seems to have originated during the
explosion of theoretical quantum mechanics research in the early
20th century; in this case, the waves come from the Schrödinger
equation [Birkho� 1927]. Because the mathematical derivation of
wave packets works for any dispersive equation, oceanographers
have since used wave packet theory to also explain the transport of
water wave energy [Pedlosky 2013]. Some even proposed to name
the water wave packet the “hydron” and give it the same standing
as other fundamental particles in physics, like photons and elec-
trons [Synge 1962]. Despite the theoretical utility of considering
water waves as packets, to the best of our knowledge, ours is the
�rst method to use water wave packets as a fundamental primitive
for numerical simulation.

3 WATER WAVE DYNAMICS

3.1 Airy wave theory
Airy wave theory [Airy 1841] describes a water surface as a height
function that varies with time, η(x, t). We can use this framework
to analyze how a group of waves propagates, and then use these
theoretical results to develop a computationally e�cient method
for simulating water surface waves. We will �rst analyze the one-
dimensional case, η(x , t), and then extend the ideas to cover a two-
dimensional water surface.

If we look at the Fourier transform of the water surface height
�eld, we can view the surface as an integral of many di�erent waves
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of varying wavelength:

η(x , t) =

∫ ∞
−∞

a(k) cos
(
kx − ω(k,h)t

)
dk . (1)

In this equation, k is the wavenumber, which is inversely propor-
tional to the wavelength λ via the relationship k = 2π/λ, x is the
spatial coordinate, h is the water depth, ω(k,h) is the angular fre-
quency (which is inversely proportional to the period T (k,h) via
ω = 2π/T ), a(k) is the amplitude of each wave, and t is time. The
angular frequency has a special form that gives water waves their
distinct characteristics:

ω(k,h) =

√(
дk +

σ

ρ
k3

)
tanh(kh), (2)

whereд is gravity, σ is the surface tension, and ρ is the water density.
This relationship between the frequency ω and the wavenumber k
is known as the dispersion relation. From this relation, we can see
that the argument to the wave in Equation (1) can be factored into
k(x − cp (k,h)t), where

cp (k,h) =
ω(k,h)

k
=

√(
д

k
+
σ

ρ
k

)
tanh(kh) (3)

is the propagation speed of a given wavelength, known as the phase
velocity. In 2D, the energy of a water wave with wavenumber k over
a surface area A is

E(k) =

∫
A

1
2

(
ρд + σk2

)
(a(x))2dA. (4)

Wave energy travels with the group velocity cд , which is de�ned as

cд(k) =
dω

dk
(5)

and described further in Appendix A. In one dimension, k , cp , and
cд are scalars. In two dimensions, they are vectors k, cp , and cд , and
we use the scalar k as shorthand for the wavevector’s magnitude
| |k| |.

Intuition. We can extract some good intuition from the equations
in this section if we consider their limit behaviors. For gravity waves
(ρд � σ ) in deep water (kh � 1), longer wavelengths travel faster
than shorter ones. We tend to see long waves on the outer edge of
splashes, while shorter waves lag behind. Furthermore, the phase
speed is equal to twice the group speed, so the wave crests actually
outrun their energy and create the e�ect of wave crests disappearing
at the outer edge of a splash. At intermediate water depth, cp slows
down as depth decreases, while cд speeds up, until they �nally
become equal in shallow water (kh � 1), where all wavelengths
travel at a constant speed cp =

√
дh.

For capillary waves (ρд � σ ), which almost exclusively occur
in the deep water/high wavenumber regime kh � 1, short wave-
lengths travel faster than longer ones. Thus, small splashes domi-
nated by surface tension will have shorter wavelengths on the outer
edge. Phase velocity is only two-thirds of the group velocity, so
the energy outpaces the wave crests, creating the e�ect of waves
materializing on the outer edge of a splash. All of these qualitative
e�ects can be seen in our results.

3.2 Wave packets
In this paper, instead of computing with in�nitely long wavetrains
[Mastin et al. 1987] or single wave crests [Yuksel et al. 2007], we
would like to propagate localized packets of waves. Each wave packet
will represent a collection of similar wavelengths, and it will cover a
larger region of space than a single wave crest. Such a strategy will
allow us to simultaneously represent long wave trains with a single
computational element, have the waves interact with a dynamically
changing environment, and obey the qualitative behaviors described
by Airy wave theory.

At this point in the derivation, we are free to choose what we’d like
these wave packets to look like. We will list a few desired properties,
so we can make some educated decisions later. First, we would
like environmental variations like solid boundaries, water depth
gradients, and user interactions to a�ect each packet as a whole.
Thus, each wave packet should be compactly supported in spatial
coordinates. On the other hand, fundamental physical properties
like energy act locally in frequency space, so each wave packet
should be compactly supported in wavenumber coordinates as well.
So we want a kernel function ϕ(x) for our wave packets that acts
locally in space, and whose Fourier transform Φ(k) also acts locally
in wavenumber. Although no function can be truly topologically
compact in both x and k due to the uncertainty principle for the
Fourier Transform [Phillips 2005], many functions approximate
this behavior by heavily weighting nearby values and falling o�
exponentially. We will use a Gaussian function ϕ(x) = exp(−x2)
to represent the wave packet kernel, like many previous works in
quantum physics [Libo� 2003].

Now, we can break up the integral in Equation (1) into a summa-
tion of individual packets of wavenumbers centered around some
representative wavenumber kj :

η(x , t) ≈
N∑
j=1

∫ ∞
−∞

Φ(k − kj )a(k) cos
(
kx − ω(k,h)t

)
dk, (6)

where Φ is our wave packet shape and N is the number of wave
packets. This equation is equal to Equation (1) if the Φ functions are
a partition of unity (i.e., if

∑n
j=1 Φ(k − kj ) = 1 for all k). Otherwise,

as in our implementation, the right hand side is only approximate.
By assuming that the spectrum within each packet of waves is

tightly concentrated around their representative wavelength kj (i.e.,
if Φ(k) falls o� quickly away from k = kj ), then we can approximate
w(k,h) and a(k) with a �rst order Taylor expansion. After some
analysis (carried out in Appendix B), we arrive at the expression

η(x , t) ≈
N∑
j=1

ajϕ
(
x − cдt

)
cos

(
kj (x − cpt)

)
, (7)

which states that the water surface waves can be reasonably ap-
proximated by a sum of wave packets, each described by a kernel
function ϕ which travels at group speed cд and acts as an envelope
for a single representative wave traveling at phase speed cp . Each
packet has a spatially-varying amplitude a(x , t) = ajϕ(x − cдt),
where aj is a spatially-constant amplitude scale factor associated
with packet j.

If we allow the speeds cд and cp to vary over time, then we should
replace the analytical phase shifts cдt and cpt with integrated ones
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Fig. 3. The components of a single wave packet visualized in one dimension (top) and two dimensions (bo�om). A cosine wave (le�) is multiplied by a Gaussian
envelope (center) to produce a wave packet (right).

Xд(t) =
∫
cд dt and Xp (t) =

∫
cp dt , which build up a displacement

over time by tracing along the paths of a packet and wave crest:

η(x , t) ≈
N∑
j=1

ajϕ
(
x − Xд

)
cos

(
kj (x − Xp )

)
. (8)

We ultimately want our packets to be Lagrangian computational
elements, so we prefer to express the wave dynamics in the packet’s
local coordinate frame x̂ = x − Xд :

η(x̂ , t) ≈
N∑
j=1

ajϕ
(
x̂
)
cos

(
kj (x̂ − Xpд)

)
, (9)

where Xpд =
∫
(cp − cд)dt is the integrated drift between phase

speed and group speed over time.
In two dimensions, this formula generalizes to

η(x̂, t) ≈
N∑
j=1

ajϕ
(
x̂
)
cos

(
kj · (x̂ − Xpд)

)
, (10)

where bold notation indicates a two-dimensional vector. Note that
kj is now a wave vector with magnitude kj , and cp and cд are
velocity vectors with a direction and magnitude. We illustrate one
term of this summation (a single wave packet) in Figure 3.

3.3 �alitative wave behaviors
Reflection. A wave packet re�ects when it collides with an obsta-

cle. An elastic collision would perfectly preserve energy and keep
the amplitude the same, and an inelastic collision can be simulated
by decreasing the amplitude of the packet after a collision.

Dispersion. Some waves in the group travel faster than others,
due to di�ering group velocities as a function of k . Consequently,
the faster waves will push part of the packet ahead of the average
group speed, and the slower waves will pull another part of the
packet a bit behind. The result is that the packet spreads out as
it traverses space, at a rate proportional to dcд/dk . (This can be
shown with a derivation similar to that in Appendix B that keeps
higher order terms of ∆k [Libo� 2003; Vandegrift 2004].) At the
end of the day, this spreading stretches out our wave packet in

the traveling direction, so conservation of energy dictates that the
packet’s amplitude must correspondingly decrease.

Refraction. The group speed of the packet may change as it tra-
verses space, because cд changes with water depth, and water depth
can change over space. In these situations, the packet will change
direction (refract), in a manner consistent with Snell’s law [Breeding
1978].

Di�raction. Individual waves bend around obstacles, so wave
packets will di�ract in the same way. Because waves di�ract di�er-
ently depending on the wavenumber k , we believe the wave packet
should spread out along the tangent direction. We have not yet
worked out the theoretical di�ractive spreading behavior and have
not found it in the literature, but we know that the spreading and
amplitude are constrained by the conservation of energy.

3.4 Energy of a wave packet
We would like to enforce conservation of energy as a wave packet
propagates through space. The energy in Equation (4) is quadratic
in amplitude and wavenumber and linear in area, so increasing the
wavenumber or stretching the packet will correspondingly increase
its energy. If we wish to keep energy unchanged, then we should
alter the packet’s amplitude to compensate for such changes. We cal-
culate the exact amplitude scaling law for a packet with a Gaussian
kernel in Appendix C.

In two spatial dimensions, waves not only traverse back and forth,
but they can also spread apart. For example, a rain drop may start
as a tight circle of wave energy, but the circumference increases as
the waves travel outward. Conservation of energy dictates that the
amplitude must decrease as each packet spreads out.

In nature, wave packets can lose energy due to a variety of factors.
In addition to inelastic collisions described in the previous section,
we also consider simpli�ed energy dissipation due to viscosity, sur-
face contamination, and more complicated non-linear behavior.

3.4.1 Viscosity. Viscosity is often modeled by explicitly reducing
the wave amplitude in accordance with viscous potential �ow the-
ory [Padrino and Joseph 2007]. In the absence of all other amplitude
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changes, the amplitude will decay over time:

da

dt
= −2νk2a (11)

Although the viscosity of water ν is small (around 10−6m2/s), the
amplitude drops exponentially. The dependence on k2 means that
small wavenumbers (long wavelengths) basically ignore viscosity,
while large wavenumbers are almost immediately damped out by it.

3.4.2 Surface contamination. In addition to viscosity, subtle sur-
face contaminants (dirt, algae, oil etc.) will have a strong damping
e�ect on water waves. This e�ect can be modeled as an additional
decay rate [Dorrestein 1951; Le Méhauté 1988]

da

dt
= −

1
2
ν

(
ω(k)

2ν

) 1
2
ka (12)

3.4.3 Non-linearity and breaking waves. Lastly, because Airy
wave theory assumes small amplitudes (a � λ), it cannot accu-
rately model steep waves, especially the energy dissipation that
occurs when waves break and topple over. De�ning steepness as
the ratio of a wave’s height divided by its wavelength, Dean and
Dalrymple [1991] observe that waves in deep water break once their
amplitude exceeds a steepness threshold of 7% of their wavelength,
dissipating energy in the process. A simple way to approximate this
type of dissipation is to reduce the amplitude of a wave packet until
a ≤ 0.07λ.

4 IMPLEMENTATION
Now that we have explained the theoretical behaviors of wave pack-
ets, we will explain how to implement them into an e�cient algo-
rithm for simulating detailed water wave behaviors. We model each
wave packet completely independently, so they can be computed in
parallel.

4.1 Representing wave packets
Each packet has a representative wavenumber kj = 2π/λj and an
amplitude aj . We model the spatial extent and deformation of the
packet with a rectangular patch of initial dimensions 3λj in the
traveling direction and 6λj in the tangential direction. Instead of
using a single particle to track the position of the packet over time,
we use two vertices p1 and p2 centered at the front edge of the packet.
These two vertices allow us to track the deformation and rotation
of the packet, which is important for simulating proper energy
behavior, as well as refractions and re�ections in a complicated
environment. The distance between the two vertices will vary over
time as waves focus and spread, so they are not kept at a �xed
distance from each other. However, we subdivide the packet if they
drift too far apart (Section 4.3). To model the extent of the packet in
frequency space, we assign a range of wavenumbers (from kmin to
kmax, with kj = (kmin + kmax)/2) to each packet.

Once we have an initial packet, we can model its dynamics. Start-
ing with the initial travel direction, the two vertices propagate at
the group speed cд . We integrate the vertex positions through time
with a simple forward Euler method.

p(t + ∆t) := p(t) + ∆tcд(p(t),kj ) (13)

More advanced time integration schemes may be useful for accu-
rately resolving re�ections and refractive angles, but they will not
make the method any more stable. Our method is stable regardless
of the time step size, due to our geometric method for conserving
energy (described in Section 4.2).

We also model dispersion, by tracking the fastest and slowest
wavenumbers in the packet’s spectrum to see how far they drift
apart. We assign each packet a length parameter l , which is initially
set to 3λj , and we track the dispersive stretching using a similar
integration rule:

l(t + ∆t) := l(t) + ∆t(cд(kfast) − cд(kslow)), (14)

where kfast and kslow are the wavenumbers in the packet’s range
which correspond to the fastest and slowest group speeds, and cд is
the magnitude of cд . Conveniently, cд depends straightforwardly
on k : it monotonically decreases until k = kslowest ≈ 143m−1, and
then it monotonically increases. Thus, we can always assume the
minimum and maximum wavelengths in the packet’s range are the
fastest and slowest, as long as we don’t create any packets that
span kslowest. If a packet is created that would span kslowest, then we
carry out a dispersive subdivision routine (Section 4.3) and split the
spectrum exactly at kslowest. Speci�cally, we create two new packets,
one with the part of the spectrum above kslowest, and the other with
the part less than kslowest, and then delete the original packet.

We also change each packet’s representative wavelength kj de-
pending on its environment, by ensuring that each wave group
satis�es the dispersion relation (2) at all times. This constraint gives
our simulator a mechanism to exhibit wave shoaling, i.e., when a
wave slows down and decreases its wavelength as it enters shallow
water. To do this, we �rst keep the angular frequency ωj �xed for
each packet. Then, during each time step, we solve for kj by repeat-
ing kj := ωj/cp (kj ,h) until convergence, as suggested by Jeschke
and Wojtan [2015]. This scheme converges in very few iterations
because it starts with a close initial guess. We believe we could
optimize this function with a look-up table, but it is not currently a
bottleneck.

Lastly, Equation (10) requires the computation of the integrated
drift between phase speed and group speed for each packet, Xpд =∫
(cp − cд)dt . We again employ forward Euler integration:

Xpд(t + ∆t) := Xpд(t) + ∆t(cp (kj ) − cд(kj )). (15)

4.2 Amplitude adjustment
The energy scaling law described in Section 3.4 and Appendix C is
exact for Gaussian wave packets in an in�nite domain without in-
ternal boundaries, and we use it to approximate a more complicated
domain.1 We �rst compute the area of the packet in each time step

Aj (tn+1) = | |p1(tn+1) − p2(tn+1)| |l(tn+1)

Aj (tn ) = | |p1(tn ) − p2(tn )| |l(tn ) (16)

1Assuming that re�ections will keep the peaks of wave packets outside of solid bound-
aries, the inaccuracies will only occur in the tails of the Gaussian ϕ function, so the
total energy errors are exponentially small.
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p1

p2

p1

p2

psub

Fig. 4. During subdivision caused by tangential stretching, we subdivide
the edge p1p2 and distribute the new edges p1psub and psubp2 to two new
packets. This figure shows the result shortly a�er subdivision; the two new
packets have already dri�ed apart, and the new line segments are no longer
co-linear.

We then conserve energy by scaling the amplitude as described in
Appendix C:

aj (tn+1) := aj (tn )

√√
(ρд + σk2n )Aj (tn )

(ρд + σk2n+1)Aj (tn+1)
(17)

where we temporarily introduced the notation kn := kj (tn ) and
kn+1 := kj (tn+1). For convenience, our implementation deletes any
packet when its steepness falls below a minimum threshold.

We �nd this scheme for conserving energy extremely useful in
practice. Its e�cacy is independent of numerical parameters like
the time step size and packet shape, unlike schemes derived by
discretizing a di�erential equation (it is a discrete conservation law,
rather than a discretized one). Our scheme also gives us a hard
upper bound on the total wave energy in the system, and we argue
in Appendix D that the packet’s velocity cд is bounded as well.
These bounds, coupled with the fact that energy in each packet can
only stay the same or dissipate, ensure that numerical blowups will
never happen. Among other bene�ts, this unconditional numerical
stability allows our waves to propagate at arbitrarily high speeds
without a time step restriction or arti�cial damping. This behavior
is particularly di�erent from Eulerian methods which impose a
stringent CFL condition for capillary waves.

Extreme numerical integration errors (from Equation (13)), like
missing a collision due to a huge time step, will still conserve energy,
though they may generate packets with large areas and invisibly
small amplitudes. The linear superposition principle prevents such
erroneous packets from in�uencing any others.

4.3 Packet subdivision
When a packet deforms beyond a threshold, we choose to subdivide
it in two. We can view this as a type of adaptive re�nement strategy,
to keep the space well-sampled with packets. We treat subdivision
di�erently depending on whether excessive deformation is caused
by geometric deformation (stretching in the tangential direction) or
dispersion (stretching in the travel direction).

4.3.1 Geometric subdivision. We choose to subdivide a packet if
the distance between the packet vertices | |p1(tn ) − p2(tn )| | exceeds
3λj , or if the angle between the group velocities cд(p1(tn )) and
cд(p2(tn )) exceeds 18 degrees. In either case, we replace the packet
with two new overlapping ones by adding a new vertex psub at the
position (p1 + p2)/2 and set p1 = psub for one of the new packets
and p2 = psub for the other. Because each new packet has half the
area of the original, each new packet gets half the energy of the
original (each new amplitude is equal to the original divided by

√
2).

All of the other parameters are kept constant during subdivision.
Please see Figure 4 for an illustration of this process.

4.3.2 Dispersive subdivision. We also subdivide packets due to
excessive dispersion, creating two new packets and distributing
the packet’s wave spectrum among them. When the packet length
stretches beyond a threshold (l > 1.3l0 in our implementation,
where l0 is the original length of the packet), we replace the packet
by two new ones with exactly the same position and other packet pa-
rameters. We then distribute the wave spectrum to the new packets
by introducing a mid-range wavenumber ksub = (kmin + kmax)/2
and setting kmin = ksub and for one new packet and kmax = ksub for
the other. Afterwards, the representative wavenumbers of each new
packet are set to (kmin + kmax)/2. The energy distribution between
the two new packets depends on the spectrum of the original packet
(how much energy was allocated to each of the in�nite number of
wavenumbers in the original packet). Our implementation simply
chooses new amplitudes such that energy is conserved and both new

(a)

(b)

(c)

(d)

packets have the same steepness,
implying that the original spec-
trum stored more energy in lower
wavenumbers. The exact values of the
new amplitudes are shown in Appen-
dix E. To account for the accumulated
packet spreading up to this point, we
reset l for each packet to l := (l−l0)/2.
We provide a one-dimensional illus-
tration of this dispersive subdivision
in the inset �gure. Here, an initial
wave packet (a) is split into a sum of
two packets with di�erent wave spec-
tra (b). The new packets then then
drift apart due to dispersion (c), (d).
The distance between packets in (d) is
exaggerated for e�ect; our implemen-
tation will subdivide packets further
before they drift this far apart.

4.4 �alitative wave behaviors
The qualitative wave behaviors described in Section 3.3 are repro-
duced in our system with minimal additional work.

Reflection. When a wave packet vertex collides with a solid obsta-
cle, we re�ect each packet vertex as if it were a light ray re�ecting o�
a re�ective surface [Whitted 1980], speci�cally following the rules
for re�ecting line segments described by Jeschke and Wojtan [2015].
However, because packets have a �nite spatial extent (a wavelet
trailing behind the two packet vertices), re�ecting all of the wave

ACM Transactions on Graphics, Vol. 36, No. 4, Article 103. Publication date: July 2017.



Water Wave Packets • 103:7

crests in the packet at once will cause a visually disturbing disconti-
nuity. Instead, we continuously re�ect all of the wave crests in the
packet over time by creating a “ghost” packet which follows the
original packet’s trajectory before re�ection, until it is completely
absorbed into the obstacle.

Dispersion. As described in the previous section, we subdivide
packets when they spread out due to internal dispersion. These sub-
division events create packets with di�erent representative wavenum-
bers. Because each of these new packets will have a di�erent group
speed, it naturally creates the e�ect of waves with di�erent wave-
lengths traveling at di�erent speeds.

Refraction. Each wave packet vertex also refracts as it travels.
We compute the group speed at the beginning and end of each time
step for each vertex, and we then compute the change in travel di-
rection based on Snell’s law. This process is similar to how it is done
in previous work on wavefront tracking [Gamito and Musgrave
2002; Gonzato and Le Saëc 1997; Jeschke and Wojtan 2015; Ts’o
and Barsky 1987]. Our implementation keeps the wavelet aligned
with the packet traveling direction, e�ectively refracting both the
envelope and the wavelet together. A more accurate method would
refract both the envelope and the wavelet independently, but we
did not �nd the subtle visual di�erence worth the additional com-
putational expense and risk of numerical drift.

Di�raction. We implement di�raction in a manner identical to
Jeschke and Wojtan [2015]: if one vertex of a packet collides with
a solid boundary at a grazing angle, then we simply “glue” it to
the boundary by restricting its motion to lie tangential to the solid
boundary surface. This action is all that is needed to make waves
di�ract around obstacles. Highly curved boundaries will also stretch
out packets, leading to rapid geometric packet subdivision (Sec-
tion 4.3) and the expected exponential fall-o� in amplitude [Levy
and Keller 1959]. However, this di�ractive approximation does not
incorporate wavelength-dependence; more accurate di�raction re-
quires further research.

Dissipation. We include the dissipative e�ects in Section 3.4 by
analytically integrating these decay rates once per time step:

a(t + ∆t) = a(t) exp(−(2νk2 + νk (ω(k)/2ν )
1
2 /2) α∆t), (18)

where ∆t is the time step size, and α is an optional control parameter
described below in Section 5.3.

4.5 Visualization
To visualize the displacement �eld given by our wave packets, we
begin with a �at surface and evaluate the wave height according to
Equation (10). For evaluating this equation, we set Xд = (p1+p2)/2,
making the local coordinates x̂ relative to the point at the front and
center of the wave packet.

Although we use a Gaussian function for the kernel ϕ when
computing the wave physics, we use a more compact and e�cient
approximation function ϕviz when evaluating (10) for visualization
purposes. We �rst parameterize the rectangular patch representing
each wave packet (Section 4.1) with coordinates u,v ∈ [0, 1], and
then choose a simple cosine kernel that peaks at the center of the

p1

p2

pint

p
p′

L1

Lcenter

Fig. 5. This diagram shows how to evaluate circular wave arcs within a wave
packet. Line Lcenter is parallel to the average traveling direction of both wave
packet vertices and runs through the packet’s geometric center, while line
L1 is parallel to cд (p1) and runs through vertex p1. Lcenter intersects L1 at
pint. We map any point p to its corresponding point p′ along the centerline
with p′ = pint + | |p − pint | |Lcenter/ | |Lcenter | |. This is where we evaluate x̂
in Equation (10).

packet and falls to zero with zero �rst derivative at the packet
boundary:

ϕviz(u,v) = (1 − cos(2πu))(1 − cos(2πv))/4 (19)

We set the visual dimensions of the packet’s rectangular patch to
3λj in the traveling direction and 6λj in the tangential direction.

The argument to the cosine function in Equation (10) maps spa-
tial coordinates to a one-dimensional phase function. While this
mapping is straightforward in 1D, we are left with several options
for reducing a 2D rectangular packet to 1D. The simplest implemen-
tation assumes a piecewise-constant wavevector kj , which e�ec-
tively keeps the crests of the cosine wavelets in Equation (10) in
straight parallel lines. However, we found that a piecewise circular-
approximation looks far more realistic, especially near boundaries
and sources that tend to emanate circular waves. To achieve this,
we follow the geometric construction in Figure 5. We show a com-
parison between using a constant kj and a circular one in Figure 6.

Subdividing a packet into two new ones (Section 4.3) can cre-
ate visual popping artifacts without very conservative subdivision
thresholds. To allow more e�cient computation without visual ar-
tifacts, we visually fade between the original packet and the new
subdivided ones as they propagate over a distance of 3λj . We also
visually blend re�ecting packets, during the period when the “ghost”
packet penetrates an obstacle and the re�ected packet emerges from
it. We do this because, although the continuous re�ection approach
in Section 4.4 is perfect for planar solid obstacles, large rectangu-
lar packets can appear to erroneously leak around the corners of
obstacles that are highly curved.

We rapidly evaluate the wave heights using a GPU-accelerated
level of detail approach similar to Hinsinger et al. [2002] and Jeschke
and Wojtan [2015]. We �rst create a pixel grid in the viewport and
then project the pixel locations onto the plane representing the water
domain. At each of these sample points, we use GPU acceleration
to evaluate η in Equation (10). Our method also allows additional
horizontal displacements (with a Gerstner or Biesel model [Fournier
and Reeves 1986], for example), but we did not �nd this necessary.
We also found it useful to add additional ocean texture to some
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Fig. 6. Overlapping packets consisting of linear wavefronts can produce
cross-hatching artifacts in high curvature regions (le�). Circular arc wave-
fronts remove these artifacts (right).

scenes by evaluating a Fourier ocean spectrum [Tessendorf 2004b]
and a simple foam shader on top of our simulated waves.

5 CONTROL
Similar to any particle system, we can control the look and feel of
the results by selectively choosing initial parameters. We can also
control the computational complexity by customizing the “lifetime”
of each packet.

5.1 Initializing wave packets
Although the wave packet parameters allow plenty of room for
artistic control, all of our examples use the same rules for initializing
waves. We tune the initial wave spectrum by hand (a simple rule
of thumb is to estimate the lowest frequency of the disturbance
causing the waves, and then �ll in the higher frequencies with noise
at a lower amplitude). We choose the initial position of each packet
based on the shape of the initial disturbance (like dividing up the
outline of a boat or small circle into individual packets). We set the
initial traveling direction normal to the starting shape, with the
magnitude of cд determined by Equation (5).

In our examples, we emit waves from an initially circular shape,
or from solid obstacles like boats and buoys. We can also change the
apparent roughness of an obstacle’s surface by altering the spectrum
of waves that re�ect o� it; stretching the re�ected spectrum to
higher wavenumbers seems to visually indicate a more detailed
surface. To implement elementary one-way �uid-to-solid coupling,
we pull the solid toward the water surface at each time step with a
buoyancy force integrated with an unconditionally stable backward
Euler integration scheme. We did not yet implement coupling from
moving objects to waves, so our results exhibit inaccurate re�ections
near �oating objects.

5.2 Wakes
Once we know how to emit waves from a source shape at a single
instant in time, it is straightforward to simulate a continuous source
(like a moving boat) by repeatedly emitting waves each time step.
However, the characteristic “wake” shape that we expect to see is
quite expensive to simulate using this straightforward technique.
The di�culty arises from interference: although a huge number of
waves are simulated, most of them will destructively interfere and
provide no visual feedback. Instead, we would like to emit only the
visually dominant waves in the wake pattern, but the trick is to
�gure out which ones. We turn to Kelvin’s theory of wakes for this
information [Johnson 1997; Thomson 1891; Whitham 2011].

Fig. 7. Di�erent values of v produce qualitatively di�erent wakes. Slow
disturbances (top) emphasize connected circular arcs, while fast motions
(bo�om) emphasize long chevron pa�erns.

Kelvin showed that, for a circular wave source moving at a con-
stant velocity in the deep water gravity wave regime, the construc-
tively interfering waves follow the relationship

k =
д

| |v| |2 cos2 θ
, (20)

where v is the velocity of the wave source, θ ∈ [−π/2,π/2] is the
angle that the wave packet’s travel direction makes with v, and k is
the dominant wavenumber in that direction. The strongest wave
packet in this family occurs at θ ≈ 35.3◦, which corresponds to
the outer edge of the wake. When we simulate a moving boat, we
emit a small number of packets each time step at random angles
with representative wavenumbers that obey Equation (20). Figure 7
shows an example of di�erent wakes that our method can generate
using this strategy.

5.3 Control over packet lifetime
In addition to deleting packets when their amplitude is too small
(Section 4.2), we can delete them more aggressively if we want
to control the algorithm run-time. Instead of naïvely assigning a
“lifetime” to each wave packet, we adaptively scale the existing
physical damping mechanism. Each time step, we re-compute a
control parameter α to reduce the current number of wave packets
N down to a target number of surviving packets Ntarget, as follows:

α = 1 + β max(0,N /Ntarget − 1)2 (21)

with sti�ness parameter β = 100 for all of our experiments. We then
substitute α into the damping exponent, as in Equation (18). This
strategy e�ectively implements a soft constraint on the maximum
number of wave packets, because there is no feedback on how many
packets survived the new α parameter until the next time step.
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6 RESULTS AND DISCUSSION
We have tested our method across a wide range of parameters (sur-
face tension, viscosity, gravity) and challenging environments (large
and small scales, varying initial wave spectra, varying water depth,
and complex boundaries). We show some examples of our method
in Figures 1 and 2. Please see our supplemental video for more
examples.

Our method is inspired by physical laws, and it exactly satis-
�es energy conservation, wave propagation speeds, and damping
by construction. Because we explicitly model energy and group
velocity, our approach also recreates subtle behaviors like the dis-
appearance of wave crests as they enter low-energy regions. This
e�ect is extremely expensive to model by interference alone.

6.1 Parameters
Most of the parameters in our model (surface tension, viscosity,
gravity, etc.) map directly to measurable physical quantities. How-
ever, the method also has numerical parameters like the thresholds
for subdividing packets and the minimum steepness threshold for
deleting packets. These parameters do not a�ect the qualitative
behavior of our simulations, but they do a�ect performance and
visual detail. Varying the subdivision thresholds causes earlier or
later subdivision, and varying the minimum steepness threshold
shortens or extends packet lifetimes. We chose these thresholds
empirically to trade o� between visual detail and the number of
packets.

6.2 Limitations
We intentionally neglected some minor e�ects, like a viscosity-
dependent wave speed or independent refraction e�ects for wavelets
and groups. However, the main limitations of our method come
from the oversimpli�ed linear theory used to derive it. All non-
linear e�ects, like the facts that wave speeds should technically
depend on amplitude and colliding waves do not strictly obey the
superposition principle, are absent from our results. More extreme
e�ects, like breaking waves and topology changes during splashes,
are completely outside the scope of our method. We also do not
know how to make our method feed back on itself and alter its own
liquid domain, like when a tidal wave rolls ashore and spreads water
to previously dry areas.

Lastly, we do not yet have a satisfying theory for seeding wave
packets (or wave particles, for that matter). We have presented a
theoretical model for seeding wakes, but we would like to have a
general method for computing the initial wave spectrum.

6.3 E�iciency
We implemented the wave packet dynamics in parallel on the CPU.
Our method’s run-time depends approximately linearly on the num-
ber of simulated wave packets, as illustrated by Figure 8. On our
test machine (Laptop with 4-core 2.6GHz Intel i7-6700HQ, 32GB
RAM, GeForce GTX 1070 GPU), a single packet takes about 2× 10−4
milliseconds to simulate per time step. The 60fps simulation speed
cut-o� was about 85k wave packets, although our code could bene�t
from additional optimization. The interactive simulation in Figure 1
(top) used around 50k packets with a total frame rate consistently
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Fig. 8. We recorded the number of wave packets and the simulation time
per time step in a complicated simulation (many independent splash events
near complex boundaries and varying water depth). This plot shows a near
linear relationship between the two.

above 20fps; rendering is the bottleneck of our implementation,
taking 2/3 of the total time. The most complex example at the end
of our supplementary video used about 6 million wave packets and
took between one and two seconds per frame to simulate. In the
future, we plan to achieve a considerable speed-up by porting our
wave packet code to the GPU.

6.4 Comparison to alternative methods
Figure 9 and our supplementary video compares our method to an
implementation of Wave Particles [Yuksel et al. 2007]. Like ours, the
Wave Particles approach is a Lagrangian technique that propagates
wave information through the environment. Although it has more
computational expense per element (per packet in our case, per par-
ticle in Wave Particles), we argue that our method is more versatile
and physically plausible. Wave particles cannot simulate dispersion
or realistic energy propagation, which we believe are important
for a visually plausible simulation. These artifacts can be seen in
our video when wave particles drift apart and leave erroneous gaps
between them, and when wave crests fail to disappear as they run
to the edge of a splash wave. Furthermore, our implementation
allocates a 3λj × 6λj area of wavefunction detail to each packet,
representing approximately 3× 6 isotropic wave crest samples. Con-
sequently, we need around 18 wave particles to represent the same
level of detail as a single wave packet.

It is di�cult to compare our method directly to an Eulerian
method [Tessendorf 2004a]. Eulerian methods tend to handle quali-
tative wave e�ects like dispersion, re�ection, and di�raction without
any of the additional implementation overhead that is required by
Lagrangian approaches like ours. In particular, re�ection and di�rac-
tion fall out naturally from Eulerian approaches by simply adding
boundary conditions. However, the standard numerical di�culties
with Eulerian methods, like the CFL condition imposing a maxi-
mum stable time step, Nyquist’s limit imposing a minimum visible
wavelength, and discretization errors causing arti�cial viscosity, are
not present in our method. Our method can stably simulate arbitrar-
ily high wavenumbers, large surface tension forces, and large time
steps, without encountering instability or numerical dissipation.
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Fig. 9. We compare our method (top) to an augmented version of Wave
Particles that incorporates dispersion, dissipation, di�raction, and reflection
o� curved obstacles (bo�om). Even with these extensions, the wave particles
approach exhibits unrealistic phase and group speeds, and it creates gaps
when wave crests separate. These images come from di�erent times in the
simulations, because wave particles overestimate the wave speed.

Although the theory behind wave packets may be cumbersome,
the implementation is quite simple, easy to parallellize, and robust.
Source code for our implementation is available at: https://doi.org/10.
5281/zenodo.525184 and http://pub.ist.ac.at/group_wojtan/projects/
2017_Jeschke_WaterWavePackets/
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A GROUP VELOCITY
Group velocity is de�ned as cд = dω/dk , with ω given by Equa-
tion (2). This can be computed exactly

cд =
h

(
дk + σ

ρ k
3
)
sech2(kh) +

(
д + 3σρ k

2
)
tanh(kh)

2ω
(22)

or approximated with �nite di�erences, for example

cд ≈
ω(k + ∆k) − ω(k)

∆k
, (23)

with ∆k equal to a small value like 10−4. We use the exact version
for the results in this paper.

B WAVE PACKET DERIVATION
For convenience of notation, we begin with Equation (1) in expo-
nential form:

η(x , t) =

∫ ∞
−∞

a(k)ei(kx−ω(k)t )dk . (24)

A Taylor series expansion tells us that a group of waves centered
around some wavenumber kj will have a dispersion relation approx-
imately equal to

ω(kj + ∆kj ,h) ≈ ωj + cд(kj ,h)∆kj , (25)

where we use the notation ∆kj = k − kj , cд(kj ,h) = dω
dk (kj ,h), and

we use the shorthand ωj = ω(kj ,h). We similarly expand a(k) about
kj to get

a(kj + ∆kj ) ≈ aj +
da

dk
(kj )∆kj , (26)

where we use the notation aj = a(kj ). Plugging these results into
Equation (6) gives

η(x , t) =
N∑
j=1

aj

∫ ∞
−∞

Φ(∆kj )e
i(kx−(ωj+cд∆kj )t)d∆kj

+O(∆k2j ).

Since the wave groups are locally concentrated about kj , ∆kj is
small. We neglect the higher order terms to get

η(x , t) ≈
N∑
j=1

aj

∫ ∞
−∞

Φ(∆kj )e
i(kx−(ωj+cд∆kj )t)d∆kj

=

N∑
j=1

aj

∫ ∞
−∞

Φ(∆kj )e
i(kjx+∆kjx−ωj t−cд∆kj t)d∆kj

=

N∑
j=1

aj

∫ ∞
−∞

Φ(∆kj )e
i(kjx−ωj t)ei(∆kjx−cд∆kj t)d∆kj

=

N∑
j=1

aje
ikj (x−cp t)

∫ ∞
−∞

Φ(∆kj )e
i∆kj (x−cдt)d∆kj . (27)

The shift property of the inverse Fourier transform gives us

η(x , t) ≈
N∑
j=1

aje
ikj (x−cp t)ϕ

(
x − cдt

)
(28)

or, taking only the real part:

η(x , t) ≈
N∑
j=1

aj cos
(
kj (x − cpt)

)
ϕ
(
x − cдt

)
. (29)

C PACKET ENERGY
We begin with a wave packet with amplitude a(x̂) = a ϕ(x̂). Equa-
tion (4) tells us that a packet has the following energy for each
wavelength:

E =

∬
R2

1
2

(
ρд + σk2

)
(a(x̂))2 dx̂ dŷ

=
1
2

(
ρд + σk2j

)
a2

∬
R2
ϕ2(x̂) dx̂ dŷ. (30)
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Assuming a Gaussian kernel ϕ(x̂ , ŷ) = exp
(
−(x̂/sx )

2 − (ŷ/sy )2
)
,

where sx is a scale factor in the x̂- direction, and sy is a scale factor
in the ŷ- direction,∬

R2
ϕ2(x̂) dx̂ dŷ =

∬
R2

e−2((x̂/sx )
2−(ŷ/sy )2) dx̂ dŷ

=
π

4
sx sy =

π

4
A,

whereA = sx sy is an area scale factor relative to the unscaled packet,
which we can think of as the packet’s current area. If we wish for
the packet to conserve energy from time tn to time tn+1, then we
can set the two energies equal. For clarity, we will temporarily use
the subscript to indicate which time step is used to evaluate each
quantity, so an is the packet’s amplitude at time step n.

1
2

(
ρд + σk2n

)
a2n

π

4
An =

1
2

(
ρд + σk2n+1

)
a2n+1

π

4
An+1 (31)

Solving for the amplitude at tn+1 gives us:

an+1 = an

√√√√ (
ρд + σk2n

)
An(

ρд + σk2n+1

)
An+1

(32)

D BOUND ON PACKET VELOCITY
Here we argue that the group speed cд is bounded, so wave packets
will not blow up to arbitrarily large velocities. The group speed from
Equation (22) is maximized in the deep water limit (kh →∞):

lim
kh→∞

cд =
д + 3σρ k

2
j

2
√
дkj +

σ
ρ k

3
j

(33)

This expression for the largest possible packet velocity is �nite as
long as the packet’s representative wavenumber kj is neither zero
nor in�nite in deep water. Our simulator de�nes kj as the limit of
the �xed point iteration kj := ωj/cp (kj ,h) (Section 4.1), and we
keep ωj �xed, so a �nite cp in the deep water regime would imply a
�nite kj and a bounded group velocity.

To show that kj is �nite, we �rst notice that the deep water phase
speed

lim
kh→∞

cp =

√(
д

kj
+
σ

ρ
kj

)
(34)

is always greater than zero, so kj is bounded from above in deep
water. Next, we note that cp increases with depth,

dcp

dh
= kj csch(2kjh)

√
tanh(kjh)

(
д

kj
+
σ

ρ
kj

)
> 0 (35)

so it cannot drop to zero as it enters deep water. Therefore, because
kj is �nite, the maximum packet velocity is bounded.

E DISTRIBUTING ENERGY DURING PACKET
SUBDIVISION

As described in Section 4.3, we must assign amplitudes to two new
packets after subdivision such that energy is conserved. Using Equa-
tion (4) to compute energy gives us the constraint equation

(ρд + σk20)a
2
0 = (ρд + σk

2
1)a

2
1 + (ρд + σk

2
2)a

2
2, (36)

where a0 and k0 are the amplitude and representative wavenumber
of the original packet, and a1,a2 and k1,k2 the amplitudes and
representative wavenumbers of the new packets after subdivision.
This gives us one constraint with two unknowns, a1 and a2.

The other constraint on these amplitudes will in principle depend
on the continuous wave spectrum contained in the original packet.
Our implementation does not store entire spectra per packet, so we
make an arbitrary assumption (based on what we thought looked
nice) in order to make progress. We assume that the steepness of
each new packet is equal:

a1k1 = a2k2. (37)

Solving the system of these two equations gives us

a1 := a0k2

√√
ρд + σk20

ρд(k21 + k
2
2) + 2σk

2
1k

2
2

(38)

a2 := a1k1/k2. (39)

Or, for environments where surface tension is negligible:

a1 :=
a0k2√
k21 + k

2
2

(40)

a2 := a1k1/k2. (41)
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