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1 INTRODUCTION
This document describes in detail how to simulate circular ripples
using approximate fundamental solutions to the linear deep wa-
ter wave equations. Our work builds heavily upon the work of Le
Méhauté [1988], which was the first to analyze the behavior of water
rings like raindrops. The fundamental solution is too complicated
to be derived analytically, so we apply multiple approximations,
namely Taylor series expansions and the method of stationary phase
for approximating oscillatory integrals, in order to get an analytic
expression that well-approximates the behavior of concentric cir-
cular water ripples. The resulting analytic function can be used to
simulate and render hundreds of detailed raindrops at faster than
real-time rates. The resulting ripple animations exhibit arbitrarily
high-resolution visual details and are free from visual artifacts, even
when zooming in close to the scene.

Section 2 formalizes the problem and presents the exact mathe-
matical solution, which does not lend itself to direct computation.
Section 3 presents two analytical approximations: one as a simple
sum of two-waves, and one for trailing edge of the wave. Finally,
Section 4 discusses the implementation of a real-time graphics demo
to showcase the closed-form raindrop ripple approximation. All for-
mulae that are needed for implementation are summarized in the
appendix for reference.

2 BACKGROUND
Le Méhauté describes the gravity-capillary rings caused by a small
impact on a liquid surface such as the one generated by a rain-
drop [Le Méhauté 1988]. Here, we summarize the problem’s for-
malization as a linear dissipative axisymmetric wave equation with
surface tension and present the exact solution.
The equations of the system are written in terms of the velocity

potential ϕ(r , z, t), and the free surface height u(r , t). The indepen-
dent variables are the radius r (distance from the impact), the vertical
coordinate z, and time t . The governing equations are

ϕt = −u + τ

(
ur r +

1
r
ur

)
, ut = ϕz .

The factor multiplying τ accounts for surface tension and arises
as the Laplacian of u in cylindrical coordinates after eliminating
derivatives with respect to the angular coordinate due to axisym-
metry.
The general solution for the free surface is

u(r , t) =

∫ ∞

0
J0(k, r ) [A(k) cos(ωt) − B(k) sin(ωt)]ωk dk,

where J0 is the Bessel function of the first kind and order zero.
The dispersion relationship linking the angular frequency ω to the
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wavenumber k is
ω2 = k

(
1 + τk2

)
.

Two initial conditions are needed to determine η. The first is
chosen as u(·, 0) ≡ 0, corresponding to an initially planar water
surface. This leads to A ≡ 0. The second initial condition models
the initial impulse as a parabolic pressure distribution limited to the
size of the disturbance. This distribution is chosen for mathematical
convenience, and because the authors found its exact shape to be of
little consequence. Eventually, this choice leads to

B(k) ∼
J2(k)

k2
.

The final expression for the free surface is then

θ (r , t) =

∫ ∞

0

ω

k
J2(k)J0(kr ) sin(ωt) dk, (1)

where θ ∼ u.
To account for dissipation effects, the integrand is further multi-

plied by a damping coefficient

D(k, t) = exp[−γ (k)t],

where γ combines the effects of a contaminated surface boundary
layer and internal strain. The former tends to dominate the dissi-
pation process, and scales as γ ∼ k7/4. This term is responsible for
the characteristic shape of raindrop ripples as it determines the rela-
tive amplitudes of low-frequency gravity waves and high-frequency
capillary waves. Initially, both types of waves are visible, but a few
seconds after impact, high wavenumbers k are strongly damped and
gravity waves dominate the picture.

3 APPROXIMATE SOLUTION
Eq. 1 is an oscillating integral, and the frequency of the integrand
is increasing in k . This makes the problem ill-suited for numerical
integration by quadrature, as many samples are necessary to obtain
valid approximations. To obtain a solution, the authors make two
approximations.
The first is to substitute J2(k) by its second-order Taylor expan-

sion at k = 0, which gives 1
8k

2. This is justified because it will be
small values of k that matter: large wave numbers are too heavily
damped to make a contribution. The argument is consistent with
observations, as replacing J2(k) with the approximation yields a
visually indistinguishable result.

The second is a stationary phase approximation of the integral.
This method is based on the observation that contributions of an
oscillating integral largely cancel out except for those around local
extrema of the phase function. Thus, it is justifiable to expand the
phase as a sum of Taylor series about the extrema and to neglect
higher-order terms.
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Fig. 1. Group speed cд as a function of wavenumber k in black. Example
group speed and pair of critical wavenumbers k1, k2 in red. Minimum group
speed cд,min and corresponding wavenumber k0 in orange.

The oscillatory factors in Eq. 1 are J0(kr ) sin(ωt). The Bessel func-
tion is approximated by an asymptotic form

J0(kr ) ≈

√
2

πkr
sin

(
kr +

π

4

)
,

which is accurate away from the origin. The product can then be
written as

J0(kr ) sin(ωt) ≈
√

1
2πkr

(
cos

(
ωt − kr −

π

4

)
− cos

(
ωt + kr +

π

4

))
.

The phase of the second term, ωt + kr + π
4 , does not attain an

extremum within the integration limits, so it can be dropped in
the stationary phase approximation. This leaves the phase ϕ(k) =
ωt − kr − π

4 , which attains an extremum where

0 =
dϕ
dk
=

dω
dk

t − r , or where
dω
dk
=: cд =

r

t
.

The group speed cд has a global minimum cд,min = cд(k0) and
tends to infinity monotonically for k → 0 and for k → ∞. Thus,
for cд > cд,min, there are exactly two wavenumbers that render the
phase stationary. For cд < cд,min, the phase is nowhere stationary,
and there is no significant contribution to the integral. The point
cд,min =

r
t marks the trailing edge of the wave, see Fig 1.

For the case r
t > cд,min + ε , which is away from the trailing edge,

the two wavenumbers that render the phase stationary are well sep-
arated. This inequality holds for most of the wave’s spatial extent,
and treating only this case suffices for computer animation pur-
poses. For completion’s sake, we also describe an approximation for
r
t ≈ cд,min further below. Both approximations are shown in Fig. 2,
overlayed on the ground truth obtained via numerical quadrature
with a high sample count.

3.1 Two-wave approximation
Away from the trailing edge, there are two wavenumbers k1,k2
that render the phase function ϕ stationary or, equivalently, where
cд =

r
t . The free surface in Eq. 1, after introducing damping and the
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Fig. 2. Two-wave approximation and trailing-wave Airy approximation over-
layed on ground truth. Graph shows rescaled surface height u as a function
of distance to the impact r , four seconds after impact.

approximation for J0(kr ), can be rewritten as

θ (r , t) ≈

∫ ∞

0
A(k) cos

(
ω(k)t − kr −

π

4

)
dk,

A(k) =
ω(k)J2(k)D(k)

√
2πk3r

,

(2)

where A(k) contains all factors that do not oscillate strongly.
The stationary-phase approximation predicts that the integrand

only contributes to the value of θ around k1 and k2, and that the
amplitude can be assumed constant for either contribution. We
expand the phase around kn with n = 1, 2 in a second-order Taylor
approximation, which gives

ϕ(k) ≈ ϕ(kn ) +
1
2
ϕ ′′(kn )(k − kn )

2

= ω(kn )t − knr −
π

4
+
1
2
c ′д(kn )t(k − kn )

2.
(3)

The contribution of either wavenumber is computed separately
and summed in the end. Since k1,k2 > 0, the lower integration
limit can be extended to −∞ without violating the assumptions of
the stationary-phase approximation. This gives, after shifting the
integration variable by kn ,

θ (r , t) ≈
2∑

n=1
A(kn )

∫ ∞

−∞

cos
(
ω(kn )t − knr −

π

4
+
1
2
c ′д(kn )tk

2
)
dk .

(4)
This last integral can be expressed in closed form as a short

computation shows.∫ ∞

−∞

cos
(
ω(kn )t − knr −

π

4
+
1
2
c ′д(kn )tk

2
)
dk

= ℜ

{
exp

(
i
(
ω(kn )t − knr −

π

4

)) ∫ ∞

−∞

exp
(
i
1
2
c ′д(kn )tk

2
)
dk

}
.

(5)

The integral in this last expression is a Fresnel integral. Using the
shorthand Bn = 1

2c
′
д(kn )t , it evaluates to∫ ∞

−∞

exp
(
iBnk

2
)
dk =

√
π

2|Bn |
(1 + i sgn(Bn )).

Only the sign of the imaginary part depends on the sign of Bn
because sine is an odd function while cosine is even.
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Next, we make use of the relations

ℜ

{
exp

(
i
(
x −

π

4

))
(1 + s i)

}
=

{√
2 cos(x) if s = 1,

√
2 sin(x) if s = −1

and solve the Fresnel integral to rewrite Eq. 5 as√
π

|Bn |
trign (ω(kn )t − knr ),

where trig1 = sin and trig2 = cos. This is because the sign of Bn is
the same as the sign of c ′д , which, as seen in Fig. 1, is negative for
k1 and positive for k2.

With this result, and by using the expansion J2 ≈ 1
8k

2, we can
finally rewrite Eq. 4 as

θ (r , t) ≈
2∑

n=1

ω(kn )D(kn )
√
kn

8
√
rt |c ′д(kn )|

trign (ω(kn )t − knr ). (6)

Evaluating one of the two terms in this sum is approximately as ex-
pensive as evaluating the integrand in Eq. 2. But since the integrand
is oscillatory, approximating the integral in Eq. 2 via numerical
quadrature would take many more than two samples to achieve a
similar level of accuracy.
The only extra effort that the stationary-phase approximation

requires is the computation ofk1 andk2 as the solutions to cд(k) = r
t .

Since cд is well-behaved, we can precompute a lookup table for
the roots of cд(k) − r

t as a function of r
t to, e.g., query dominant

wavenumbers from the GPU.

3.2 Trailing-wave approximation
If rt is very close to theminimal group speed cд,min, the two-wave ap-
proximation is no longer accurate, because the contribution ranges
of k1 and k2 overlap, and cannot be treated independently. Mathe-
matically, as r

t tends to cд,min, the group speed derivatives c ′д(k1)
and c ′д(k2) tend to zero, and the approximation in Eq. 6 tends to +∞
or −∞.
A way to treat the case r

t < cд,min + ε is to use a third-order
Taylor expansion of the phase function at k0, where cд,min = cд(k0),
which reads

ϕ(k) ≈ ϕ(k0) + ϕ
′(k0)(k − k0) +

1
6
ϕ(3)(k0)(k − k0)

3

= α + β(k − k0) + γ (k − k0)
3,

with α = ω(k0)t − k0r −
π

4
, β = cд,mint − r , γ =

1
6
c ′′д (k0)t .

As with the two-wave approximation, we replace the phase func-
tion in Eq. 2 by its expansion and extend the lower integration
bound to −∞. This gives

θ (r , t) ≈ A(k0)ℜ

{
exp(iα)

∫ ∞

−∞

exp
(
i
(
βk + γk3

))
dk

}
. (7)

The integral in this expression can be written in analytic form using
the Airy function

Ai(x) =
1
π

∫ ∞

0
cos

(
t3

3
+ xt

)
dt .

This is achieved by substituting l = (3γ )1/3k in Eq. 7.∫ ∞

−∞

exp
(
i
(
βk + γk3

))
dk

= (3γ )−1/3
∫ ∞

−∞

exp
(
i

(
l3

3
+ β(3γ )−1/3l

))
dl

= 2π (3γ )−1/3Ai
(
β(3γ )−1/3

)
.

Note that this expression is real, because the imaginary part of the
integrand is an odd function.

Substituting the result into Eq. 7 gives the final expression

θ (r , t) ≈ 2π (3γ )−1/3A(k0) cos(α)Ai
(
β(3γ )−1/3

)
. (8)

As noted above, the characteristic appearance of gravity-capillary
rings is captured by the two-wave approximation. Therefore, the
accompanying video simply fades the two-wave approximation to
zero at the trailing edge. To still use Eq. 8 in a real-time application,
the Airy function needs to be evaluated for arguments around zero.
This can be done either with a precomputed lookup table or with
an asymptotic expansion at zero.

4 IMPLEMENTATION
This second-order approximation was implemented in a real-time
graphics application to demonstrate that this formulation can be
used to simulate hundreds of wave rings at 60 frames per second.
Computation and rendering is performed in three passes.

(1) For every wave on screen, the radius r is sampled uniformly
in the range corresponding to the minimum group speed and
a cut-off value, at which damping is so strong that the waves
are visually imperceptible. For each wave and each sample,
the wave height is evaluated in parallel using a computer
shader program. The results are stored in a 2d texture, with
every row containing the samples of one wave.

(2) This pass transfers the wave height information onto a one-
channel screen-space texture that contains the cumulative
wave height for every pixel. Every wave is rendered as a
bounding quad into this texture, with the wave height at
each pixel as the output color. The blending capability of the
GPU is used to additively accumulate waves whose bounding
quads overlap in screen-space.

(3) Finally, the waves are rendered onto the screen following the
projected-grid idea of Johanson and Lejdfors [2004].

A more detailed description of the implementation is available in
the form of code comments. The relevant files are

• RippleApp.cpp: initialization, user interface, update/draw
loop, Pass 3

• WaveComputations.cpp: Pass 1
• WaveQuadRenderer.cpp: Pass 2

The shader code can be found in compute_wave.comp (Pass 1),
waves.vs, waves.fs (Pass 2), basic.vs, basic.fs (Pass 3). The
readme provides a guide to set up the demo in Visual Studio 2017,
and an overview of the controls.

The second-order and third-order approximations are also imple-
mented in Matlab as an interactive demo. To start the demo, execute
init_paths; Wave(); in the directory containing the Matlab files.
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A COMPUTATION SUMMARY
This section summarizes all formulae involved in the computation
of raindrop ripples. It serves as a reference for implementation and
allows to skip the derivations above.

First, we establish all physical constants, and variables in their di-
mensionless and dimensionalized form. Dimensionalized quantities
will be denoted with a ∗-superscript, and dimensionless quantities
without.

The radius of a raindrop is denoted by R∗, and is typically around
2 · 10−3 m. Other constants are the gravitational acceleration д∗ =
9.8 m/s2, the density of water ρ∗ = 103 kg/m3, the surface tension
of water τ ∗ = 7.4 · 10−2 N/m, the kinematic viscosity of water
ν∗ = 10−6 m2/s, and the terminal velocity of a raindropW ∗ = 10 m/s.

Important variable quantities are the distance to the impact lo-
cation r , the time since the impact t , the surface height u(r , t), the
wavenumber k , and the angular frequency ω(k). Most equations are
written in terms of dimensionless variables, but we list all conver-
sions here.

r =
r∗

R∗
, t = t∗

√
д∗

R∗
, u =

u∗

R∗
, k = R∗k∗,

ω = ω∗

√
R∗

д∗
, τ =

τ ∗

ρ∗д∗R∗2
, W =

W ∗√
д∗R∗

.

The angular frequencyω of a wave depends only on its wavenum-
ber k . The group speed cд of a wave is the derivative of ω with
respect to k . The first derivative of cд is required for the two-wave
approximation, and the second derivative needs to be evaluated at
a single location for the trailing-wave approximation. These quanti-
ties are given by

ω =
√
k(1 + τk2), cд =

dω
dk
=

3k2τ + 1
2
√
k3t + k

,

c ′д =
3k2t

(
k2t + 2

)
− 1

4
(
k3t + k

)3/2 , c ′′д = −
3
(
k2t − 1

) (
k2t

(
k2t + 6

)
+ 1

)
8
(
k3t + k

)5/2 .

We identify some important quantities that are derived from these
functions. The minimum group speed cд,min is defined as the unique
minimum of cд , attained at the wavenumber k0, i.e., c ′д(k0) = 0 and
cд(k0) = cд,min. Both k0 and cд,min can be precomputed. We also
define k1 and k2 as the two unique roots of the function cд − r

t , with
k1 < k2. These roots exist for r

t > cд,min and can be precomputed
for all relevant values of r

t and stored in a look-up table. It suffices
to precompute k1 and k2 for r

t ∈ [cд,min, 3cд,min] because waves
outside this range will be too heavily damped to be visible.
The damping function D and the damping coefficient γ ∗ are ex-

pressed in terms of the dimensionalized wavenumber k∗ and its
angular frequency ω∗:

D(k∗) = exp
(
−γ ∗t∗

)
, with γ ∗ =

1
2

√
ω∗ν∗

2
k∗ + 2ν∗k∗2.

The two-wave approximation for the waveheight reads

u(r , t) ≈
3W

128
√
rt

[A(k1) sin (ω(k1)t − k1r )

+ A(k2) cos (ω(k2)t − k2r )] ,

with A(k) =
ω(k)D(k∗)

√
k√

|c ′д(k)|
.

The trailing-wave approximation for the waveheight reads

u(r , t) ≈
C a(t)
√
r

cos
(
ω(k0)t − k0r −

π

4

)
Ai[(cд,mint − r )a(t)],

with C =
3Wω(k0)D(k∗0 )

√
πk0

64
√
2

, a(t) =

(
1
2
c ′′д (k0) t

)−1/3
,

where C and c ′′д (k0) can be precomputed.
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