
Wave Curves:
Simulating Lagrangian water waves on dynamically deforming surfaces

TOMAS SKRIVAN, IST Austria, Austria
ANDREAS SODERSTROM, no affiliation, Sweden
JOHN JOHANSSON,Weta Digital, New Zealand
CHRISTOPH SPRENGER,Weta Digital, New Zealand
KEN MUSETH,Weta Digital, New Zealand
CHRIS WOJTAN, IST Austria, Austria

Fig. 1. We introduce an efficient method for adding detailed ripples (left) in the form of curve primitives (middle right) on top of an existing 3D fluid simulation
(right). These wave curves evolve according to our extension of linear water wave theory, which naturally models effects like ripples aligned with flow features.

We propose a method to enhance the visual detail of a water surface simula-
tion. Our method works as a post-processing step which takes a simulation
as input and increases its apparent resolution by simulating many detailed
Lagrangian water waves on top of it. We extend linear water wave theory
to work in non-planar domains which deform over time, and we discretize
the theory using Lagrangian wave packets attached to spline curves. The
method is numerically stable and trivially parallelizable, and it produces
high frequency ripples with dispersive wave-like behaviors customized to
the underlying fluid simulation.

CCS Concepts: • Computing methodologies� Physical simula-
tion; Simulation by animation.

Authors’ addresses: Tomas Skrivan, IST Austria, Am Campus 1, Klosterneuburg, 3400,
Austria, tomas.skrivan@ist.ac.at; Andreas Soderstrom, no affiliation, Sweden, andreas.
soderstrom@gmail.com; John Johansson, Weta Digital, New Zealand, jjohansson@
wetafx.co.nz; Christoph Sprenger,Weta Digital, NewZealand, christophspr@gmail.com;
Ken Museth, Weta Digital, New Zealand, ken.museth@gmail.com; Chris Wojtan, IST
Austria, Am Campus 1, Klosterneuburg, 3400, Austria, wojtan@ist.ac.at.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2019 Copyright held by the owner/author(s).
0730-0301/2019/11-ART65
https://doi.org/10.1145/3386569.3392466

Additional Key Words and Phrases:Water surface waves, wave anima-
tion, production animation, ripples, wakes, dispersion
ACM Reference Format:
Tomas Skrivan, Andreas Soderstrom, John Johansson, Christoph Sprenger,
Ken Museth, and Chris Wojtan. 2019. Wave Curves: Simulating Lagrangian
water waves on dynamically deforming surfaces. ACM Trans. Graph. 38,
6, Article 65 (November 2019), 12 pages. https://doi.org/10.1145/3386569.
3392466

1 INTRODUCTION
Although three-dimensional fluid simulation has led to spectacu-
larly detailed visual effects in the past decade, the expense of three-
dimensional fluid simulation strongly limits the amount of detail
that can be simulated at the water surface. Several researchers have
circumvented this limitation by simulating additional 2D waves
directly on top of the 3D water surface. However, these previous
approaches have a few significant limitations, like a resolution limit
imposed by an underlying grid, mesh, or particle system [Angst
et al. 2008; Kim et al. 2013; Mercier et al. 2015; Thürey et al. 2010;
Yang et al. 2016; Yu et al. 2012], or a restriction to perfectly flat do-
mains [Canabal et al. 2016; Jeschke et al. 2018; Jeschke and Wojtan
2015, 2017; Yuksel et al. 2007].
In this work, we aim to significantly increase the visible detail

on a simulated fluid surface using Lagrangian wave packets, which

ACM Trans. Graph., Vol. 38, No. 6, Article 65. Publication date: November 2019.

https://doi.org/10.1145/3386569.3392466
https://doi.org/10.1145/3386569.3392466
https://doi.org/10.1145/3386569.3392466

65:2 • Skrivan, T. et al

de-couple the wave resolution from the simulation resolution. We
first derive evolution equations for water waves on a moving sur-
face (e.g. an existing fluid simulation or a hand-animated surface),
taking into account the physical effect of the surface’s acceleration
on both the wavelength and wave speeds. We then discretize the
continuous theory with a new Lagrangian wave curve simulation
primitive, enabling stable, resolution-independent, parallel simula-
tions of coherent connected wave structures on a flowing surface
(See Figure 1) . These wave curves provide us with a mechanism to
greatly enhance the visual detail of a fluid surface in a physically
plausible manner, with little computational expense.
We summarize the contributions of our method as follows:

• The first technique based on Lagrangian wave packets for
adding wave detail to an existing fluid simulation.

• An extension of Airy’s theory for water waves on dynamically
deforming water surfaces.

• The introduction of curve-shaped wave packets.

2 RELATED WORK
A surge of research on water animation for visual effects has created
a substantial body of publications, and we shall only discuss the ones
most related to ours — lower dimensional techniques for simulating
water surfaces, and methods for enhancing full three dimensional
free-surface water simulations.
Methods for solving surface water waves as height-fields de-

fined on horizontal 2D domains typically lead to superior com-
putational performances and domain sizes, but they are naturally
limited by the underlying lower dimension representation, which
cannot capture overturning and splashing. Examples include the
early work by Kass and Miller [1990], which allowed for simple
ripple effects to be simulated by solving the scalar shallow wave
equation, the simulation of ocean waves by means of 2D spectral
methods [Tessendorf 2002, 2004], Lagrangian wave particles [Yuksel
et al. 2007], wavefront tracking [Jeschke and Wojtan 2015], wave
kernels that better capture dispersive effects [Canabal et al. 2016;
Loviscach 2002; Ottosson 2011], structure preserving integrators for
the Euler-Poincaré differential equation [Azencot et al. 2018], and
water surface wavelets [Jeschke et al. 2018]. Wang et al. [2007] pro-
posed an improved height-field approach, where the general shallow
wave equation is solved in the normal direction of non-planar sur-
faces, alleviating some of the limitations of Kass and Miller [1990].
The wave solver most closely related to ours is that of water wave
packets [Jeschke and Wojtan 2017]. Their work efficiently animates
high frequency wave details with physically consistent wave speeds.
However, the method assumes a static horizontal planar water sur-
face, and they offer no indication how to extend the method to work
on the surface of a moving 3D fluid simulation.

Another common practice in VFX is to employ a hybrid approach
where 2D and 3D water simulations, applied to distinct domains,
are seamlessly coupled. For instance Irving et al. [2006] and Thürey
et al. [2006] couple a 2D deep water solver using tall cells with a a
full 3D free-surface solver for the actual water-air interface, whereas
Cords [2008] couples the wave particles of Yuksel et al. [2007] with
a 3D free-surface solver.

Prior to our work, many previous researchers have designed algo-
rithms for simulating water waves on top of an existing free-surface
3D water simulation. Such an approach introduces increased visual
details without the computational cost that comes from attempting
to capture these details directly in the 3D solver. One of the first
publications to explore this idea was Patel et al. [2009], who mono-
coupled a 2D iWave simulation onto a 3D liquid simulation with a
2D orthographic projection mapping. Subsequently, Thürey et al.
[2010] simulated the constant-speed wave equation directly on a
Lagrangian fluid surface mesh, focusing on surface tension effects.
They also coupled the added higher frequency detail back to the
coarse 3D simulation. Yu et al. [2012] used the thin plate equation
for surface waves on a moving mesh, and Angst et al. [2008] solved
the shallow wave equation on an animated mesh model (as opposed
to a free-surface from a 3D water simulation). Bojsen-Hansen et al.
[2012] simulated waves on arbitrary deforming meshes with chang-
ing topology, using fluid simulation as an example. Bojsen-Hansen
and Wojtan [2013] simulated non-linear waves inspired by vortex
sheets to correct defects in a low-resolution 3D water surface. Kim
et al. [2013] solved water waves with a more realistic dispersion
relation on top of a free-surface, avoiding the problem of surface
parameterization by simulating waves directly on the deforming
level set surfaces. Mercier et al. [2015] bypassed the generation of
level set surfaces and adds turbulent details directly to the particles
resulting from a 3D FLIP simulation. Yang et al. [2016] adds the
high-frequency details of capillary waves to 3D SPH simulations by
converting surface tension energy changes to density variations.

The methods described above model waves with a diverse range
of physical behaviors. Most approaches use a simple constant-speed
wave equation or a thin plate equation, which are arguably more
appropriate for elastic wave simulation. In contrast, the work of Kim
et al. [2013] models waves with a dispersion relation derived for
water surface dynamics. Our work builds upon this idea by adding
an additional term to the dispersion relation to model the influence
of surface accelerations. Bojsen-Hansen and Wojtan [2013]’s non-
linear vortex sheet approach is also based onwater surface dynamics,
but its non-linearity requires smaller time steps. Most importantly
from our perspective, all of the existing methods for animating
water waves on a moving surface use an Eulerian discretization, so
the visible wave detail will be limited by the density of simulation
degrees of freedom (grid nodes or particles). In contrast, our wave
curve primitives add high-frequency visual detail independent of a
simulation resolution.
A full discussion of the physics underlying water surface waves

is outside of the scope of this paper. The theory of linearized water
waves was first described by Airy [1841]. The book by Whitham
[1999] provides excellent and understandable descriptions of both
linear and non-linear waves (including water waves), and the book
by Mei [2005] works out details for waves with a background flow
and variable depth.

3 THEORY
To describe the dynamics of water waves, we use linearizedwave the-
ory [Airy 1841] which accurately models many physical properties
of small amplitude waves such as frequency, speed, and dispersion.

ACM Trans. Graph., Vol. 38, No. 6, Article 65. Publication date: November 2019.

Wave Curves • 65:3

However, this standard theory is concerned only with waves on a
horizontal water surface, while we are interested in small waves on
moving surfaces where many additional effects are present. Moving
surfaces can change the wave dynamics in non-trivial and visually
fascinating ways: simply angling the surface so that its normal does
not align with gravity changes the speed of gravity waves, but has
no effect on capillary waves; curvature of a surface can focus or
de-focus waves, because waves follow geodesic paths; accelerating
the surface in the normal direction can speed up or slow down
waves; and movement of the surface in the tangent direction can
stretch, compress, shear, and bend waves.

In Section 3.1, we first give an overview of the basic linear wave
theory on a flat water surface where any wave can be written as a
linear combination of planar waves. Next, in Section 3.2, we expand
the discussion to include waves with a background flow. Building
on these ideas, we derive a linear wave theory on moving surfaces
in Section 3.3.

3.1 Linear wave theory
Here we outline the basic notions behind Airy wave theory. For
a more accessible and complete introduction to the linear wave
theory, see, for example, [Acheson 1990, Chapter 3].

Airy wave theory defines the water height 𝜂 of a single wave as

𝜂 (x, 𝑡) = 𝐴 cos (k · x − 𝜔𝑡 + 𝜃0) , (1)

where 𝐴 is the wave amplitude, x ∈ R2 is a point in a plane, k ∈ R2
is the wavevector defining the wave’s traveling direction, 𝑘 = ∥k∥
is the wavenumber, 𝜆 = 2𝜋

𝑘
is the wavelength, 𝜔 is the frequency,

and 𝜃0 is the phase shift. The main result of the linear wave theory
is the dispersion relation connecting the wavenumber 𝑘 with the
frequency 𝜔 .

𝜔 = Ω(k) =

√(
𝑔 + 𝛾

𝜌
𝑘2

)
𝑘, (2)

Fig. 2. A close-up on detail of wave simulation in the canal scene.

where 𝑔 is the gravitational acceleration, 𝛾 is the surface tension and
𝜌 is the water density. Throughout this exposition, we will often
use the shorthand Ω for readability, instead of writing out Ω(k).
Similarly, although Ω(k) takes a wavevector as its argument, it only
computes with its magnitude 𝑘 = ∥k∥, so we will sometimes write
Ω(𝑘) in equations that otherwise deal entirely with scalars.
The energy density of a wave is

𝐸 =
1
2

(
𝜌𝑔 + 𝛾𝑘2

)
𝐴2 =

𝜌Ω2

2𝑘
𝐴2 (3)

which is transported with the group speed

c𝑔 =
𝜕Ω

𝜕k
=

𝜕Ω

𝜕𝑘
k̂. (4)

This transportation of energy density indirectly describes how wave
amplitudes propagate over the surface. It will be used for computing
both amplitude propagation and wave seeding later in this paper.

3.2 Linear wave theory in slowly varying environment
In this section we give a summary of results from [Mei 2005, Section
3.6] where they examine the effect of a current and varying water
depth onwater wave dynamics.We omit the effects of water depth in
this discussion, because we wish to study waves whose wavelength
is small compared to the typical length scales of a fluid simulation.
In this case, we can no longer represent 𝜂 with plane waves

as in (1), because the wavefronts can be stretched or bent by a
background current. Instead, the waves are represented in a more
general form

𝜂 (x, 𝑡) = 𝐴(x, 𝑡) cos𝜃 (x, 𝑡) (5)

where 𝜃 is the phase function. This general form of a wave looks like
a planar wave only locally—We can see this by Taylor expanding
the phase function:

𝜃 (x, 𝑡) ≈ 𝜃 (x0, 𝑡0) +
𝜕𝜃

𝜕x
(x0, 𝑡0) · (x − x0) +

𝜕𝜃

𝜕𝑡
(x0, 𝑡0) (𝑡 − 𝑡0) .

(6)

Around the point (x0, 𝑡0) the wave (5) looks like the planar wave in
(1) with wavevector k(x0, 𝑡0) and frequency 𝜔 (x0, 𝑡0) defined as

k(x, 𝑡) = 𝜕𝜃

𝜕x
(x, 𝑡) 𝜔 (x, 𝑡) = − 𝜕𝜃

𝜕𝑡
(x, 𝑡) (7)

Here,𝜔 is the absolute frequencymeasured by a stationary observer—
an observer moving along a current will measure a different fre-
quency, referred to as the intrinsic frequency,𝜎 . The relation between
the two frequencies is

𝜎 = −𝐷𝜃

𝐷𝑡
= 𝜔 − k · U (8)

where U is the current velocity and 𝐷
𝐷𝑡

= 𝜕
𝜕𝑡 +U ·∇ is the convective

derivative. The intrinsic frequency is the physical frequency of the
wave as it moves along the surface, so it is important that we use
𝜎 instead of 𝜔 in the dispersion relation (2) for waves on a moving
surface. Thus, in the presence of a current, the dispersion relation
is:

𝜎 = Ω(𝑘) =

√(
𝑔 + 𝛾

𝜌
𝑘2

)
𝑘. (9)

ACM Trans. Graph., Vol. 38, No. 6, Article 65. Publication date: November 2019.

65:4 • Skrivan, T. et al

One interesting consequence of allowing an environment that
varies over time is that the energy of an individual wave is no
longer conserved — the total energy of the entire system (both
waves and current combined) is conserved, but there can be an
energy transfer between the waves and the environment. However,
a related quantity, the wave action, is still conserved. The wave
action A is defined as

A =
𝐸

Ω
=

𝜌Ω

2𝑘
𝐴2, (10)

and we can write out its conservation law as it is advected by the
current velocity U and the group speed c𝑔 :

𝜕A
𝜕𝑡

+ div
((
U + c𝑔

)
A
)
= 0 (11)

The conservation of the wave action is actually a very general
principle and holds for many linear and non-linear physical systems
exhibiting wave-like motion. For more details, see [Whitham 1999,
Chapter 14].

3.3 Linear wave theory on moving surfaces
Now that we have established the existing background on linear
water surface waves, we can extend these ideas to surfaces which
have non-zero curvature and can deform over time.
As above, we describe a wave on a moving surface with

𝜂 (x, 𝑡) = 𝐴(x, 𝑡) cos𝜃 (x, 𝑡) (12)

but we generalize the water height 𝜂 to be a deflection of the surface
in the normal direction (not necessarily a vertical displacement).
Similarly, the point x is now a point on the surface, and any spatial
gradient has to be interpreted as a surface gradient. Therefore the
wavevector k is a tangent vector to the surface. For any point on
the surface, we can create a local reference frame whose upward
direction is aligned with the surface normal. However, if the surface
is moving, then this is a non-inertial reference frame. In addition to
the results from Section 3.2, it will experience a fictitious inertial
force, requiring us to add an acceleration that is equal and opposite
to the acceleration of the coordinate frame.

In effect, we only modify the theory from Section 3.2 by removing
the assumption that gravity opposes the normal direction, and by
replacing every occurrence of the gravity 𝑔 with the effective gravity

𝑔∗ (x, 𝑡) = −N(x, 𝑡) · (g − a(x, 𝑡)) , (13)

with surface normal N and surface acceleration a. The dispersion
relation on moving surfaces becomes

𝜎 = Ω(𝑘,𝑔∗) =

√(
𝑔∗ + 𝛾

𝜌
𝑘2

)
𝑘. (14)

The conservation of the wave action (11) remains unchanged, but
we have to use the new dispersion relation in the definitions of
action A and group speed c𝑔 .
Replacing gravity 𝑔 with the local gravity 𝑔∗ in the dispersion

relation (14) has some interesting new consequences that were not
present in Airy’s original theory.Wave speeds increase when the sur-
face accelerates upward, and they slow down when the surface falls
downward. Extremely fast downward accelerations can even cause
the dispersion relation to become imaginary when 𝑔∗ + 𝛾

𝜌 𝑘
2 < 0.

Fig. 3. Wave curves add rich details to a 3D river simulation. The detail
from the underlying fluid simulation is seen in the white box.

This imaginary 𝜎 figuratively throws a wrench into the wave dynam-
ics, causing the traveling wave to slow to a halt while the amplitude
blows up exponentially. This phenomenon is known as the Rayleigh-
Taylor instability and the standard stability analysis [Drazin 2002,
Section 3.7] reveals that the condition for the instability is exactly
𝑔∗ + 𝛾

𝜌 𝑘
2 < 0, consistent with our analysis here.

We note that other researchers have also investigated this con-
cept of effective gravity outside of the computer animation disci-
pline. Longuet-Higgins [1985] investigated the effective gravity of
waves riding on top of long-wavelength gravity waves, and Longuet-
Higgins [1995] investigated the analogous case for capillary waves
riding on a Stokes wave. Their computations of the analytic accel-
eration of such surface motions yields 𝜂𝑥𝑥 or curvature-dependent
terms in 𝑔∗, respectively. Our work does not make assumptions
about the underlying surface motion, so we use a generic a term in
𝑔∗ instead.

We now have a theoretical foundation for linear water waves on
moving surfaces, and it is consistent with a observable phenomena
like known wave travel speeds and Rayleigh-Taylor instabilities.
From these foundations, we derive equations of motion in Section
3.4, and we discuss conditions for wave amplification in Section 3.5.

3.4 Lagrangian view
In the end, we wish to track many wave curves on top of the mov-
ing surface. Each curve is just a set of Lagrangian particles which
carry information about the waves (similar to the “Wave Packets”
approach of Jeschke et al. [2017]). Using the method of character-
istics, we can derive from the dispersion relation (14) that these
Lagrangian particles move with velocity U + c𝑔 and carry the value
of the wavevector k(𝑡), frequency𝜔 (𝑡) and phase 𝜃 (𝑡). The detailed
calculation can be found in Appendix A. The particle position x(𝑡)
satisfies

¤x = U + c𝑔 (15)

ACM Trans. Graph., Vol. 38, No. 6, Article 65. Publication date: November 2019.

Wave Curves • 65:5

and the other quantities evolve in the following way

¤k = − 𝜕Ω

𝜕𝑔∗
∇𝑔∗ − [∇U]𝑇 k, (16)

¤𝜃 = −Ω + c𝑔 · k. (17)

These equations can be easily time-stepped, and we can recon-
struct the phase function around each Lagrangian particle using a
local Taylor expansion. We could also derive an evolution equation
for the wave action, but we found it more convenient to use the
conservation law (11), which says that the wave action is constant
over a patch Σ(𝑡) which is advected with the velocity U + c𝑔 , i.e.∫

Σ(𝑡)
A 𝑑𝑥 = constant. (18)

The discrete treatment of these equations will be discussed in
more detail in Section 4.

3.5 Wave growth
Once we know how these waves evolve, it is natural for us to ask
how they are created in the first place. Unfortunately, linear wave
theory cannot predict the formation of waves from nothing; it only
describes how already-existing waves will grow or shrink over
time depending on their environment. In the absence of a sound
theory for predicting the creation of water waves, our idea is to
instead identify which scenarios would cause an invisibly small
wave (𝑘𝐴 ≪ 1) to quickly grow in energy.

We derive an equation for the evolution of surface wave energy
by writing the conservation law for wave action in terms of energy
(inserting (9) into (11)). For detailed calculation, see Appendix B. We
obtain the following relation:

𝜕𝐸

𝜕𝑡
+ div

((
U + c𝑔

)
𝐸
)
=
𝐸

𝜎

(
−
𝑐𝑔

𝑐𝑝
k̂ · Dk̂ + 1

𝜎

𝜕Ω

𝜕𝑔∗
𝐷𝑔∗

𝐷𝑡

)
(19)

Fig. 4. Similar to previous methods, we add detail to a pool churned up by
a rotating object. The white inset box shows the details from the underlying
FLIP simulation.

where 𝑐𝑝 = Ω
𝑘
is the phase speed, k̂ = k/𝑘 is a unit vector in the

direction of k, D = 1
2

(
∇U + ∇U𝑇

)
is the symmetric part of the

velocity gradient, and “div” is the divergence restricted to the fluid
surface (U for an incompressible velocity field can still have a non-
zero surface divergence, for example in regions where the flow rises
from below and spreads apart at the surface).
This equation states the energy balance for our water surface

waves. The left hand side is in conservation law form, so non-zero
terms on the right side represent external sources of wave energy
transferred to the surface, triggered by changes in its environment
(changes in the surface caused by the velocity field U inside D, and
changes in the effective gravity 𝑔∗ caused by the accelerating fluid
surface). We first note that the energy 𝐸 is proportional to its own
time derivative, so we can interpret the multiplied term as an energy
growth rate, 𝐺 :

𝐺 (x, k) = 1
𝜎

(
−
𝑐𝑔

𝑐𝑝
k̂ · Dk̂ + 1

𝜎

𝜕Ω

𝜕𝑔∗
𝐷𝑔∗

𝐷𝑡

)
(20)

Waves with a large positive 𝐺 value will experience rapid exponen-
tial growth, and waves with negative𝐺 will quickly lose energy. Let
us briefly build some intuition for the different terms in 𝐺 :

• Themultiplicative factors 1
𝜎 and 𝑐𝑔

𝑐𝑝
arewavelength-dependent

non-negative functions which scale the energy growth rate.
Because of these terms, some wavelengths will grow more
quickly than others.

• The 𝜕Ω
𝜕𝑔∗

𝐷𝑔∗

𝐷𝑡
term says that the energy will grow when this

part of the surface experiences a transition from small 𝑔∗
to large 𝑔∗. This happens, for example, at the bottom of a
waterfall when ballistic water (𝑔∗ = 0) collides with a static
pool (𝑔∗ > 0).

• The −k̂ ·Dk̂ term describes how the underlying velocity field
U transfers energy to the surface waves. The matrix −D is
positive definite where the velocity field squishes the surface
together and negative definite where it stretches the surface
apart. The k̂ terms on either side of this matrix mean that
the growth rate will have different values depending on the
wave’s orientation. Waves aligned with the velocity gradient
grow quickly, while waves perpendicular to the velocity gra-
dient do not grow at all. This term is also responsible for the
characteristic striped wave textures on stretching surfaces
like water falls — the negative definite −D matrix rapidly de-
cays all waves except the ones perpendicular to the stretched
direction, leaving pattern of aligned ripples.

We note that these growth and decay effects are common in a
number of advected wave equation solvers, not just our approach.
The main reason we care about𝐺 is that it tells us where we should
expect small waves to grow, so we find it useful for seeding new
waves in subsection 4.3.

We also note that this linearized growth analysis is limited in a
number of ways. It is unable to capture non-linear effects by defini-
tion, and it will not identify situational effects like wind, which may
place a bias on the orientation and spectrum of waves. The function

ACM Trans. Graph., Vol. 38, No. 6, Article 65. Publication date: November 2019.

65:6 • Skrivan, T. et al

Fig. 5. A single wave curve (far left) approximates the wave behavior within a small neighborhood of itself (middle left). We compute the wave heights by
evaluating the phase function and amplitude within the neighborhood of this curve (middle right), and we treat it as a small displacement of the underlying
fluid surface (far right). Multiple wave heights are added on top of each other via the superposition principle.

also leads to computational difficulties — finding all waves that max-
imize this function requires us to evaluate potentially noisy time
derivatives and to efficiently sample a four-dimensional function.

4 DISCRETIZATION
Our discretization is heavily inspired bywaterwave packets [Jeschke
and Wojtan 2017]. Instead of representing packets as individual in-
dependent particles, we extend the notion of a wave packet to a
connected curve restricted to a surface. These curves allow us to
better maintain smooth connected wavefronts over long distances,
and enable additional modes of artistic control (with curve-editing
tools, for example). See Figure 5 for an illustration of the effect of a
single wave curve.

4.1 Spatial discretization
We represent a wave curve with control points 𝑝𝑖 , 𝑖 = 1, . . . , 𝑛 and an
interpolating function for reconstructing data along the curve. Each
control point carries a position x𝑖 , a wavevector k𝑖 , a phase 𝜃𝑖 , an
action A𝑖 and a radius 𝑟𝑖 , and we use piecewise linear interpolation
along the curve. We will use the notation x(𝑠, 𝑡), to indicate the
interpolated position at curve parameter 𝑠 and time 𝑡 ; we similarly
use k(𝑠, 𝑡), 𝜃 (𝑠, 𝑡), A(𝑠, 𝑡) and 𝑟 (𝑠, 𝑡) to indicate the interpolated
wavevector, phase, action, and radius.

To evaluate the water height (12) at a point y on the surface, we
need to locally reconstruct the phase function 𝜃 and the amplitude
𝐴 from the data stored on the curve. We approximate 𝜃 by defining
𝑠y such that x(𝑠y, 𝑡) is the closes point on the curve to the point y
and then using a first order Taylor expansion:

𝜃 (y, 𝑡) ≈ 𝜃 (𝑠y, 𝑡) + k(𝑠y, 𝑡) · (y − x(𝑠y, 𝑡)) . (21)

We reconstruct the amplitude by first computing 𝐴𝑖 at each node
from the action A𝑖 using the formula (10). We use the same local
kernel function Ψ as wave packets [Jeschke and Wojtan 2017] to
describe the falloff of the amplitude away from the curve

Ψ(𝑥, 𝑟) =
{
1
2
(
cos

(
2𝜋 𝑥

𝑟

)
+ 1

)
if |𝑥 | ≤ 𝑟

0 otherwise.
(22)

The amplitude is approximated as

𝐴(y, 𝑡) ≈ 𝐴(𝑠y, 𝑡)Ψ
(
dist(x(𝑠y, 𝑡), y), 𝑟 (𝑠y, 𝑡)

)
, (23)

where dist(x, y) is a function measuring the distance between points
x and y. Once we have the phase function 𝜃 (y, 𝑡) and the amplitude
𝐴(y, 𝑡), we can evaluate the water height𝜂 (y, 𝑡) = 𝐴(y, 𝑡) cos𝜃 (y, 𝑡).

4.2 Time discretization
To update x𝑖 , k𝑖 , and 𝜃𝑖 we time step equations (15), (16), and (17)
respectively with forward Euler integration. To keep the point x𝑖 on
the surface and the wavevector k𝑖 tangent to the surface, we simply
project them onto the surface and the tangent plane after each time
step.

The radius 𝑟𝑖 has to change based on how the waves gets stretched
or squashed by the flow. We model this stretching by advecting in
the radial direction:

𝑑𝑟

𝑑𝑡
= n𝑖 · ∇(U + c𝑔) (24)

where n𝑖 is the normal vector of the curve lying tangent the surface
at point control point 𝑖 . Unfortunately, the accurate evaluation of
∇c𝑔 requires the computation of ∇k, which is a computationally
expensive operation (requiring a neighborhood search of all nearby
wave curves) which is not worth the effort in our experience. Instead,
we assume ∇c𝑔 is negligible compared to ∇U and approximate the
change in radius according to the background flow only. To ensure
that radii do not grow too large or invert due to numerical noise in
∇U, we clamp 𝑟𝑖 to a user-defined range.
To update the wave action A𝑖 we use the fact that the wave

action is conserved per advected area, as discussed in Section 3.4.
We associate a trapezoidal area patch to each curve segment and
distribute the area 𝑎𝑖 to each vertex, as illustrated in Figure 6. In
accordance with (18), we keep the area integral of action constant
throughout time by setting

A𝑛+1
𝑖 = A𝑛

𝑖

𝑎𝑛
𝑖

𝑎𝑛+1
𝑖

. (25)

We use the Lagrangian damping model from Jeschke and Wojtan
[2017, Section 3.4] to simulate viscosity and surface contamination
effects. This model effectively creates a gradual exponential decay
of the packet’s amplitude with a rate dependent on its wavenumber.

ACM Trans. Graph., Vol. 38, No. 6, Article 65. Publication date: November 2019.

Wave Curves • 65:7

As waves travel along the surface, their control points can drift
away from their ideal spacing over time. To address this we re-
sample the wave curves every time step using the polyline re-
sampling tools in the Houdini software by SideFX, targeting a user-
specified spacing between each control point. At the end of this
process, we assign the control point data (k, 𝜃 , A, and 𝑟) by in-
terpolating it from the original curve points. We interpolate 𝜃 , A,
and 𝑟 like scalar data; to avoid vector interpolation errors when
re-sampling k, we approximate spherical interpolation by decompos-
ing it into its length 𝑘 and direction k̂, interpolate them separately,
re-normalize k̂, and then recompose k. We also delete any wave
curve control points with a steepness ratio𝐴/𝜆 less than a minimum
threshold (0.01 in our examples).
Over the course of a simulation, wave curves will overlap each

other and themselves. The result is unaffected as the linear PDE
allows superposition of waves. However, when wave curves fold
over themselves within a single segment, the inverted region can
create noisy caustic waves with large amplitudes. We eliminate this
artifact by detecting areas where the wave curve’s surface normal
points in the opposite direction of the surface normal, and locally
setting the wave curve’s amplitude to zero. When this algorithm
was used in a production environment, effects artists added addi-
tional tools for further controlling wave curves, like bounding the
maximum steepness. We offer a list of these practical heuristics in
Appendix C.

We implemented this wave curve propagation algorithm on two
different types of surface geometry (level sets and triangle meshes),
and we did not experience any robustness issues. Our naïve surface
projection for approximating geodesics requires small enough time
steps to avoid waves jumping off of highly-curved surfaces, but
it also fails gracefully — if a wave experiences erroneously large
deformation or displacement, conservation of wave action natu-
rally kills the amplitude of highly deformed wave packets (just like
[Jeschke 2017]). Higher order geodesic-tracing approaches should
be possible, but we did not investigate them this paper.

4.3 Discretized wave generation
To generate new wave curves from an existing free-surface fluid
flow, we use the theory in Section 3.5. The wave energy growth rate
𝐺 (x, k) in Equation 20 will have large values for locations x and
travel directions k̂ that start small and quickly grow in size, so we
use this function as an indicator of where to seed new waves. To
evaluate this function numerically, we use the base fluid simulation
velocity to calculate terms involvingU and its symmetric gradientD,
and we utilize the Navier-Stokes equation to evaluate the effective

Fig. 6. Area associated with a control point on the wave curve.

Fig. 7. Wave curves enhance a 3D simulation of waves breaking over rocks.
The detail from the underlying fluid simulation is seen in the white box.

gravity in terms of the pressure gradient:

𝑔∗ (x, 𝑡) = −N(x, 𝑡) · (g − a(x, 𝑡))
= −N(x, 𝑡) · ∇𝑝 (x, 𝑡) (26)

To reduce the complexity of sampling and maximizing a four-
dimensional function, we heuristically limit our search to a 2D
function over space by first pinning down an arbitrary candidate
wavenumber 𝑘0 (reducing the 4D 𝐺 (x, 𝑘, k̂) to a 3D 𝐺 (x, 𝑘0, k̂) and
then numerically integrating the energy behavior over all wave
directions k̂. We then clamp negative values to zero (because we
are interested in energy growth rather than decay) and evaluate the
resulting 2D function 𝐺 (x) at all points x on the fluid surface. We
then use 𝐺 (x) as a density function for Houdini’s point-sampling
algorithm to get a number of wave seed locations x̃. At each of these
locations, we decide which wave direction should be sampled by
finding the k̂which maximizes the k̂·Dk̂ stretching term in Equation
20 — the fastest growing k̂ is thus the eigenvector associated with
the largest negative value of D. We now have wave seed positions
x̃ and directions k̂, and we can add multiple wave frequencies by
sampling a number of wavenumbers 𝑘 for each wave seed. These
heuristics give us a set of (x, k) pairs which should be growing
more quickly than most other candidate waves. Note that𝐺 (x, k)
describes all wavelengths which are growing, including waves in
the background simulation. We avoid double-counting energy by
only seeding new waves which are higher frequency than the base
simulation.
To generate new wave curves, we use the new seed position as

a starting point and grow new curves by marching outward in a
direction ¤x which is perpendicular to k̂:

¤x = N × k̂ (27)

To ensure that the wave bends along the surface in a physically
appropriate manner (instead of just tracing geodesics), we also
update the optimal k̂ as we march. We blend the old k̂ with the

ACM Trans. Graph., Vol. 38, No. 6, Article 65. Publication date: November 2019.

65:8 • Skrivan, T. et al

Table 1. Performance timings in seconds per frame

Wave Curve Sim Wave Curve Rendering
Scene Base Sim Curve points Emission Evolution Total Samples Wave stripes Projection Total Total
breaking wave Fig. 7 17s 1.5 mil 4.0s 9.2s 13.2s 1 mil 48.3s 74.4s 123s 153s
canal Fig 2 42s 280k 1.8s 2.0s 3.8s 300k 9.5s 11.7s 21s 67s
paddle Fig 4 11s 1.2 mil 1.2s 7.1s 8.3s 470k 52.5s 97.8s 150s 170s
paddle(𝜎 = 𝑐𝑘) Fig 11 11s 850k 0.9s 4.6s 5.5s 470k 37.3s 64.5s 102s 118s
river Fig 3 31s 1 mil 0.9s 5.8s 6.7s 630k 44.8s 39.6s 84s 122s

new one in order to mix in some noise along with the optimal wave
directions:

¤̂k = −𝛼
(
I − k̂ ⊗ k̂

)
Dk̂ (28)

Our examples all use a heuristic blending weight of 𝛼 = 2 (𝛼 = ∞
creates optimal wave directions, and 𝛼 = 0 creates geodesic wave
curves).

Each of these new wave curves is initialized with a radius 𝑟 (set to
20cm for all waves in our examples) and an amplitude𝐴. We initially
set 𝐴 for each wave curve point to zero, and then we gradually
increase its energy over the next 0.5 seconds by 𝛽 (𝑘)𝐺 (x, k)Δ𝑡 each
time step. The parameter 𝛽 (𝑘) is a tunable function that we interpret
as the wave spectrum of the invisibly small waves discussed in
subsection 3.5. We use 𝛽 (𝑘) = 3.6/𝑘 in all of our examples.

We are satisfied and encouraged by this new approach to seeding
wave energy on a fluid surface, but there is room for improvement.
In addition to theoretical limitations discussed in Section 3.5, the
evaluation of𝐺 will only be as accurate as the base fluid simulation
— terms involving the time derivative of the pressure gradient will
be particularly noisy for the incompressible fluid simulators typ-
ically used in computer animation. Furthermore, we found if we
only sample the waves which optimize𝐺 , then the resulting water
surfaces can appear too orderly and sterile. To seed a light amount
of isotropic random noise across the surface, our examples add a
small constant term to𝐺 . The subsequent physical evolution of the
curves will naturally damp out less appropriate waves and amplify
dominant ones.

4.4 Rendering
To visualize waves carried by wave curves, we generate a high
resolution surface capturing all the fine detail. Steps of this process
are roughly visualized in Figure 5.

As the first step, every wave curve is turned into a wave stripe, a
thickened wave curve with width given by the radius 𝑟 carried by
each wave curve point. Afterward, the displacement information
is projected onto the high resolution surface. We send a ray in the
normal direction from every vertex of the high resolution surface,
and every time a ray intersects a wave stripe we use Equations 21
and 23 to compute the phase function 𝜃𝑖 and the amplitude𝐴𝑖 . Each
vertex on the high resolution surface is then displaced in the normal
direction by

∑
𝑖 𝐴𝑖 sin𝜃𝑖 . However, when many wave curves are at

a single place, this total displacement can become excessively large.
The visual impact of a wave curve is mainly given by the wave

steepness 𝑠𝑖 = 𝐴𝑖𝑘𝑖 , and we found the total steepness 𝑠𝑡 =
∑
𝑖 𝑠𝑖

to be a good predictor of large wave displacements. Based on our

experiments, we smoothly limit wave steepnesses to a critical value
𝑠𝑐 = 3, giving us the final displacement 𝜂:

𝜂 =
𝑠𝑐

𝑠𝑡
tanh

𝑠𝑡

𝑠𝑐

∑
𝑖

𝐴𝑖 sin𝜃𝑖 . (29)

The factor 𝑠𝑐
𝑠𝑡

tanh 𝑠𝑡
𝑠𝑐

can be interpreted as a type of soft-clamping
operation: it is close to one if the total steepness 𝑠𝑡 is small, but
it appropriately scales down the displacement for large 𝑠𝑡 . This
scaling based on total steepness seems towork nicely across different
wavelengths.

5 RESULTS
We implemented our method on top of a FLIP-based fluid simula-
tion [Bridson 2015]. We started by pre-computing several liquid sim-
ulations: a canal with obstacles (Figure 2), waves breaking over rocks
(Figure 7), a large river (Figure 3), and the churning paddle Houdini
scene from [Lait 2011] (Figure 4). We then simulated additional high-
frequency details on top of these dynamic fluid surfaces as a post-
process. We use the algorithm in subsection 4.3 to seed new wave
curves each time step for wavelengths 𝜆 = 20cm, 10cm, 5cm, 2.5cm,

and 1.25cm. This strategy requires the simulations to run for a
period of time before the wave curves “saturate” the scene.
We report a number of interesting wave effects visible in our

simulations. The advection of thewave curves creates streaks as they
are swept away with the current, and the dispersive dynamics cause
different wavelengths to travel at different speeds. Standing waves
occasionally appear where waves travel upstream at the exact same
rate as the background flow. Most importantly, our simulated waves
are independent of the simulation resolution, so we can move the
camera close to a fluid simulation without running out of observable
wave details.

We implemented our algorithm in Houdini using its scripting lan-
guage VEX, and we measured computation times on an Intel Core
i7-7820X 3.60GHz CPUwith 8 cores. Table 1 and 2 show the time our
algorithm took to simulate wave curves on top of each simulation,
as well as the time to generate the high resolution surface used for
rendering. Each simulation time step consists of four operations: the
evolution of the wave curves (Sections 4.1 and 4.2), the generation
of new wave curves (Section 4.3), the construction of wave stripes
and projection onto the high resolution surface (Section 4.4). Table
2 shows times for running the wave curves simulation with a differ-
ent number of wave curves. Thanks to the embarrassingly parallel
nature of our algorithm we can see that the time scales linearly with
the number of wave curve points. The exception is the wave curve

ACM Trans. Graph., Vol. 38, No. 6, Article 65. Publication date: November 2019.

Wave Curves • 65:9

Table 2. Performance timings (seconds per frame) for different numbers of wave curves (Figure 8).

Curves points Emission Wave evolution Wave stripes Projection Total
100k 0.60s 0.72s 4.49s 5.42s 11.22s
200k 0.58s 1.32s 9.43s 11.18s 22.50s
400k 0.64s 2.50s 18.89s 23.69s 45.72s
800k 0.78s 4.25s 32.50s 47.68s 85.21s

Fig. 8. Difference between simulations with 100,000(left), 200,000, 400,000 and 800,000 (right) wave curve points.

Fig. 9. Difference between simulations where only waves of a single wavelength are generated, 5cm(left), 10cm, 20cm. The right most image show a simulation
of all five wavelengths simultaneously.

generation step where the cost is mainly dictated by the complexity
of the base simulation.
Figure 8 shows the effect of adding a variable number of wave

curves on top of a simulation. As expected, more wave curves make
the simulation seem more detailed. Using very few curves tends to
leave open expanses without any ripples, and the contrast between
high resolution wave detail and a complete absence of detail can
look unnatural. Our wave curves also create long, connected wave-
fronts, which biases the wave spectrum toward coherent waves. If a
perfectly isotropic wave spectrum is undersampled by our method,
then the spectrum will consist of few waves in a few randomly
chosen directions, which may also appear unnatural.

Figure 9 shows the effect of using only a single wavelength instead
of a spectrum of several wavelengths in our simulations. The use of
a large spectrum of wavenumbers clearly influences both the visual
details as well as the physical plausibility of the animation.

Figure 10 compares our approach to the method of Kim et al.
[2013]. We note that the simulation from Kim et al. [2013] creates
more localized high frequency waves near splashes on this example,
while our seeding function distributes wave detail throughout the
scene and across a wider range of frequencies. Our approach pro-
duces many high-frequency wave features due to its independence
from any grid resolution, but our damping model makes the shortest
waves rapidly decay.

Figure 11 compares to a simulation with a much simpler disper-
sion relation. Instead of the wavelength-dependent speeds described
in subsection 3.1, all wavelengths in this animation move at a con-
stant speed. In contrast to Figure 9, the differences in this one are
admittedly subtle; we observe disparities in the wave spectrum at
different locations, but we find it difficult to declare which one
looks more “realistic.” We tentatively conclude from these two ex-
periments that the range of simulated wavelengths seems more

ACM Trans. Graph., Vol. 38, No. 6, Article 65. Publication date: November 2019.

65:10 • Skrivan, T. et al

Fig. 10. A comparison between our wave curve approach (left) and the
method of Kim et al. [2013] (right) for the same background simulation.

Fig. 11. We only observe subtle differences between a simulation with a
simple dispersion relation 𝜎 = 𝑐𝑘 (left), and a simulation with our dispersion
relation for water waves (right).

important than accurate propagation velocities for the purpose of
creating realistic liquid animations for visual effects.
On the other hand, we do believe the physically-derived disper-

sion relation is useful for the purpose of seeding waves. Figure 12
compares the wave seeding algorithm in section subsection 4.3 to
a simpler technique which places waves in random locations and
orientations each time step. We chose the seeding rate for the ran-
dom approach such that it would produce approximately the same
number of wave curve points as our approach by the end of the
simulation. Our seeding algorithm seems to produce waves that
align with fluid surface features and grow to a sizable amplitude,
while the random approach scatters small waves across the surface
without a coherent wave direction emerging until after a great many

waves have been created. Our energy-based seeding approach also
seems to be more efficient: the number of wave curves are about the
same 100 timesteps into the animation (Figure 13 top), despite the
fact that our approach spawned far fewer waves during that time
period (Figure 13 bottom).

6 LIMITATIONS & DISCUSSION
We reiterate here that the theory in subsection 3.2 assumes small
wave amplitudes relative to their wavelength, a slowly varying
environment, and small wavelengths relative to the overall fluid
simulation, and we should expect to see inaccuracies when these
assumptions are violated. Indeed, large amplitudes will cause waves
to propagate at the wrong speed and will look unrealistically choppy,
and extremely long wavelengths will cause our waves to unnaturally
compete with features in the base fluid simulation. If our wave curve
discretization is too coarse relative to the base simulation, then

Fig. 12. A simulation with random seeding (left) and our proposed seeding
strategy based on energy growth rates (right). The random approach gener-
ates a noisy collection of many small waves throughout the surface. Our
approach exhibits coherent waves aligned with the underlying fluid motion.

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

W
a
v
e
 c
u
rv
e
 p
o
in
ts

1e6 Total wave curves points

0 50 100 150 200 250
Frame

0.0

0.5

1.0

1.5

2.0

W
a
v
e
 c
u
rv
e
 p
o
in
ts

1e4 New wave curves points

random seeding
our seeding

Fig. 13. Number of total and new wave curves points at each frame in the
paddle scene (Figure 12). Sudden peaks in the total number of wave curve
points are caused by the underlying fluid motion inducing stretching and
subdivision of the wave curves.

ACM Trans. Graph., Vol. 38, No. 6, Article 65. Publication date: November 2019.

Wave Curves • 65:11

waves produced by the same curve segment will behave the same
even if they are located in very distant places.
Additionally, the time integration procedure in subsection 4.2

is effectively raytracing, which again assumes a small wavelength
relative to the environment and does not model diffraction without
introducing additional techniques like [Jeschke and Wojtan 2015].
Curve tracing can produce caustics, and currents which exactly
match thewave speed (wave blocking) can theoretically pile upwave
heights at a particular location. We resolve these large-amplitude
violations by thresholding the total wave steepness, as discussed in
Appendix C.

Section 3.3 introduces the effective gravity 𝑔∗ as a result of a
non-inertial reference frame. It is not clear to us whether rotational
fictitious forces (coriolis, centrifugal, Euler) should also appear in
this theory, or whether they are ultimately negligible. Related work
in the fluid dynamics literature [Longuet-Higgins 1995] also neglects
these effects, but we have not yet seen a convincing proof either
way.

We implemented our wave curve algorithm into a visual effects
production pipeline. Aside from the benefits of increased visual
resolution, the simulation artists reported additional enthusiasm
for the controllability of our approach. Specifically, the Lagrangian
curve primitives make it easy to manually override the amplitude
and motion of any individual curve in a scene.

7 CONCLUSION
We have presented an algorithm for incorporating highly detailed
water waves onto a moving liquid surface. We derive the relevant
equations of motion for Lagrangian wave curves and introduce
a novel wave seeding criterion. The resulting method efficiently
enhances the surface detail of a pre-computed water animation,
and the final visual resolution is independent of the simulation’s
computational cost.

ACKNOWLEDGMENTS
We wish to thank the anonymous reviewers and the members of the
Visual Computing Group at IST Austria for their valuable feedback.
This research was supported by the Sci-
entific Service Units (SSU) of IST Austria
through resources provided by Scientific
Computing. This project has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme under grant agreement No.
638176.

REFERENCES
D. J. Acheson. 1990. Elementary fluid dynamics. Clarendon Press Oxford University

Press, Oxford New York.
George Biddell Airy. 1841. Tides and waves. (1841).
Roland Angst, Nils Thuerey, Mario Botsch, andMarkus Gross. 2008. Robust and Efficient

Wave Simulations on Deforming Meshes. Computer Graphics Forum 27, 7 (Oct 2008),
1895–1900.

Omri Azencot, Orestis Vantzos, and Mirela Ben-Chen. 2018. An explicit structure-
preserving numerical scheme for EPDiff. In Computer Graphics Forum, Vol. 37.
Wiley Online Library, 107–119.

Morten Bojsen-Hansen, Hao Li, and ChrisWojtan. 2012. Tracking surfaces with evolving
topology. ACM Trans. Graph. 31, 4 (2012), 53–1.

Morten Bojsen-Hansen and Chris Wojtan. 2013. Liquid surface tracking with error
compensation. ACM Transactions on Graphics (TOG) 32, 4 (2013), 68.

Robert Bridson. 2015. Fluid Simulation for Computer Graphics, Second Edition. A K
Peters/CRC Press.

José A. Canabal, David Miraut, Nils Thuerey, Theodore Kim, Javier Portilla, and
Miguel A. Otaduy. 2016. Dispersion Kernels for Water Wave Simulation. ACM Trans.
Graph. 35, 6, Article Article 202 (Nov. 2016), 10 pages.

Hilko Cords. 2008. Moving with the Flow: Wave Particles in Flowing Liquids. Journal
of WSCG 16, 1-3 (2008), 145–152.

P. G. Drazin. 2002. Introduction to Hydrodynamic Stability. Cambridge Univ. Press.
Geoffrey Irving, Eran Guendelman, Frank Losasso, and Ronald Fedkiw. 2006. Efficient

Simulation of Large Bodies of Water by Coupling Two and Three Dimensional
Techniques (SIGGRAPH ’06). Association for Computing Machinery, New York, NY,
USA, 805–811.

Stefan Jeschke, Tomáš Skřivan, Matthias Müller-Fischer, Nuttapong Chentanez, Miles
Macklin, and Chris Wojtan. 2018. Water surface wavelets. ACM Transactions on
Graphics (TOG) 37, 4 (2018), 94.

Stefan Jeschke and ChrisWojtan. 2015. WaterWaveAnimation viaWavefront Parameter
Interpolation. ACM Trans. Graph. 34, 3, Article Article 27 (May 2015), 14 pages.

Stefan Jeschke and Chris Wojtan. 2017. Water Wave Packets. ACM Trans. Graph. 36, 4,
Article Article 103 (July 2017), 12 pages.

Michael Kass and GavinMiller. 1990. Rapid, stable fluid dynamics for computer graphics.
ACM SIGGRAPH Computer Graphics 24, 4 (Sep 1990), 49–57.

Theodore Kim, Jerry Tessendorf, and Nils Thürey. 2013. Closest Point Turbulence for
Liquid Surfaces. ACM Trans. Graph. 32, 2, Article Article 15 (April 2013), 13 pages.

Jeff Lait. 2011. Correcting low frequency impulses in distributed simulations. In ACM
SIGGRAPH 2011 Talks. 1–2.

MS Longuet-Higgins. 1985. Accelerations in steep gravity waves. Journal of physical
oceanography 15, 11 (1985), 1570–1579.

Michael S. Longuet-Higgins. 1995. Parasitic capillary waves: a direct calculation. Journal
of Fluid Mechanics 301, -1 (Oct 1995), 79.

Jörn Loviscach. 2002. A Convolution-Based Algorithm for Animated Water Waves.. In
Eurographics (Short Papers).

Chiang Mei. 2005. Theory and applications of ocean surface waves. World Scientific,
Singapore Hackensack, NJ.

Olivier Mercier, Cynthia Beauchemin, Nils Thuerey, Theodore Kim, and Derek
Nowrouzezahrai. 2015. Surface turbulence for particle-based liquid simulations.
ACM Transactions on Graphics 34, 6 (Oct 2015), 1–10.

Björn Ottosson. 2011. Real-time interactive water waves. Ph.D. Dissertation. Master’s
thesis, KTH.

Sanjit Patel, Jerry Tessendorf, and Jeroen Molemaker. 2009. Monocoupled 3D and 2D
river simulations. In Proc. ACM/Eurographics Symp. Comp. Anim., Posters Session.

Jerry Tessendorf. 2002. Simulating Ocean Water. (01 2002).
Jerry Tessendorf. 2004. Interactive Water Surfaces. (2004), 265–274. https://people.cs.

clemson.edu/~jtessen/papers_files/Interactive_Water_Surfaces.pdf
Nils Thürey, Ulrich Rüde, and Marc Stamminger. 2006. Animation of open water

phenomena with coupled shallow water and free surface simulations. In Proceed-
ings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer animation.
Eurographics Association, 157–164.

Nils Thürey, Chris Wojtan, Markus Gross, and Greg Turk. 2010. A Multiscale Approach
to Mesh-Based Surface Tension Flows. ACM Trans. Graph. 29, 4, Article Article 48
(July 2010), 10 pages.

HuaminWang, Gavin Miller, and Greg Turk. 2007. Solving General ShallowWave Equa-
tions on Surfaces (SCA ’07). Eurographics Association, Aire-la-Ville, Switzerland,
Switzerland, 229–238.

G. B. Whitham. 1999. Linear and nonlinear waves. Wiley, New York.
Sheng Yang, Xiaowei He, Huamin Wang, Sheng Li, Guoping Wang, Enhua Wu, and

Kun Zhou. 2016. Enriching SPH Simulation by Approximate Capillary Waves (SCA
’16). Eurographics Association, Goslar, DEU, 29–36.

Jihun Yu, Chris Wojtan, Greg Turk, and Chee Yap. 2012. Explicit Mesh Surfaces for
Particle Based Fluids. Computer Graphics Forum 31, 2pt4 (May 2012), 815–824.

Cem Yuksel, Donald H. House, and John Keyser. 2007. Wave Particles. ACM Trans.
Graph. 26, 3, Article 99 (July 2007).

A LAGRANGIAN EVOLUTION
Here we show that dispersion relation (14) defines the evolution of
waves. Combining Equations 8 and 14 gives us

− 𝜕𝜃

𝜕𝑡
− U · ∇𝜃 = Ω(∥∇𝜃 ∥ , 𝑔∗) . (30)

Rewriting this reveals a Hamiltonian structure

− 𝜕𝜃

𝜕𝑡
(x, 𝑡) = 𝐻 (x,∇𝜃 (x, 𝑡), 𝑡), (31)

𝐻 (x, k, 𝑡) = Ω(∥k∥ , 𝑔∗ (x, 𝑡)) + U(x, 𝑡) · k. (32)

ACM Trans. Graph., Vol. 38, No. 6, Article 65. Publication date: November 2019.

https://people.cs.clemson.edu/~jtessen/papers_files/Interactive_Water_Surfaces.pdf
https://people.cs.clemson.edu/~jtessen/papers_files/Interactive_Water_Surfaces.pdf

65:12 • Skrivan, T. et al

with a phase space (x, k) in place of the familiar (𝑞, 𝑝). This structure
allows us to interpret the dispersion relation (14) as a Hamilton-
Jacobi equation, which has a couple of interesting consequences. For
example, note that the wavevector k plays the role of the momentum
of a wave. Furthermore, because a Hamiltonian is constant along
trajectories if it is time independent, the absolute frequency𝜔 (which
is equal to ourHamiltonian) is constant as long as𝑔∗ (x, 𝑡) andU(x, 𝑡)
do not change in time.
We can now derive Hamiltonian equations of motion:

¤x =
𝜕𝐻

𝜕k
=

𝜕Ω

𝜕𝑘
k̂ + U, (33)

¤k = − 𝜕𝐻

𝜕x
= − 𝜕Ω

𝜕𝑔∗
∇𝑔∗ − [∇U]𝑇 k. (34)

which tell us that the wave position changes with the mean velocity
U and group velocity c𝑔 = 𝜕Ω

𝜕𝑘
k̂, and that the wavevector changes

with variations in effective gravity 𝑔∗ and mean velocity U.
We can also derive want the evolution of the phase function along

the trajectory. Adding −c𝑔 · ∇𝜃 to both sides of (30) allows us to
complete the chain rule for ¤𝜃 , giving us

¤𝜃 = −Ω(𝑘,𝑔∗) + c𝑔 · k. (35)

B THE BALANCE OF ENERGY
The balance of energy can be obtained from the conservation of the
wave action by starting with the definition of action A = 𝐸

𝜎 and
rewriting it into the form of a balance law.

0 =
𝜕

𝜕𝑡

𝐸

𝜎
+ div

((
U + c𝑔

) 𝐸
𝜎

)
=
𝜕𝐸

𝜕𝑡
+ div

((
U + c𝑔

)
𝐸
)

(36)

− 𝐸

𝜎2

(
𝜕𝜎

𝜕𝑡
+
(
U + c𝑔

)
· ∇𝜎

)
(37)

The right hand side is basically in the form we want, but we will
massage the last term into something a little easier to interpret. In
the light of Appendix A, the dot-time derivative of some quantity 𝑋
is ¤𝑋 = 𝜕𝑋

𝜕𝑡 +
(
U + c𝑔

)
· ∇𝑋 . Combined with 𝜎 = Ω(𝑘,𝑔∗) we obtain(

𝜕𝜎

𝜕𝑡
+
(
U + c𝑔

)
· ∇𝜎

)
= ¤𝜎 = ¤Ω(𝑘,𝑔∗) (38)

=
𝜕Ω

𝜕k
· ¤k + 𝜕Ω

𝜕𝑔∗
¤𝑔∗, (39)

Using the evolution (34) of k and identities c𝑔 = 𝜕Ω
𝜕k , ¤𝑔∗ =

𝐷𝑔∗

𝐷𝑡
+ c𝑔 ·

∇𝑔∗ yields

𝜕Ω

𝜕k
¤k + 𝜕Ω

𝜕𝑔∗
¤𝑔∗ = −c𝑔 · [∇U]𝑇 k + 𝜕Ω

𝜕𝑔∗
𝐷𝑔∗

𝐷𝑡
(40)

= −𝑘𝑐𝑔k̂ · Dk̂ + 𝜕Ω

𝜕𝑔∗
𝐷𝑔∗

𝐷𝑡
, (41)

where D = 1
2

(
∇U + [∇U]𝑇

)
. Putting everything together yields the

final balance of energy

𝜕𝐸

𝜕𝑡
+ div

((
U + c𝑔

)
𝐸
)
=
𝐸

𝜎

(
−
𝑐𝑔

𝑐𝑝
k̂ · Dk̂ + 1

𝜎

𝜕Ω

𝜕𝑔∗
𝐷𝑔∗

𝐷𝑡

)
. (42)

C PRACTICAL WAVE CURVE HEURISTICS
Linear wave theory has its limitations and breaks down in certain
scenarios. The main assumption is that the steepness, 𝑠 = 𝐴𝑘 , is
small. We enforce maximum steepness of 0.7 by clamping wave
amplitudes when they get too large, as suggested by [Jeschke and
Wojtan 2015].

Furthermore, it does not make much sense to have a large wave
curve on small droplets and splashes, since a large wave would rip
these into even smaller droplets and splashes in reality. To roughly
detect these cases, we compute the maximal curvature 𝜅𝑚𝑎𝑥 of the
base simulation surface and clamp the wave curve amplitude 𝐴 and
radius 𝑟 such that 𝐴𝜅𝑚𝑎𝑥 < 0.5 and 𝑟𝜅𝑚𝑎𝑥 < 0.3.

We also found it practical to enforce a maximum number of wave
curves points for each simulation, usually around one million. To
remove excess wave curves each time step, we mark points with the
smallest steepness that are above the limit, gradually reduce their
amplitude to zero over the next five time steps, and then remove
from the simulation. Because this procedurewould have the negative
side effect of also deleting newly generated wave curves, we exclude
all points from this deletion procedure during the first ten timesteps
of their lifetime.

ACM Trans. Graph., Vol. 38, No. 6, Article 65. Publication date: November 2019.

	Abstract
	1 Introduction
	2 Related work
	3 Theory
	3.1 Linear wave theory
	3.2 Linear wave theory in slowly varying environment
	3.3 Linear wave theory on moving surfaces
	3.4 Lagrangian view
	3.5 Wave growth

	4 Discretization
	4.1 Spatial discretization
	4.2 Time discretization
	4.3 Discretized wave generation
	4.4 Rendering

	5 Results
	6 Limitations & Discussion
	7 Conclusion
	Acknowledgments
	References
	A Lagrangian evolution
	B The balance of energy
	C Practical wave curve heuristics

