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Fig. 1. Left: A comparison between direct yarn-level simulation (YLC) and simulation with our homogenized model (HYLC); our homogenized model accurately

captures the non-trivial elastic stretching and bending response of the fabric. Middle and right: Results simulated with homogenized continuum models of

woven and knitted patterns; our method allows us to efficiently compute large-scale simulations where direct yarn-level simulation would be prohibitively slow.

We present a method for animating yarn-level cloth effects using a thin-

shell solver. We accomplish this through numerical homogenization: we

first use a large number of yarn-level simulations to build a model of the

potential energy density of the cloth, and then use this energy density

function to compute forces in a thin shell simulator. We model several

yarn-based materials, including both woven and knitted fabrics. Our model

faithfully reproduces expected effects like the stiffness of woven fabrics, and

the highly deformable nature and anisotropy of knitted fabrics. Our approach

does not require any real-world experiments nor measurements; because

the method is based entirely on simulations, it can generate entirely new

material models quickly, without the need for testing apparatuses or human

intervention. We provide data-driven models of several woven and knitted

fabrics, which can be used for efficient simulation with an off-the-shelf cloth

solver.
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1 INTRODUCTION

The simulation and analysis of yarn-level cloth has recently gener-

ated a great deal of research in the computer graphics [Cirio et al.

2014; Kaldor et al. 2008; Narayanan et al. 2018; Yuksel et al. 2012],

materials science [Choi and Lo 2003; Fillep et al. 2017], and physics

communities [Poincloux et al. 2018]. Woven and knitted materials

can exhibit a wide array of behaviors (highly variable stretchiness,

anisotropy, area-preservation effects, etc.). They can be produced

from simple threads or wires, leading to their ubiquity in everyday

life. Furthermore, these materials are fascinating from a theoretical

point of view, because their varying material properties arise almost

entirely from the geometric structure of the threads Ð subtly different

stitch patterns can lead to dramatically different material behav-

iors. For example, Figure 2 illustrates how different knit patterns

influence area-preservation and curling of the fabric.

Simulating woven and knitted materials as a collection of inter-

acting threads can accurately reproduce highly complex behaviors,

but this direct strategy tends to be computationally expensive. On

the other hand, finite element-based cloth simulations are relatively

computationally efficient, because they replace the simulation of

individual fibers with an approximate material model based on

continuum mechanics. Unfortunately, choosing a suitable material

model is a nontrivial task, and Little is known about the continuum

behavior of many woven and knitted fabrics in particular, so many

yarn-level effects cannot be captured by existing material models in

computer graphics.

In this work, we aim to determine material properties directly

from yarn-level geometry using numerical homogenization. We

precompute the effective material response from periodic yarn-level

simulations, learn an approximate material model from the resulting
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Fig. 2. Large-scale phenomena can emerge from simulated yarn-level ge-

ometry. The rib pattern (top) exhibits anisotropy and a tendency to preserve

area under tension, while the stockinette pattern (bottom) exhibits curling.

data, and incorporate this new material into an off-the-shelf cloth

simulator. We offer the following technical contributions:

• The first use of numerical homogenization for animating

woven and knitted fabrics

• Novel co-rotated periodic boundary conditions for the non-

linear homogenization of thin shells

• A procedure for fitting a material model capable of repro-

ducing common textile phenomena such as anisotropy, area-

preservation, and curling.

2 RELATED WORK

This paper incorporates ideas from a variety of topics including the

simulation of rods and shells, data-driven models, and homogeniza-

tion. In the following, we only provide a brief summary of closely

related areas.

2.1 Cloth simulation

Yarn-Level Cloth. Modern simulators approximate the behavior

of an individual strand of yarn or thread using the theory of elas-

tic rods [Bergou et al. 2010, 2008; Pai 2002]. Simulation of fabric

at the yarn level was pioneered in computer graphics by Kaldor

et al. [2008] with subsequent work on improving the treatment of

collision handling [Kaldor et al. 2010] and using persistent contacts

to simulate woven [Cirio et al. 2014] and knitted fabrics [Cirio et al.

2015, 2016]. Leaf et al. [2018] propose a method for the interactive

authoring and editing of small periodic yarn patches on GPUs, and

they reproduce the rest shape of a multitude of stitches and patterns

under tension. Yuksel et al. [2012] introduce stitch meshes to create

large-scale virtual knitted patterns, and Wu et al. [2019] ensure

they are actually fabricable. Narayanan et al. [2018, 2019] introduce

a suite of tools for converting virtual knit patterns into garments

fabricated by a machine. MPM modeling of yarn-level simulations

was first performed by Jiang et al. [2017], and then combined with

neural networks for homogenizing fiber-level motions to yarn level

motions [Montazeri et al. 2019]. In our work, we rely on the methods

of Kaldor et al. [2008] and Bergou et al. [2010] for the simulation of

our periodic yarn patterns.

Continuum-Level Cloth. Researchers in computer graphics often

treat cloth as an elastic solid with a potential energy that increases as

it deforms from its rest state. Typical methods for discretizing such

an elastic solid are mass-spring networks [Baraff and Witkin 1998;

Choi and Ko 2005; Provot et al. 1995], discrete thin shells [Grinspun

et al. 2003], and continuum mechanics solvers based on finite differ-

ences [Terzopoulos et al. 1987], finite elements [Narain et al. 2013;

Thomaszewski et al. 2007], and the material point method [Guo

et al. 2018]. We use a finite-element thin-shell solver to simulate our

macroscale cloth (ArcSim [Narain et al. 2013, 2012]).

Data-driven Cloth. Many of the methods above use analytically

derived material models based on a somewhat straightforward rela-

tionship between deformation and potential energy. However, the

material model can also be learned from example data. Wang et al.

[2011] propose an inexpensive setup for measuring features of fabric

under tensile and bending tests, and they optimize piece-wise linear

material models. Miguel et al. [2012] develop a measurement setup

to capture more complex 3D deformations of cloth with complete

position and force data. Miguel et al. [2013] show how to inexpen-

sively measure internal stretching and bending friction, and they

optimize the required parameters based on sparse data. Further re-

search discusses incremental fitting of separable models for convex

hyperelastic materials [Miguel et al. 2016] and an orthotropic model

for woven fabric based on commercially available tests [Clyde et al.

2017].

For each update to model parameters, the above methods typi-

cally need to recompute quasistatic cloth equilibria to compare to

real-world measurements. They also mention difficulty in accurately

capturing bending. In our approach, data-gathering and fitting are

decoupled. We precompute deformation responses once as an in-

expensive preprocessing step and thus do not require simulations

during fitting. We also do not require any real-world measurement

setup. Additionally, our method can directly compute the bend-

ing resistance for applied curvatures, allowing for more controlled

measurements.

Finally, data-driven methods have also been used to add detail

to coarse simulations; Wang et al. [2010] add detailed wrinkles to

coarse simulations at interactive rates using a database of precom-

puted high-resolution simulations.

2.2 Multiscale modeling and homogenization

In computer graphics, the concept of multiscale modeling covers

a wide area of research such as analytic multiscale models [Fei

et al. 2019, 2018, 2017], numerical coarsening [Chen et al. 2017, 2018;

Kharevych et al. 2009], meta-materials and digital fabrication [Bickel

et al. 2010; Chen et al. 2015; Pérez et al. 2015; Schumacher et al. 2015],

sound simulation [Cirio et al. 2018], and rendering [Guarnera et al.

2016; Zhao et al. 2016].
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Fig. 3. Our method takes a periodic yarn pattern and produces a homogenized cloth material model. (a) We impose macroscopic in-plane and bending

deformations on a periodic pattern. (b) We compute homogenized energy density samples for ranges of deformations and fit them with regularized splines.

(c) The resulting material model can be used to efficiently simulate cloth by computing elastic responses of the pattern to deformations.

Our work focuses on homogenization of periodic yarn patterns

and is thus closely related to the work of Schumacher et al. [2018].

They investigate the elastic properties of isohedral tilings repre-

sented as planar rod patterns through numerical homogenization.

They also provide a tool for exploring the various families of tilings

and discuss emergent properties such as material symmetries in

detail. Their tool examines material nonlinearities by fitting lin-

ear models at multiple magnitudes of deformation. Our work can

be seen as an extension to fully non-linear models for non-planar

woven and knitted yarn patterns. In addition, our novel boundary

conditions let us homogenize interaction between multiple modes

of deformation, such as simultaneous stretching and bending.

Computational Homogenization. Multiscalemodeling has received

a lot of attention also outside of computer graphics; this includes the

technique of computational homogenization, where macroscopic

material responses are computed based on representative microscale

simulations [Guedes and Kikuchi 1990; Renard andMarmonier 1987].

Macroscopic strains are imposed on the representative microscale

material sample through boundary conditions, and stresses can

be computed through averaging. To this end, De Souza Neto et al.

[2015] and Blanco et al. [2016] propose a generalized framework to

derive microscale boundary conditions and averaging relations for

homogenization in general. For more details, we refer to the reviews

of Geers et al. [2010] and Matouš et al. [2017].

This method has been applied to the homogenization of thin

shells [Geers et al. 2007] as well as textiles and fabrics [Fillep et al.

2017; Mehnert et al. 2015]. However, they use a small-curvature

assumption which is inadequate for large bending, as we will discuss

in Section 4.2.

The nature of representative microscale computations in com-

putational homogenization lends itself to data-driven approaches.

Various approaches fit constitutive models from precomputed stress

and energy data [Bessa et al. 2017; Le et al. 2015; Yvonnet et al.

2013]. However, the basic constitutive models used are either not

descriptive enough for our data or do not provide any guarantees

to ensure smooth animation.

Other Continuum Models for Fabric. The physics and engineer-

ing communities have also developed continuum-level models for

approximating the behavior of fabrics. Choi and Lo [2003] and

Poincloux et al. [2018] propose mathematical models describing

the rich material response of a stockinette pattern based on inex-

tensible and incompressible yarns. However, their investigations

are limited to a small set of extension tests. Researchers have also

developed mesoscopic models of woven fabric using spring-based

finite elements [King et al. 2005; Parsons et al. 2013, 2010].

3 OVERVIEW

We first explain the necessary background in homogenization and

derive novel periodic boundary conditions for our method in Sec-

tion 4. We then implement these ideas in a quasi-static yarn-level

cloth simulator, as described in Section 5. Using this microscale

yarn-level simulator, we sample the material’s behavior in response

to a number of different in-plane and bending deformations. We use

regularized spline regression to fit a macroscopic energy density

model to this data (Section 6), and use the new material model di-

rectly in a thin-shell cloth simulator (Section 7). Figure 3 provides

an overview of our method.

Modeling Assumptions. Woven and knitted fabrics are complex

materials with non-trivial elastic, plastic, hysteretic, and damping

behaviors. As a first step toward data-driven yarn-level cloth simu-

lation, this paper assumes that these materials exhibit a purely hy-

perelastic response to deformation. Although our current approach

is limited, we show in Section 8 that this hyperelastic assumption

is sufficient to reproduce a number of qualitative effects specific to

yarn-level materials. We discuss future extensions in the directions

of data-driven plasticity, hysteresis, and damping in Section 9.

4 HOMOGENIZATION

We begin by summarizing the łkinematic averagingž theory of com-

putational homogenization for volumetric solids, and we extend

these concepts to the homogenization of thin shells in the second

part of this section. For further details, we recommend the following

reviews on computational homogenization and multiscale model-

ing [Geers et al. 2010; Matouš et al. 2017].

We use the terms microscopic and microscale when referring to

small local (yarn-level) effects, and we use the termsmacroscopic and
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macroscale when referring to average (continuum-level) behaviors

of the bulk material. We write macroscopic quantities x with a bar

and microscopic quantities x without. We use Latin indices i, j to

iterate dimensions 1, 2, 3, and Greek indices α, β to iterate only the

first two dimensions 1, 2. We use indices preceded by a comma as

shorthand for derivatives, e.g. xi , j is the derivative of element xi
with respect to parameter j.

4.1 Computational Homogenization of Volumetric Solids

We describe the macroscale deformation of an elastic solid with

reference coordinates X , deformed coordinates x , and deformation

gradient F = ∂x

∂X
. Similarly, we have microscale quantities X , x ,

and F = ∇x = ∂x
∂X

. Homogenization theory assumes that the bulk

material exhibits microscale variations, and thus we can zoom in

at any macroscale point x to find a volume of microscale material,

called the representative volume element (RVE) [Geers et al. 2010; Hill

1963]. Mathematically, we can describe the RVE with a first-order

expansion about a point x [De Souza Neto et al. 2015]:

x(X ) = x + FX + ũ(X ), (1)

where ũ is a microscale displacement fluctuation field which encodes

all of the non-affine local deformations around x . In other words,

ũ encodes all of the detailed, high-frequency deformations of the

microstructure geometry that are not accounted for by the large-

scale deformation F . The holes in a spongy material, for example,

may deform more than the stiffer elastic parts; ũ would define this

difference in microscale deformation. See Figure 4 for an illustration.

Next, macroscale quantities are defined to be averages over their

microscale counterparts [De Souza Neto et al. 2015; Hill 1963]:

x =
1

|Ω |

∫
Ω

x(X ) dΩ, (2)

F =
1

|Ω |

∫
Ω

F (X ) dΩ, (3)

where Ω is the microscale reference domain with volume |Ω |, and

dΩ denotes integration over Ω. The theory assumes without loss

of generality that
∫
Ω
X dΩ = 0, and that the macroscale quantities

vary so slowly over the RVE that they are essentially constant at the

microscale [De Souza Neto et al. 2015], i.e. x and F do not depend

on X . Plugging (1) into (2) and (3) and applying these assumptions

Ω

FX

u

x

Fig. 4. At any macroscale point x , we can observe a microscale RVE with

reference domain Ω. The RVE is deformed through an affine transformation

given by F (dashed lines) and additional periodic fluctuations ũ (blue). Note

that the deformation of the holes is described by a combination of F and ũ .

gives us ∫
Ω

ũ(X ) dΩ = 0, (4)∫
Ω

∇ũ(X ) dΩ = 0. (5)

In other words, the small-scale fluctuations in translation ũ and

deformation ∇ũ must average out over the RVE. In computer simu-

lations with periodic micro-structures, (4) is satisfied by fixing the

barycenter of ũ, and (5) is commonly satisfied by requiring ũ to be

periodic on the boundaries [De Souza Neto et al. 2015; Van der Sluis

et al. 2000]:

ũ+ = ũ−, (6)

where ũ+ is the value of the fluctuation field on one side of the do-

main, and ũ− is its value on the corresponding opposite side. Finally,

we compute the homogenized energy density as the averaged total

energy in the RVE

Ψ =
1

|Ω |

∫
Ω

Ψ(X ) dΩ, (7)

where Ψ and Ψ are the microscale and macroscale energy densi-

ties respectively. For the purposes of simulation, we can compute

forces by taking the negative gradient of this homogenized potential

energy.

To restate briefly, we expand a microscale RVE from a macro-

scopic deformation F and with fluctuations ũ that describe local

deformation. We then require that the microscale deformation on

average equals F . This imposes the constraint that ũ should on av-

erage not induce any additional deformation. Finally, this can be

enforced through periodicity.

4.2 Nonlinear Homogenization of Thin Shells

Next, we apply this rationale to the problem of homogenizing a

yarn-level microscale to a thin-shell macroscale. The main chal-

lenge here is to find a suitable analogy to Equation (1) that works

for thin shells instead of volumes. Previous work on thin shell ho-

mogenization relies on a small curvature assumption and uses first

or second order expansions for the RVE (e.g. [Geers et al. 2007]). This

effectively replaces bending modes with shearing or stretching of

the material, as illustrated in Figure 5. For microscale materials that

resist stretching far more than bending, the erroneous stretching

can introduce artificial stiffness in the homogenized response for

macroscale bending. To support our goal of homogenizing highly

flexible materials, this section proposes a novel non-linear thin shell

expansion based on metrics from differential geometry.

Fig. 5. Comparison of a first order (left), second order (middle) and our

non-linear expansion (right) of thin-shell RVEs in a curved configuration.

The lower order expansions show strong artifacts as bending modes are

approximated through shearing (left) or stretching (middle).
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Fig. 6. A macroscopic line-segment (left) is expanded in-plane into a curved

microscale volume (right). Top and bottom show reference and deformed

configurations respectively. This example uses a squiggly yarn for the mi-

crostructure, and we indicate the fluctuations ũ as offsets to the yarn

deformed purely from its embedding (dashed).

On the macroscale, we have a thin shell x that is defined through

its midsurface φ, which is extruded along the normal n:

x(ξ 1, ξ 2,h) = φ(ξ 1, ξ 2) + h n(ξ 1, ξ 2), (8)

where ξα are the flat reference coordinates of the midsurface, and h

is the thickness coordinate. The left side of Figure 6 illustrates this

parametrization.

We locally define deformations with the first fundamental form I

for in-plane deformation and the second fundamental form II for

bending modes. With surface tangents aα = φ,α we have

n =
a1 × a2

|a1 × a2 |
, (9)

and we compute the components of the fundamental forms as

Iα β = aα · aβ , (10)

IIα β = −n,α · aβ . (11)

We construct the RVE expansion similar to (1):

x(ξ1, ξ2,h) = φ(ξ1, ξ2) + h n(ξ1, ξ2) + ũ(ξ1, ξ2,h) (12)

with microscale midsurface φ, its normal n, and fluctuation field ũ.

In an analogy to (1), which deforms the volumetric RVE based on the

macroscale quantity F , we deform the thin shell RVE with a midsur-

face φ derived from the macroscale fundamental forms I and II. The

functionφ(ξ1, ξ2)+h n(ξ1, ξ2) applies a low-resolution spatial defor-

mation across the entire microstructure (illustrated by the dashed

line in Figure 6), while ũ encodes the remaining high-frequency

details of the thin-shell microgeometry. In a knitted microstruc-

ture, for example, ũ prescribes how the individual threads stretch,

slide, twist, and bend relative to each other. Figure 6 illustrates a

2D schematic, and Figure 7 shows a 3D rendering of this expansion.

Notice that the thickness coordinate h is shared between both micro-

and macroscale since our thin-shell homogenization averages only

the in-plane coordinate.

Defining the Midsurface. Our goal here is to create a midsurface

φ in (12) with constant fundamental forms I, II matching those of

the macroscale. Although it is possible to derive such constant-

fundamental-form surfaces analytically, the exact solutions are

only compatible with a limited set of boundary conditions. Here,

Fig. 7. A periodic yarn pattern microstructure is shown with its associated

midsurface in an undeformed (left) and deformed state (right).

we present a more general least-squares solution to this surface-

reconstruction problem.

Inspired by the rotation-strain decomposition for deformation

extrapolation [Huang et al. 2011], we begin with the polar decom-

position of the midsurface gradient

∇φ =
(
a1 a2

)
= RS . (13)

Here, the 3 × 2 matrix S represents the constant in-plane deforma-

tion and R is a 3 × 3 rotation matrix that aligns S with the tangent

plane of the curved surface. Without loss of generality, we choose

the macroscale frame of reference such that
(
a1 a2

)
= S and

n =
(
0 0 1

)⊤
. Note that ∇φ, a1, a2, and R vary along the mid-

surface; we omit the (ξ1, ξ2) function notation when convenient for

readability.

We want to match I = I. With I = ∇φ⊤∇φ and (13) we get

S
⊤
S = I, (14)

allowing us to compute S in (13) from the principal square root of

the first fundamental form I:

S =

( √
I

0 0

)
. (15)

To match II = II, we compute R(ξ1, ξ2) in (13) by integrating the

normal curvatures n,α outward from the RVE center ξ1 = ξ2 = 0.

We perform this integration with an analytic expression for the

exponential map, which we explain in detail in the supplementary

material (Section S1.1).

Now that we knowR and S , we solve (13) forφ in the least squares

sense, giving us a vector Poisson equation with natural boundary

conditions:

∇2φ = ∇ · RS inside the domain, (16)

N · ∇φ = N · RS on the boundary. (17)

This equation gives the exact solution for singly-curved surfaces

and can generalize to solutions for non-constant I and II. We solve

the system numerically by discretizing the surface as a regular grid

and using standard finite differencing. This midsurface can now be

used in (12) to completely describe a highly deformed thin shell

microstructure, as illustrated in Figure 7.

Co-Rotated Boundary Conditions. To complete our analogy with

the homogenization strategy in Section 4.1, we must derive con-

straints on the fluctuation field ũ which make sense for thin shells.

Unfortunately, as illustrated in Figure 8a, the simple averages pro-

posed in (4) and (5) can lead to erroneous cancellation of fluctuations
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(a) (b)

Fig. 8. (a) Naive averaging creates a null-space of growing/shrinking cylinder

radii as well as sliding along the surface. As an example, the displacements

indicated as pairs of orange or brown arrows would cancel each other

respectively, whereas with our co-rotated averaging they are treated as

the same rotated displacement. (b) Our co-rotated periodicity compares

fluctuations (arrows) by rotating them into a common frame (gray).

when applied to a highly deformed domain, leading to undesired

nullspaces in the RVE.

To address this problem, we propose to average quantities by

parallel transporting them to a common frame. The rotation R from

earlier rotates n = n(0, 0) to n(ξ1, ξ2) and thus describes orthogonal

frames oriented along the midsurface normal. Therefore, we can

use its transpose to align local frames for fluctuations, resulting in

the modified constraint ∫
Ω

R⊤ũ dΩ = 0. (18)

With a bit more work (explained in supplementary material Sec-

tion S1.2), we can also derive a co-rotated constraint on the deriva-

tive of ũ: ∫
Ω

R⊤ũ,α dΩ = 0, (19)

implying an analogous co-rotated version of (6):

(R⊤ũ)+ = (R⊤ũ)−, (20)

which is satisfied by splitting the boundary of themidsurface domain

Γ into opposing parts ∂Γ+ and ∂Γ−, and using this constraint as

periodic boundary conditions. Figure 8b illustrates how our co-

rotated periodicity aligns displacements.

Finally, for macroscale thin shell simulations, we are interested

in homogenizing an elastic energy area density. Instead of dividing

the total energy by the volume as in (7), we divide by the area of

the RVE midsurface to get

Ψ =
1

|Γ |

∫
Ω

Ψ(ξ1, ξ2,h) dΩ, (21)

with |Γ | being the area of the midsurface domain.

To summarize, we are now able to take a macroscale deformation

given by I and II and compute a midsurface φ from (16)ś(17). This

defines the fluctuation field ũ through (12), on which we can then

enforce the translation and periodicity constraints (18) and (20), and

compute homogenized energy area densities Ψ with (21).

5 YARN PATTERN SIMULATION

For any periodic yarn pattern, we aim to compute a mapping from

deformation to homogenized energy densities. To minimize the

dimensionality of the problem, we seek the energy at the elastostatic

equilibrium configuration, subject to the macroscopic deformation.

Fig. 9. We show a stretched rib pattern before (left) and after (right) opti-

mization with the periodic tile highlighted in red, periodic ghost segments

in gray, and the midsurface in translucent blue. Notice how the rib pattern’s

yarn loops naturally tighten under tension while maintaining the curvature

of the surface.

The elastostatic assumption is common in many applications like

animation [Teran et al. 2005], fracture simulation [Müller et al. 2001],

and structural optimization [Liu et al. 2014], because it captures the

overall behavior of a material without needing to compute dynamic

effects. In our case, this equilibrium state corresponds to the physical

state with yarn collisions resolved and the yarns being at rest with

respect to bending, twisting, and stretching.

To deform a microscale periodic yarn patch, we embed it into

the RVE as shown in Figure 7. Finding the elastostatic equilibrium

amounts to a constrained optimization problem of minimizing the

homogenized energy with respect to the fluctuations ũ and subject

to the translation and deformation constraints; i.e.,

Ψ = min
ũ

1

|Γ |

∫
Ω

Ψ(ũ) dΩ s.t. (18) and (20). (22)

Figure 9 shows a yarn pattern before and after relaxing it into its

optimized state.

The number of tiles within an RVE is a choice that determines

which scales of buckling are handled by homogenization, and which

ones are handled by the cloth simulator. In this work, we chose to use

a small RVE size for each pattern primarily based on computational

cost, and have not explored larger sizes. We leave the study of RVE

sizes and buckling frequencies as future work.

5.1 Yarn Model

We simulate yarns using discrete elastic rods (DER) [Bergou et al.

2010, 2008] with the yarn-level cloth collision forces of [Kaldor et al.

2008] modified for linear spline segments. Real wool yarns consist

of many threads wound together, so they may resist bending and

twisting much less than stretching. To add more flexibility to our

yarn simulations, we therefore add an additional parameter γ to

scale bending and twisting energies in relation to stretching energy.

Thus, we compute the integral in (22) as the sum of stretching Es ,

bending Eb , twisting Et , and collision energies Ec of yarns in the

periodic patch: ∫
Ω

Ψ dΩ = Es + γEb + γEt + Ec . (23)

For the definition of the individual energies, see [Kaldor et al. 2008]

for Ec and [Bergou et al. 2010] for the other terms. As discussed in

Section 3, we omit inter-yarn friction in the micro-scale quasistatic

optimization.

ACM Trans. Graph., Vol. 39, No. 4, Article 48. Publication date: July 2020.



Homogenized Yarn-Level Cloth • 48:7

The elastic energy terms in this model require that we know the

rest shape of each yarn. Because the act of knitting and weaving

can actually change the rest shape of a yarn (as seen in Figure 10),

obtaining it is a non-trivial task. In our experiments, we apply a

heuristic that the rest pattern should be in equilibrium relative

to the stretching energy; inspired by Leaf et al. [2018], we apply

tension by shortening the yarns’ rest lengths, and then we shrink the

periodic lengths of the pattern to find an energy minimum relative

to stretching. We explain this initialization process in detail in the

supplementary material (Section S2.3).

Fig. 10. In this real-world example, we extracted the top strand of wool yarn

from the knit pattern below, and allowed the yarn to come to rest. The yarn

clearly has a bent rest shape related to the pattern it was knitted into.

5.2 Periodicity

Yarns on one side of the patch can interact with yarns on the opposite

side through periodic collisions or by being periodically connected.

Therefore, we have to consider periodic discrete elastic rod and

collision forces. We introduce ghost segments that copy and tile the

yarns along the periodic field R⊤ũ implied by the constraint (20).

Ghost segments do not contribute to the energy in the (23); they

simply copy the motion of the primary yarns and act as colliders

and boundaries for the yarn segments in the RVE. Figure 9 shows

these ghost segments colored gray.

In addition to positional degrees of freedom, [Bergou et al. 2010]

incorporates material frames and edge twists.We enforce periodicity

on reference frame directors dα and twist variables θ via

(R⊤dα )
+
= (R⊤dα )

−, (24)

θ+ = θ−, (25)

where + and − denote an original and copied edge respectively.

5.3 Homogenization Constraints

For the purposes of homogenization, we have to impose the trans-

lation constraint (18), periodic vertex positions (20), and periodic

edge twists (25) on the microscale. Additionally, the yarn forces

are invariant to a constant twist, so we remove this nullspace by

requiring the total twist per periodically connected yarn to be zero.

We found that the reference frames do not drift from their constraint

manifold (24) over time, so we do not actively enforce this constraint

after initialization.

We enforce the periodicity constraints by eliminating the copied

degrees of freedom from the linear system in the Newton step.

Exploiting the fact that any periodic vertex or twist relates linearly

to exactly one other vertex or twist through (20) and (25), we can

define reduced degrees of freedom y through

C̃y + d̃ = q, (26)

whereq is the vector of all vertex positions and edge twists. Notably,

C̃ is sparse and will preserve the sparsity of the Newton system. This

elimination of variables is based on parametrizing the nullspace of all

periodicity constraints. We discuss its construction in Appendix A.

On the other hand, due to its density, enforcing the translation

constraint (18) by parametrizing its nullspace would result in a dense

C̃ . Instead, we enforce this constraint with Lagrange multipliers. In

addition, we also use Lagrange mutlipliers to remove the nullspace

of constant twists along a yarn by requiring∑
i

θi = 0 (27)

for each (periodically connected) yarn. We concatenate the transla-

tion and twist constraints to get

CLq = dL . (28)

5.4 Optimization Step

We can now solve the constrained minimization problem in (22).

Using Newton iteration, each step to solve for increments δy and

Lagrange multipliers λ is given by(
C̃⊤HC̃ + αI C̃⊤CL

⊤

CLC̃ 0

) (
δy

λ

)
= −

(
C̃⊤∇E

CLq − dL

)
, (29)

where E is the total energy, H = ∂2E
∂q∂q is its Hessian, and and α is

an exponentially decaying regularizer to help convergence. We also

limit the maximal vertex displacement per step to a fraction of a

yarn radius to avoid missing collisions between iterations, and we

observed improved numerical conditioning if we rescale positional

degrees of freedom relative to twists. We provide these details, as

well as initialization and stopping criteria for this optimization

algorithm in the supplementary material (Section S2.2).

6 FITTING

At this point, we are able to compute an energy density Ψ for a

yarn pattern given an input deformation I, II. Our next step is to

build a database of entries sampling this Ψ(I, II) function, and then

approximate the data by fitting a model to it. However, the energy

landscape can be noisy due to multiple microscale equilibria Ð the

yarn pattern can buckle, interacting yarns are generally multistable

and slide over each other. Especially in compressive regimes, the

pattern can buckle differently for similar strains, leading to noise in

the energies. Local minima in the fit then introduce noisy restshapes

and popping in the final macroscale simulation (see Figure 11). Addi-

tionally, our data is neither convex nor is it well-fit by polynomials.

After experimenting with several fitting schemes, we settled on the

strategy of first regularizing the input data, and then fitting a model

as a sum of regularized splines while enforcing quasiconvexity and

piecewise monotone interpolation. We will discuss the main ideas of

the fitting procedure in this section, and we provide further details

in our supplementary material (Section S3).

6.1 Parametrization and Sampling

We begin by choosing a reparametrization of the input strains I and

II that is better suited to sampling and interpolation. We desire each

input parameter to be valid over a fixed interval independent of
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Fig. 11. Insufficient regularization can negatively affect simulated rest

shapes. Here, a draped rib knit shows noisy boundaries (left) compared

to a fit with better regularization (right).

other parameter values, so that we can use standard interpolation

schemes over rectilinear grids. Furthermore, we wish to avoid sam-

pling over the full n-dimensional space of possible strains, but still

capture pairwise interactions such as the Poisson’s ratio, influence

of stretching on bending, and so on.

To start, we reparametrize the in-plane strains. Using the en-

tries of I is problematic as its off-diagonal entry a1 · a2 not only

encodes the shearing angle but is also influenced by the lengths

of the aα . Instead, we define weft-stretching sx , shearing sa , and

warp-stretching sy strains as

sx =

√
I11 − 1, sa =

I12√
I11I22

, sy =

√
I22 − 1, (30)

and the combined in-plane strain s =
(
sx sa sy

)⊤
. Here, we

use the terms łweftž and łwarpž to refer to the directions ξ1 and ξ2
respectively.

The difficulty with the bending strain II is that it is not possible

to construct a microscale patch with constant strain unless it is

singly curved, i.e. the rank of II is ≤ 1. We were further unable to

find a satisfactory parametrization for the space of all singly-curved

bending strains. Instead, we choose to only sample the response to

bending along two orthogonal directions. That is, we collect one

set of data with II of the form diag(λx , 0), and another set with

II = diag(0, λy ).

The data then represent samples of the function along two sub-

spaces: one with arbitrary s and bending only in x , and one with

arbitrary s and bending only in y. As described the next section, we

interpolate the data in each subspace to obtain fits Ψx (s, λx ) and

Ψy (s, λy ). Finally, we describe how to interpolate between them to

define the fitted energy density for arbitrary bending strain II.

Note that our choice of axis-aligned bending and stretching cor-

responds to the weft and warp directions that are dominant in the

patterns we investigate, but in general the orientation of the bases

is arbitrary.

Prior to fitting, we normalize all strains (sx , sa, sy , λx , λy ) by their

maximum absolute values in the data, which ensures that stretch-

ing and bending strains are treated as equally important. We have

tried various strategies to mitigate the noise in the data induced by

buckling, including prohibiting specific buckling modes through

constraints and even penalizing yarn motion normal to the midsur-

face. However, we were unable to eliminate noise without affecting

the overall elastic response and concluded that homogenization

of micro-scale buckling is a difficult problem. As a first step, we

settled on regularizing the data by re-sampling it using moving least

squares interpolation.

6.2 Fitting and Interpolation

We define a fitting procedure for multidimensional data which cap-

tures pairwise interactions between parameters without requiring

high-dimensional sampling. Consider a function f depending on

many parameters θ1, θ2, ... . Inspired by Miguel et al. [2016], we

additively split it into the form

f (θ1, ... , θn ) = f0 +
∑
i

fi (θi ) +
∑
i<j

fi j (θi , θ j ). (31)

Without loss of generality, we may fix fi (0) = 0 and fi j (0, θ j ) =

fi j (θi , 0) = 0. Thus the one-dimensional term fi encodes the re-

sponse toθi holding other parameters at zero, and the two-dimensional

term fi j encodes the residual response to both θi and θ j , i.e. the com-

ponent of f ( ... , θi , ... , θ j , ... ) not explained by f0 + fi (θi ) + fj (θ j ).

Therefore, the fi j terms describe cross-modal material responses,

including stretching in two directions or simultaneous stretching

and bending. Notably, our homogenization method is capable of

sampling these cross-modal deformations.

To fit the components of (31), we measure f0 = f (0, 0, 0, ... ), we

fit the one-dimensional fi terms using piecewise monotone cubic

splines [Fritsch and Carlson 1980], and we fit the two-dimensional

residual fi j terms using our novel extension of Carlson and Fritsch

[1989] to spline patches. We also apply a heuristic outward march-

ing algorithm to ensure quasiconvexity. Miguel et al. [2016] enforce

convexity in their fits. However, we found that this would not de-

scribe our data well, and we opted for quasi-convexity as the closest

choice. This strategy makes our results stable (see Figure 11) with

the downside of not perfectly fitting the data. Outside of the sampled

range, we linearly extrapolate the fitted splines. We provide details

for each of these steps in our supplementary material (Section S3).

Figure 12 shows data and fit for the 1D splines. Figure 13 compares

data, 1D fits, 2D residuals, and the cumulative fit.

Our method makes the simplifying assumption that there are only

pairwise interactions between parameters. What this assumption

buys us is a dramatic economy of sampling: even for arbitrarily high-

dimensional parameter spaces, our procedure only needs samples

along coordinate axes and 2D coordinate planes. When the assump-

tion is violated, however, our approach may not preserve convexity.

For example, f (x,y, z) = max(x2,y2, z2) is a convex function for

which our fit is nonconvex.

The above procedure is applied to the singly-curved data Ψx and

Ψy defined previously. Of course, the zero-curvature data points

and the 1D and 2D fitting terms not involving curvature will be

shared between both. Finally, to define our fitted energy density for

an arbitrary curvature II, we look at the eigenvalues of II, λ1 and

λ2, and the squared cosine c2 of the angle between the eigenvector

corresponding to λ1 and the x-axis. In our supplementary document

(Section S4), we show how to robustly compute these values. Now
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Fig. 12. One-dimensional in-plane (left) and bending (right) terms for the honeycomb pattern. We show data in blue, the fit as a green line, and spline control

points as black dots. Notice the off-center minimum for the bending terms, which corresponds to the pattern’s curved rest shape.
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Fig. 13. Fit of the 2D term f13(sx , sy ) for the honeycomb pattern. From left to right: data, sum of 1D fits, 2D residual, cumulative fit, and fitting error. The

colors show the magnitude on a symmetric-log scale, and we show extrapolated values outside of the data range (indicated as a rectangle). Note that this

term shows the area preservation of the material; while increasing tension along one axis, the minimum along the other moves towards a compressed state.

Crucially, this behavior is missing from just the sum of 1D terms.

we define Ψ(s, II) as

Ψ(s, II) = c2
(
Ψx (s, λ1) + Ψy (s, λ2)

)
+ (1 − c2)

(
Ψx (s, λ2) + Ψy (s, λ1)

)
.

(32)

Limitations. We found the fitting problem particularly challeng-

ing due to the complex interactions between deformation modes,

the numerical noise in the data, and especially the sensitivity of

macroscale simulations to local minima in the energy density (Fig-

ure 11). We invested a great deal of effort to design a fitting scheme

that works well for all the yarn patterns we tested, but we found

a few cases unavoidable, which we summarize below. Firstly, to

ensure a decent fit for the łstockinettež pattern, which features a

strong tendency to curl, we found it necessary to concentrate spline

control points for 2D residual terms involving bending strains more

closely around the origin (Figure 14), and to apply a higher qua-

siconvexity parameter in the marching step. We believe that this

may be caused by the far-off-center bending minimum and the addi-

tively split model thus creating local minima. Secondly, we observed

yarn-level reference simulations to exhibit symmetric rest shapes

with zero shear; to ensure that this behavior is preserved in our

macroscale simulations, we symmetrized our data with respect to

sa . Finally, we disabled our heuristic quasiconvexity marching for

the two-dimensional f13(sx , sy ) term, which would otherwise pre-

vent us from modeling Poisson’s ratio. We refer the reader to the

supplementary material for the full details of the fitting algorithm,

including the above modifications, as well as the raw strain-energy

data and our fitting code.

YLC
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HYLC modified
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Fig. 14. We show a simulated restshape and the plot for a representative

bending residual for the homogenized stockinette with default and modified

spline control points, and a yarn-level reference (YLC). Even though the

fit is smooth, default control point locations create artifacts at the fabric

boundary.

7 CLOTH SIMULATION

We now want to drive a thin-shell cloth simulator using the contin-

uum models fit in the previous section. The cloth is discretized as a

trianglemesh, which represents themacroscale thin shell midsurface

φ. Similarly, we need to discretize I and II to compute in-plane and

bending strains, (30) and λ1, λ2, c
2, on the triangle mesh. For robust
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simulation, we use implicit integration, which requires computing

the Hessian of the energy. To improve stability, we enforce positive

definiteness in the Hessian. Dynamic yarn friction is partially mod-

eled via Rayleigh damping in the continuum simulations, but we

leave the inclusion of friction into the homogenization procedure

as future work.

For each triangle, we first compute its deformation gradient

F△ =
(
φ1 −φ0,φ2 −φ0

) (
ξ 1 − ξ 0, ξ 2 − ξ 0

)−1
, (33)

whereφ j and ξ j are the world-space and material-space coordinates

of vertex j , and the triangle-averaged shape operator [Grinspun et al.

2006]

Λ =

∑
i

θi

2Ali
ti ⊗ ti , (34)

where θi is the signed angle between this and the i-th neighboring

triangle’s normals, A is the triangle area, li are edge lengths, and ti
are vectors of length li perpendicular to each edge and the inner

triangle normal. All quantities in (34) are computed in world-space.

With this, we compute the discrete fundamental forms as

I△ = F△
⊤F△, (35)

II△ = F△
⊤
Λ F△. (36)

Because of (34), the degrees of freedom involved in a triangle’s

strain also include the triangle vertices of up to three neighboring

triangles. Denoting the combined degrees of freedom as q△ and

the collected strains z = (sx , sa, sy , λ1, λ2, c
2), the total energy of a

triangle is given by

E△ = A Ψ(z(q△)). (37)

Since our energies are nonconvex, their Hessians are not guaranteed

to be positive definite, which negatively affects stability. Inspired

by Teran et al. [2005], we enforce positive definiteness by clamping

the eigenvalues of per-triangle sub-Hessians ∂2E△
∂q△∂q△

to be non-

negative using an eigensolver for self-adjoint matrices in the library

Eigen [Guennebaud et al. 2010]. The global system in the implicit

timestep will then be positive definite as a sum of the positive semi-

definite sub-Hessians and the positive definite global mass matrix.

8 RESULTS

To summarize, our pipeline first takes in a periodic yarn pattern

and elastic rod material properties, simulates the pattern subject

to various deformed boundary conditions, and records the result-

ing potential energy density. We then create a data-driven strain-

parameterized material model for each yarn pattern and simu-

late the material in an existing thin shell finite element solver

(ArcSim [Narain et al. 2013, 2012]). We include pseudo-code for

each step in our pipeline in a supplementary document.

In our experiments, we wanted to model a variety of yarn patterns

with notably different topologies and macroscale material effects.

We drew several patterns from the yarn pattern database of Leaf

et al. [2018] (basket2_2, satin2_3, slip_stitch_honeycomb, and

cartridge_belt_rib), and implemented a custom stockinette knit

pattern of our own. Figure 15 shows the five patterns. The knitted

patterns are topologically quite different from each other and from

basket satin honeycomb rib stockinette

Fig. 15. The patterns used in our results with abbreviated names.

Table 1. Yarn-level parameters per pattern including Young’s modulus E ,

the shear modulus G , the bending and twisting stiffness multiplier γ , the

collision stiffness kcontact, and the density ρ .

Pattern E (Pa) G (Pa) γ kcontact
( kg
s2

)
ρ

( kg
m3

)
basket 1e5 4e4 0.1 1.2e1 1.2e2

honey 5e5 2e5 0.1 6e1 1.2e2

rib 5e5 2e5 0.001 6e1 6e1

satin 1e5 4e4 0.1 1.2e1 1.2e2

stock. 5e5 2e5 0.001 6e1 1.2e2

satin small 1e6 4e5 1 1e2 1.2e3

stock. small 1e6 4e5 1 1e2 1.2e3

the woven patterns, leading to significant variance in macroscopic

effects like area preservation, resistance to stretching, and out-of-

plane curling. We rescale the patterns to have a yarn radius of 1mm

and smaller variants of the satin and stockinette patterns to 0.1mm.

Table 1 lists the yarn-level parameters for each pattern; we choose

parameters to achieve realistic-looking yarn-level simulations.

We render cloth simulated with our models using ambient oc-

clusion and normal map textures, which we create by projecting

the periodic yarn patterns. Thus, our results cannot easily generate

visible gaps between yarns as seen in Figure 14, regardless of the

quality of the homogenization. It is possible to drive the deforma-

tion of detailed yarn-level geometry using the coarser, simulated

mesh, although such a strategy may be computationally expensive

for large garments or small knits (e.g. Figure 18). We attribute the

differences between yarn-level and homogenized results in Figure 14

to both texture mapping as well as an imperfectly homogenized

model.

8.1 Validation

To validate our homogenized macro-material models, we run side-

by-side comparison simulations between our macro-material cloth

simulator and a brute-force yarn-level cloth simulator. We compare

the behavior of a 30 cm × 30 cm square patch of material when

stretched in different directions and draped over a spherical obstacle.

Some of these comparisons are displayed in Figure 16 and Figure 1,

and all of them are included in our supplementary data.

Our homogenized yarn-level cloth models generally agree well

with the yarn-level cloth simulations, even though the various yarn

patterns behave very differently from each other: the woven ma-

terials tend to be stiffer and exhibit no tendency to preserve area

when stretched; the rib knit exhibits fairly extreme anisotropy when

stretching; the stockinette stitch curls up on the boundaries when

stretched or left to hang freely.
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YLC HYLC

(a) basket weave

YLC HYLC

(b) honeycomb

YLC HYLC

(c) stockinette

Fig. 16. Comparison of direct yarn-level simulation (YLC) to simulation with our homogenized continuum models (HYLC) for drapes and stretching tests of

three patterns. Our method is able to capture a wide array of phenomena such as the Poisson’s ratio of the honeycomb pattern, or the more exotic restshape

and curling under tension of the stockinette pattern at a fraction of the cost.

For the yarn-level simulations in this comparison, we used the

non-rigid motion damping of Kaldor et al. [2008]. Because our ma-

terial models are based on elastic properties of the cloth, we did not

yet attempt to learn damping properties. Instead, we used the con-

tinuum Rayleigh damping model implemented in ArcSim, which

we tuned to empirically match the yarn-level damping model.

Note that our material models are extracted from periodic yarn

patterns, so they should be able to adequately reproduce the behav-

ior of a yarn-level simulation near the interior of the cloth. However,

knitted garments generally have different stitches or fasteners near

boundaries, which disrupts this periodic structure; indeed, to model

boundary effects in our yarn-level simulator, we effectively łgluež

the yarns together with springs that are pre-stretched in the thick-

ness direction. These boundary effects were not included in our

periodic homogenization, so we do not expect our material to be-

have perfectly near boundaries. Nevertheless, our results do show

relatively similar boundary behaviors to the yarn-level examples.

Fig. 17. Only fitting the one-dimensional energy terms for the same models

as in Figure 16 shows that overall draped shapes are still captured nicely

and are arguably faster and easier to fit. However, area-preservation effects

and curling under tension are modeled by two-dimensional terms and as a

result are lost in the simpler model.

To illustrate the merits of our multi-dimensional fitting procedure

described in Section 6, we also compared ourmethod’s behavior with

andwithout two-dimensional energy terms. As seen in Figure 17 and

our supplementary data, the materials with only one-dimensional

stress response do a reasonable job of approximating the overall

stretching and bending resistance, but they fail to capture more

complex two-dimensional compensations. Notably, the 1D models

cannot capture Poisson-like behaviors, where stretching in one

direction causes the material to compress in the other.

Performance. The computational complexity of a yarn-level cloth

simulator scales with the number of yarn segments. In contrast, the

performance of ourmacroscale material scales with the number of el-

ements in a cloth simulator, multiplied by the cost of evaluating our

potential energy function (or its gradient). Yarn-level simulations

also invest computational resources into carefully handling persis-

tent inter-yarn collisions, either through small time steps or more

clever collision handling. Our method deals with those persistent

contacts in its preprocessing phase, and only deals with large-scale

self-collisions within the cloth solver. Because our method sidesteps

most of the performance bottlenecks in a yarn-level cloth simulator,

we expect our method to achieve a large speedup over a yarn-level

cloth, especially when the yarn density is high. Additionally, using

an implicit cloth solver allows us to take larger timesteps compared

to the explicit yarn-level solver, where computing Hessians becomes

infeasible. Although these side-by-side examples use a modest num-

ber of yarn segments, our simulator shows significant speedups

from ×3.3 to up to ×46, as seen in Table 2. Across the patterns, sam-

pling the data for fitting takes from 15min to 76min, and the fitting

itself takes less than a minute, further highlighting the cost benefit

of precomputing inexpensive simulations. The stockinette examples

in Table 2 have a higher łsec/framež and number of vertices due to

finer adaptive remeshing needed for resolving tight curls.

Our proposed constitutive model depends on the second fun-

damental form and thus requires more computation compared to

standard bending models based on dihedral angles such as [Grin-

spun et al. 2003].
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Table 2. Simulation timings for the comparisons of direct yarn-level simulation (YLC) and with our method (HYLC). Pattern names are abbreviated. All tests

were performed for two orientations of the cloth (original and 90◦ rotation), and their videos can be found in the supplementary data. ∆t denotes the timestep

in seconds. sec/step denotes the average seconds per timestep. sec/frame denotes the average seconds per frame for a reference framerate of 30fps. # Vertices

denotes the number of vertices in yarn-level simulations, and the average number of vertices for thin-shell simulations, which are subject to remeshing.

Simulation
HYLC YLC

∆t sec/step sec/frame # Vertices* ∆t sec/step sec/frame # Vertices

basket drape Fig. 16 2.09e-04 0.46 73.46 2276 1e-05 0.13 (×5.9) 430.43 65188

basket drape 90◦ 2.09e-04 0.46 72.74 2229 2e-05 0.23 (×5.2) 381.50 65188

basket stretch Fig. 16 2.09e-04 0.50 80.58 2668 1e-05 0.17 (×7.0) 560.43 65188

basket stretch 90◦ 2.09e-04 0.52 82.96 2657 1e-05 0.24 (×9.6) 797.10 65188

honey drape Fig. 16 1.67e-04 0.41 81.91 2091 1e-05 0.36 (×14.7) 1206.40 118140

honey drape 90◦ 1.28e-04 0.42 109.65 2127 1e-05 0.39 (×12.0) 1314.72 118140

honey stretch Fig. 16 1.67e-04 0.49 98.67 2370 1e-05 0.31 (×10.3) 1017.60 118140

honey stretch 90◦ Fig. 1 1.67e-04 0.44 87.50 2376 1e-05 0.29 (×10.9) 954.20 118140

rib drape 2.09e-04 0.48 76.86 2337 5e-06 0.39 (×34.2) 2625.12 157592

rib drape 90◦ 2.09e-04 0.48 77.32 2374 5e-06 0.53 (×46.0) 3559.10 157592

rib stretch 2.09e-04 0.48 76.35 2577 5e-06 0.38 (×33.3) 2542.47 157592

rib stretch 90◦ 2.09e-04 0.47 75.07 2541 5e-06 0.45 (×39.6) 2971.27 157592

satin drape Fig. 1 2.09e-04 0.48 77.21 2297 1e-05 0.56 (×24.0) 1855.08 95040

satin drape 90◦ 2.09e-04 0.47 74.74 2246 1e-05 0.56 (×24.9) 1861.55 95040

satin stretch 2.09e-04 0.44 70.82 2500 1e-05 0.35 (×16.6) 1176.50 95040

satin stretch 90◦ 2.09e-04 0.50 79.66 2684 1e-05 0.30 (×12.4) 985.17 95040

stock. drape Fig. 16 2.09e-04 0.96 152.96 3390 1e-05 0.19 (×4.2) 643.08 76156

stock. drape 90◦ 2.09e-04 1.03 165.04 3383 4e-06 0.08 (×4.0) 652.35 76156

stock. stretch Fig. 16 2.09e-04 1.15 184.17 4415 1e-05 0.18 (×3.3) 615.83 76156

stock. stretch 90◦ 2.09e-04 0.79 126.91 3869 4e-06 0.08 (×5.4) 684.30 76156

8.2 Large-scale Simulations

Because our homogenized material’s computational complexity is

now independent of the number of yarns, we are able to approxi-

mate the behavior of large garments with a high density of yarns.

Figure 19 and our supplementary data show draped cloth simulated

with models of stockinette and satin patterns rescaled to 10% of their

original size. The stitch density of these materials is one hundred

times higher than those we were able to feasibly simulate with a

yarn-level simulator, so we do not have any direct performance or

behavioral comparisons to report here.

Similarly, we are able to simulate large garments such as sweaters

and shirts (Figure 1, Figure 18). We note that these homogenized

knitted materials retain their unique material properties, like stretch-

iness (honey), anisotropic effects (rib), or curling at the bound-

aries (stockinette), despite the fact that they were simulated with

a continuum-mechanics based cloth solver. For comparison, a di-

rect yarn-level simulation of a stockinette sweater would require

over 1.7 million vertices, compared to the 76 thousand vertices in

our yarn-level validation tests. The small-stockinette shirt would

require 36 million vertices.

Because our homogenized materials rely on triangle meshes in-

stead of knitted patterns to determine their geometry, it is straight-

forward to simulate garments with more exotic shapes using our

method (Figure 1, Figure 20). We report the simulation timings for

each of these results in Table 3.

Table 3. Simulation timings for large-scale simulations with timestep ∆t

in seconds, average seconds per step, and average seconds per frame for a

reference framerate of 30fps.

Simulation ∆t sec/step sec/frame

satin small drape Fig. 19 3.34e-04 1.10 109.72

stock. small drape Fig. 19 3.34e-04 2.01 200.32

sweater basket Fig. 18 1.67e-03 7.40 147.62

sweater honey Fig. 18 1.67e-03 7.43 148.36

sweater rib Fig. 18 8.35e-04 5.79 231.15

sweater satin Fig. 18 1.67e-03 7.45 148.79

sweater stock. Fig. 18 1.67e-03 7.44 148.50

shirt stock. small Fig. 18 8.35e-04 3.74 149.19

shirt satin small Fig. 18 1.67e-03 4.96 99.06

scarf Fig. 1 8.35e-04 0.91 36.31

yarn bunny Fig. 20 6.68e-04 1.23 61.20

yarnmadillo Fig. 20 5.57e-04 11.16 668.24
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basket satin honeycomb rib stockinette small satin small stock.

Fig. 18. We demonstrate the effectiveness and the rich behavior of our homogenized models for all of our patterns on simulations of sweaters and t-shirts.

This freeze frame highlights: stronger stretching resistance of woven fabric (basket and satin), the anisotropy of the rib, curling of the stockinette, and the folds

of the small-scale patterns.

    

ba
ck
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de

Fig. 19. Models homogenized from higher density variants of the satin (left)

and stockinette (right) patterns at a 10% scale naturally produce more folds

when draped. Notably, the small stockinette shows small curls on the inside,

similar to cut t-shirts. Besides the scale of the folds, the larger stitch density

does not affect the performance of our method.

9 CONCLUSION

This paper proposes a method for computing homogenized models

capable of simulating yarn-level effects in a thin-shell cloth solver.

Through homogenization of a non-linear shell, we are able to com-

pute homogenized responses of periodic yarn patterns to macroscale

deformations. We can then fit a regularized continuum model with-

out the need for expensive measurement equipment. We compare

our results with brute force simulations for multiple patterns on a

series of stretching and draping tests. Our method is able to capture

the rich properties of knitted fabric such as general stretching and

bending anisotropy, including Poisson’s ratio, while being an order

of magnitude faster even on moderate scales.

Limitations and Future Work. Our model is able to abstract the

yarn-level interactions into an elastic continuum; however, this

implies that we do not model localized effects such as tearing or

pulling on single yarns. To this end, combining our continuum

model with localized yarn simulation is worth investigating.

While our model captures elastic rest shapes well, we ignore

yarn-level friction and hysteresis in our homogenization procedure.

Although our method can be combined with other macroscale damp-

ing and plasticity models, we would like to explore homogenizing

viscous and plastic effects from yarn-level simulations as well. We

Fig. 20. Before and after of a bunny and a yarnmadillo simulated with our

models.

have left cloth-cloth and cloth-obstacle frictional contact entirely

to the continuum solver; the more recent Argus simulator [Li et al.

2018] could be used in place of ArcSim for improved accuracy there.

Homogenization theory assumes a small RVE compared to the

macroscale deformation. Although our co-rotated boundary condi-

tions significantly loosen this limitation by allowing large highly-

deformed configurations, the theory still imposes practical limita-

tions on pattern size and thickness. For example, extreme curvatures

at the macroscale may cause excessive self-intersections at the mi-

croscale. Similarly, approximating voluminous yarn patterns with a

triangle-based cloth solver may make the garment look unrealisti-

cally thin.

Our fitting procedure based on regularized splines aims to strike a

balance between generality and robustness. Although we present a
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number of heuristics to increase the quality of the fit for nonconvex

data, we do not offer any provable performance guarantees, and

the approach is tailored to our application domain. Our focus in

this work was to find one approach that yields stable simulations

and reproduces the essential qualitative features of yarn-level cloth.

Due to various approximations in fitting, we do not expect a perfect

quantitative match. It would be interesting to devise experiments

similar to real-world devices for measuring cloth material response.

We hope that these aspects can be improved further in future work.

Finally, our homogenization procedure is not limited to yarn-level

cloth and could be useful for animating other complicated multi-

physics materials like layered quilts, layered elastic materials [van

Rees et al. 2017], skin tissue, and layered deployable shells [Guseinov

et al. 2017]. Outside of computer graphics, our technique may be

applicable to the homogenization of composite materials, micro-

structured shells, and finite-element simulations. This approach

may also be helpful as an intermediate step in inverse problems like

the design and fabrication of functional fibrous materials.
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A ELIMINATION OF PERIODIC VARIABLES

The constraints on periodic vertex positions (20) and edge twists

(25) can be concatenated into one constraint

Cq = d . (38)

We eliminate periodic variables by parametrizing the nullspace of

(38). We found that simply using a QR factorization for this is not

numerically robust and produced dense matrices. However, we can

exploit that each periodically copied degree of freedom is used in

exactly one (sub-)constraint. As such, we can writeC as

C =
(
I A

)
P, (39)

where P is a permutation matrix that permutes the columns of C ,

splitting it into a left identity block I and a sparse right block A;

i.e., we bring the constraint matrix into reduced row echelon form,

where the columns ofA span the kernel ofC . In our case, the kernel

represents exactly the original degrees of freedom that are copied.

For our periodicity constraints, the matrix is of the form

(
I A

)
=

©­­«
I3×3 −(R+)(R−)⊤

1 −1

. . .
. . .

ª®®¬
. (40)
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Note that P splits q into free variables y and copies q̂copy:

Pq =

(
q̂copy
y

)
. (41)

Then, we have

Cq = d (42a)(
I A

)
Pq = d (42b)

(
I A

) (
q̂copy
y

)
= d (42c)

q̂copy = −Ay + d, (42d)

and

q = P⊤
(
q̂copy
y

)
(43a)

= P⊤
(
−Ay + d

y

)
(43b)

= P⊤
(
−A

I

)
y + P⊤

(
d

0

)
(43c)

= C̃ y + d̃ . (43d)

Finally, we need to compute the initial y from q. For generality,

we consider the case whenCLq , dL and find y as

min
y

���C̃y + d̃ − q
���2 s.t. CL(C̃y + d̃) − dL = 0, (44)

the solution of which is given by(
C̃⊤C̃ C̃⊤CL

⊤

CLC̃ 0

) (
y

λ

)
=

(
C̃⊤(q − d̃)

dL −CLd̃

)
. (45)
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