
Mechanics-Aware Deformation of Yarn Pattern Geometry

GEORG SPERL, IST Austria, Austria

RAHUL NARAIN, Indian Institute of Technology, India

CHRIS WOJTAN, IST Austria, Austria

Fig. 1. Our method uses an underlying cloth mesh (bottom) to animate yarn-level cloth (top) in real-time by approximating the yarn-level response in a

data-driven fashion based on the deformation of the mesh. It reproduces the stretching behavior of knits (left), animates large garments with millions of yarn

vertices (middle), and combines with real-time cloth simulation for end-to-end interactive animation of yarn-level cloth (right). We render the sweater (middle)

using pathtracing and with hair particles.

Triangle mesh-based simulations are able to produce satisfying animations of

knitted and woven cloth; however, they lack the rich geometric detail of yarn-

level simulations. Naive texturing approaches do not consider yarn-level

physics, while full yarn-level simulations may become prohibitively expen-

sive for large garments. We propose a method to animate yarn-level cloth

geometry on top of an underlying deforming mesh in a mechanics-aware

fashion. Using triangle strains to interpolate precomputed yarn geometry,

we are able to reproduce effects such as knit loops tightening under stretch-

ing. In combination with precomputed mesh animation or real-time mesh

simulation, our method is able to animate yarn-level cloth in real-time at

large scales.

CCS Concepts: · Computing methodologies→ Physical simulation.

Additional Key Words and Phrases: mechanics-aware, yarn-level cloth, real-

time, knitted, woven, cloth simulation

ACM Reference Format:

Georg Sperl, Rahul Narain, and Chris Wojtan. 2021. Mechanics-Aware De-

formation of Yarn Pattern Geometry. ACM Trans. Graph. 40, 4, Article 168

(August 2021), 11 pages. https://doi.org/10.1145/3450626.3459816

1 INTRODUCTION

The intricate geometry of knitted and woven fabric gives rise to

both visual and physical complexity. For example, knit loops tighten

when the fabric is being stretched (Figure 2 right), or fabric might

Authors’ addresses: Georg Sperl, IST Austria, Klosterneuburg, Austria, georg.sperl@ist.
ac.at; Rahul Narain, Indian Institute of Technology, New Delhi, India, narain@cse.iitd.
ac.in; Chris Wojtan, IST Austria, Klosterneuburg, Austria, wojtan@ist.ac.at.

© 2021 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3450626.3459816.

Fig. 2. Deforming a yarn pattern (left) with embedded deformation causes

it to stretch uniformly (center), which ignores yarn-level physics that should

make the yarn loops tighten (right).

curl depending on the yarn pattern [Cirio et al. 2016; Sperl et al.

2020].

Existing research focuses either on the level of individual yarns,

or on overall cloth behavior. Direct simulation of individual yarns

[Bergou et al. 2010; Cirio et al. 2016; Kaldor et al. 2008; Sánchez-

Banderas et al. 2020] produces detailed yarn behaviors, which can

be scaled up to accurately simulate large-scale cloth behaviors albeit

at great computational expense. On the other hand, spring- or mesh-

based cloth simulation [Baraff and Witkin 1998; Müller et al. 2007;

Sperl et al. 2020; Terzopoulos et al. 1987] efficiently approximate the

behavior of fabric at the large scale, but they ignore the behavior of

individual yarns.

This work proposes to bridge this gap by adding yarn-level defor-

mations to mesh-based cloth simulation. We first precompute the

behaviors of a periodic yarn pattern based on the large-scale defor-

mation of the underlying cloth. We then interpolate these deformed

yarn patterns at runtime based on the deformation state of the

cloth mesh, resulting in richly detailed yarn-level geometry which

rearranges in accordance with yarn-level mechanics in real-time.

Figure 1 highlights some examples achieved with our method.

ACM Trans. Graph., Vol. 40, No. 4, Article 168. Publication date: August 2021.

168:2 • Sperl, Narain, and Wojtan

We also introduce an efficient way of linearizing the bending

response of yarn patterns in terms of stretching, and we propose a

way to clamp compression, allowing the user to tune the extent of

yarn buckling. We implement the yarn deformation procedure as

compute shaders on the GPU.

Overview. We start by discussing related work in Section 2. Then

we detail the two main stages of our method: data generation and

real-time displacement. Section 3 explains the data generation step

shown in Figure 3, where we optimize for the rest configuration

of yarn patterns under a range of large-scale deformations, and

compute local displacements relative to these deformations. Sec-

tion 4 details the real-time displacement phase illustrated in Figure 4,

where we map the precomputed yarn geometry onto a deforming

triangle mesh. Section 5 explores our method’s results. Section 6 dis-

cusses limitations and advantages, and concludes with a summary

and future work.

2 RELATED WORK

Yarn-Level Cloth. Kaldor et al. [2008, 2010] first simulated cloth

at the yarn level, and researchers later reduced collision detection

costs with persistent sliding contacts [Cirio et al. 2014, 2015, 2016],

improved the bending model [Pizana et al. 2020], and handled con-

tact between multiple layers of cloth [Sánchez-Banderas et al. 2020].

Leaf et al. [2018] developed a tool for designing yarn patterns under

tension.

Researchers recently combined yarn-level and mesh-level cloth

simulators. Casafranca et al. [2020] enriched a mesh-based cloth

simulation with yarn-level simulation in regions of interest, and

Sperl et al. [2020] used precomputed yarn patterns to develop a

homogenized continuum material model. The latter use texture

maps to visualize yarn geometry, so the individual strands do not

react to the deformation of the cloth. Our work enhances these

ideas by adding mechanics-aware yarn-level geometry to any mesh

animation at negligible cost.

Embedded Detail. A simple and effective way to give the illusion

of detailed physics is to embed fine geometric detail into a coarser

control mesh. After the idea of dynamic free-form deformations

were introduced by Faloutsos et al. [1997], researchers embedded

geometric detail into animations of elasticity [Sifakis et al. 2007],

fracture [Muller et al. 2004], viscoelasticity [Wojtan and Turk 2008],

fluids [Wojtan et al. 2009], and articulated characters [Rumman and

Fratarcangeli 2016]. Researchers also use this idea to deform woven

yarn pattern geometry [Montazeri et al. 2020; Zhao et al. 2016]. Hoff-

man et al. [2020] map detailed knit, crochet, and sequin geometry

onto cloth meshes with support for fly-away fibers. Stitch Meshes

[Yuksel et al. 2012] used a simplified mechanical sheet model to de-

form 3D yarn-level cloth models to reduce relaxation times. Because

these techniques apply coarse deformations to fine-scale geometry,

they cannot reproduce small-scale physical effects. Our method

addresses this in the context of yarn-level cloth, by displacing the

yarn geometry before mapping it onto the deformed mesh such that

the combined deformation actually captures the yarn-level physical

effects.

Example-Based & Mechanics-Aware Deformation. Our work ani-

mates yarn physics in real-time by interpolating from precomputed

examples. Researchers also use example geometry to bias physics

simulators toward preferred results [Gao et al. 2019; Koyama et al.

2012; Martin et al. 2011; Schumacher et al. 2012; Wampler 2016].

Similar to Ma et al. [2008]’s interpolation of displacement textures

based on the deformation of a face mesh, we interpolate yarn ge-

ometry based on the deformation of a cloth mesh. Montazeri et al.

[2019] deform yarn cross-sections by learning a model from precom-

puted simulations; our approach operates at one scale higher, by

animating the reconfiguration of yarn patterns based on a database

of precomputed examples.

Researchers use similar ideas to add fine-scale wrinkle details to

a coarse cloth or flesh simulation. Procedural wrinkle methods rely

on an underlying strain field [Hadap et al. 1999; Rohmer et al. 2010;

Zuenko and Harders 2019] or explicit simulation of detail [Müller

and Chentanez 2010], while data-driven wrinkle methods instead

train local operators or pose-dependent systems [Kavan et al. 2011;

Wang et al. 2010; Zurdo et al. 2012], with recent works building

on recurrent or convolutional neural networks [Chentanez et al.

2020; Jin et al. 2020; Santesteban et al. 2019; Vidaurre et al. 2020].

Our work assumes that the input cloth mesh animation already

contains all cloth-scale features including wrinkles, and then adds

detail purely on a yarn scale.

3 DATA GENERATION

We want our embedded yarn details to deform realistically, so we

prescribe their motion based on yarn-level simulations. This sec-

tion describes the physics precomputation phase of our algorithm,

illustrated in Figure 3.

3.1 Deformation Optimization

We use the method of Sperl et al. [2020] to simulate how each yarn

pattern deforms. Thismethod takes as input a particular yarn pattern

in an undeformed configuration (e.g. the łstockinettež pattern in

Figure 3), and a large-scale surface deformation encoded as the first

I and second II fundamental forms. The method uses this large-scale

deformation to define boundary conditions, and then optimizes for

the elastostatic equilibrium configuration of the yarn pattern. Sperl

et al. [2020] then reduced this geometric information down to a

single scalar energy density used in a hyperelastic material model.

In contrast, we will use the yarn geometry directly.

We model yarns as discrete elastic rods [Bergou et al. 2010], rep-

resented as connected lists of vertices with positions x along the

centerline. Each edge also stores a twist angle θ and a reference di-

rector d1.
1 We concatenate positions and twists for each vertex into

a four-dimensional vector q =
(
x⊤, θ

)⊤
, where θ corresponds

to one incident edge. (Note that the reference directors d1 are not

degrees of freedom.)

1The subscript in d 1 refers to its definition as one of two reference directors: one for

the edge normal, and one for the edge binormal.

ACM Trans. Graph., Vol. 40, No. 4, Article 168. Publication date: August 2021.

Mechanics-Aware Deformation of Yarn Pattern Geometry • 168:3

patternQ deformed q optimized q pullback Q̂ data ∆Q

Fig. 3. From left to right: We start with a periodic yarn patternQ , and we apply a range of large-scale surface deformations to get the deformed state q . Using

the optimization method of Sperl et al. [2020], we optimize for the elastostatic rest shape q subject to the respective deformation. We then pull the resulting

geometry back into the undeformed material space to get Q̂ . Finally, we subtract the initial state to compute displacements ∆Q , building a mapping from

large-scale deformation to the associated local yarn-level deformation.

material space world space

Q
∆Q Q̂ q

Fig. 4. Our algorithm for animating yarn geometry in real-time: We start with undeformed yarn-level geometry Q tiled over a triangle in material space (left),

and we apply the appropriate material displacement ∆Q from the database to get deformed yarn geometry Q̂ (middle). This geometry is then mapped along

with the triangle to get the current world-space deformation q.

We recall from [Sperl et al. 2020] that during the optimization

the kinematics of yarn vertex positions are defined as

x(X) = x(X) + ũ(X), (1)

x(X) = φ(X1,X2) + X3 n(X1,X2). (2)

Here, X = (X1,X2,X3)⊤ are the material-space coordinates of the

undeformed yarn pattern, with (X1,X2) the orthogonal and periodic
directions along the pattern andX3 the height coordinate. x denotes

the large-scale deformation constructed from the input fundamental

forms I and II, which encode in-plane and bending deformations

respectively. From these fundamental forms, we construct the mid-

surface φ with normal n, as described in [Sperl et al. 2020] and in

Appendix A, such that I = ∇φ⊤∇φ and II = −∇φ⊤∇n. We then

solve for the yarn configuration which minimizes elastic energy. The

optimization variables are the fluctuations ũ, which describe local

displacements relative to the large-scale deformation, and the twists

θ . Using Θ for undeformed twists, the concatenated coordinates

are undeformedQ = (X⊤,Θ)⊤, large-scale-deformed q = (x⊤,Θ)⊤,
and optimized q = (x⊤,θ)⊤. Here, we assume that twists Θ are

unaffected by the large-scale mapping, which is true for pure in-

plane deformations. In general, bending may induce local twists that

depend on II and the orientation of yarns relative to the curvature

direction. In our experiments, we assume that this effect is small.

Crucially for our application, we found that the optimization

of Sperl et al. [2020] contains a nullspace that allows yarns to

slide: a periodic yarn curve x(s) parametrized by s can slide by

a parametric shift ∆s without changing its elastic energy E, i.e.

E(x(s)) = E(x(s + ∆s)). Geometrically, such a shift corresponds

to tangential sliding of yarn while maintaining the same periodic

shape. To the optimizer any such state is equivalent, and the actual

result may depend arbitrarily on numeric solver parameters. This

nullspace does not affect the homogenized energies in [Sperl et al.

2020] by definition. However, interpolating between two shifted pa-

rameterizations may produce completely different shapes, as shown

in Figure 5. In our experience, this nullspace creates distracting

interpolation artifacts even for nearly-identical deformations. The

problem remains as we sample the deformations more densely, man-

ifesting as sharp discontinuities in deformation space.

We eliminate this parametric yarn sliding by adding a constraint

to the optimization, effectively removing the nullspace. Specifically,

we fix one vertex per periodic yarn to remain on the boundary of

the pattern:

ũ · (∇φ N) = 0, (3)

where N is the undeformed normal to the respective pattern bound-

ary, either N = (1, 0)⊤ or N = (0, 1)⊤. This sparse set of vertex

constraints efficiently and effectively removes the aforementioned

ACM Trans. Graph., Vol. 40, No. 4, Article 168. Publication date: August 2021.

168:4 • Sperl, Narain, and Wojtan

Fig. 5. Top: Interpolating two periodic curves (left and right) that are iden-

tical up to a shift in parametrization can result in arbitrary interpolated

shapes which look very different from the original data (center).

Bottom: Interpolating yarn geometry without accounting for sliding creates

unrealistic artifacts like self-collisions and floating loops (left); our sliding

constraint eliminates these artifacts (right).

interpolation artifacts. This strategy allows us to find a physically

realistic yarn shape for a given large-scale deformation described

by I and II.

3.2 Sampling

Now that we can produce yarn geometry for a given deformation,

we want to precompute a series of representative samples and in-

terpolate them at runtime. I and II are each symmetric 2 × 2 ten-
sors, so parameterizing deformation by I and II directly yields a

6-dimensional function which is expensive to precompute, store,

and read at runtime. We aim to reduce this dimensionality by pa-

rameterizing the deformation with as few variables as possible.

Following Sperl et al. [2020], we reparameterize I as a 3-dimensional

function using the in-plane strains

sx =
√
I11 − 1, sa =

I12√
I11I22

, sy =
√
I22 − 1. (4)

II can be parameterized similarly by introducing additional cur-

vature variables and increasing the dimensionality of the dataset.

However, we show in Section 4 that bending deformation can be

reasonably approximated in terms of stretching variables alone. This

strategy lets us sample the entire large-scale deformation space with

only three variables sx , sa , and sy , significantly reducing memory

and computation overhead. We sample these deformations on a

regular 3D grid, and we discuss the performance, data size, and

quality for different numbers of samples in Section 5.

3.3 Material-Space Displacements

At runtime, our interpolated yarn geometry will be mapped onto a

deformed triangle mesh, where it will naturally inherit the deforma-

tion of its triangle (the mapping from material-space to world-space

in Figure 4). Thus, we want to store all of the deformation except the

large-scale deformation in our precomputation as material-space

displacements (the łpullbackž column in Figure 3).

To do this, we need to find themodifiedmaterial space coordinates

X̂ which give us our desired world-space deformations x when

deformed by only the large-scale deformation x(X̂): in other words,

find X̂ s.t. x = x(X̂). We perform this solve using Newton’s method

and provide more details in Appendix B.

Algorithm 1 Real-time Yarn Animation

Input: mesh animation, yarn pattern, displacement data ∆Q

Output: deformed yarn geometry q

1: procedure Animate Yarns

2: Q ← yarn pattern tiled over mesh

3: Each Frame:

4: compute I, II per face

5: interpolate I, II to mesh vertices

6: for each yarn vertex do ▷ on the GPU

7: interpolate I, II from mesh

8: compute linearized bending I(X3) ▷ (7)

9: clamp compression ▷ Section 4.3

10: compute strains sx , sa , sy ▷ (4)

11: look up displacements ∆Q ▷ Section 3.3

12: displace: Q̂ ← Q + ∆Q ▷ (8)

13: map: q ← (x(X̂)⊤, Θ̂)⊤ ▷ Section 4.5

14: end for

15: tessellate and render q ▷ Supplementary S2

16: end procedure

Concatenating Q̂ = (X̂⊤,θ)⊤, we subtract the initial material

state to get displacements

∆Q = Q̂ −Q . (5)

Note that at the rest pose, I = Id, II = 0, and ∆Q = 0.

To summarize, we can now build a database of material-space

yarn displacements ∆Q for each vertex i of a pattern and for a range

of in-plane deformations j: ∆Qi (sx j , saj , syj). This database can be

interpreted as a grid of example deformations, or similarly as a 3D

displacement texture per yarn vertex. Interpolating between these

samples takes a planar deformation sx j , saj , syj and maps it to a

yarn-level displacement map. Note that this will recover the exact

deformed yarn pattern for the strains sampled in the database and

approximate patterns for intermediate strains.

4 REAL-TIME DISPLACEMENT

Now that we have a database of yarn pattern displacements for a

range of deformations, we apply them to a yarn pattern tiled over an

animating triangle mesh. In the following discussion, we denoteQ

as the undeformed (material space) coordinates, Q̂ as the coordinates

deformed by local displacements, and q as the final world-space

coordinates, as illustrated in Figure 4. Algorithm 1 outlines our

procedure.

X
2

X
1

X
3

As a precomputation, we

first create the initial un-

deformed yarn mesh cor-

responding to the unde-

formed triangle mesh (in-

set).We generate a 2D back-

ground grid in the mesh’s

UV-coordinates with cells

the size of the periodic pattern, and we copy the yarn geometry into

every cell that overlaps an undeformed triangle. We then remove

ACM Trans. Graph., Vol. 40, No. 4, Article 168. Publication date: August 2021.

Mechanics-Aware Deformation of Yarn Pattern Geometry • 168:5

yarn vertices that do not lie within a triangle and delete yarn frag-

ments shorter than a user-specified length for aesthetic purposes as

described in the supplementary (Section S1). Finally, we precompute

the material-space barycentric coordinates for each yarn vertex.

4.1 Mesh Strains

Each animation frame, we compute discrete fundamental forms for

each triangle as in [Sperl et al. 2020]:

I = F⊤F , II = F⊤Λ F , (6)

where F is the triangle deformation gradient and Λ is the triangle-

averaged shape operator from [Grinspun et al. 2006]. We then dis-

tribute them to triangle vertices using modified Shepard weights

from Phong interpolation [James 2020], and finally interpolate them

to each yarn vertex.

4.2 Linearized Bending

As alluded to in Section 3.2, we can approximate the effect of bending

behavior by adding stretching and compression depending on the

surface curvature. We show in Appendix C.1 that we can enhance

the first fundamental form with one that varies along the surface

normal:

I(X3) ≈ I − 2X3 II, (7)

≈

We illustrate this idea in the inset figure to the

right, which approximates the extruded volume

around a curved blue midsurface (top) with a

linearized volume that is stretched above and

compressed below the midsurface (bottom). We

compare this idea to other bending models in Section 5.

4.3 Compression Clamping

Like most elastic materials, cloth buckles out of plane when com-

pressed. The chaotic nature of this buckling can make our yarn

optimization reach multiple visually distinct configurations that

do not vary smoothly over deformation space (Figure 6, top). Sperl

et al. [2020] dealt with this issue regularizing the fit of their out-

put energies. We similarly regularize compression by clamping the

eigenvalues of I to a lower bound before looking up the yarn dis-

placement, which reduces buckling in a user-tunable way.

Using the method of Deledalle et al. [2017], we set a minimum

value λmin for the eigenvalues of I(Z). (Unless stated otherwise,

all of our experiments use λmin=0.8, where λ<1 is compression.)

Because ∆Q→0 as I→Id, our technique for clamping compression

will only reduce local deformations, but it will still deform due to

the triangle embedding. Figure 6 (bottom) shows how this clamping

reduces buckling while preserving the large-scale deformation.

4.4 Local Displacement

After clamping I, we convert it to strains sx , sa , sz (Equation (4)), tri-

linearly interpolate the yarn displacement ∆Q(sx , sa , sz), and com-

pute the deformed material space yarn coordinates

Q̂ = Q + ∆Q . (8)

We clamp strains outside of the sampled range to their nearest neigh-

bor in the ∆Q(sx , sa , sz) dataset. Similar to compression clamping,

Fig. 6. Top: From left to right, a yarn pattern buckles into different config-

urations under increasing shearing deformation. Bottom: Adding a lower

bound λmin=0.7 to the eigenvalues of the in-plane deformation I allows a

user to tune the extent of buckling during animation.

Fig. 7. The yarns of a rib pattern adapt to increased stretching from an initial

state (left) until the limits of the precomputed data are reached (middle).

Deformation beyond the sample limits (right) do not result in further local

displacements, but instead fall back to purely embedded deformation.

Fig. 8. Barycentric embedding of yarn geometry may create sharp edges

(center), whereas Phong deformation smooths out obvious mesh resolution

artifacts (right).

this constant extrapolation will limit the local deformations while

still inheriting large-scale deformations from the mesh embedding

(See Figure 7).

4.5 World-Space Mapping

To map the yarn vertices to world space x , we use:

x(X̂) = φ(X̂1, X̂2) + X̂3 n(X̂1, X̂2), (9)

which corresponds to extruding the world-space mesh surface φ

along its normal n. To avoid piecewise linear embedding artifacts,

we employ Phong deformation [James 2020] and interpolated ver-

tex normals to generate a smoother surface φ and shell-volume

(Figure 8).

Tomap yarn twists, we simply copy the updated twist values θ=Θ̂,

and we co-transform the edge normals d1 using an approximate

mapping of the Jacobian of (9), as detailed in the supplementary

material Section S2.1.

The computation of yarn vertex deformation and world-space

mapping are trivially parallel, so we implement them as GPU com-

pute shaders. The interpolation of ∆Q results in a single 3D texture

interpolation per yarn vertex.

ACM Trans. Graph., Vol. 40, No. 4, Article 168. Publication date: August 2021.

168:6 • Sperl, Narain, and Wojtan

ours

naive

Fig. 9. Comparison of our mechanics-aware yarn animation (top) against

naive embedding (bottom). The yarn geometry differs substantially on the

left, where the deformation is large.

4.6 Real-Time Rendering

Computer graphics researchers have developed a number of algo-

rithms for rendering yarns and fibers [Montazeri et al. 2020, 2019;

Wu and Yuksel 2017]. For the examples in this paper, we tessellate

the deformed yarns as cylindrical meshes in a geometry shader. We

approximate ply- and fiber-level detail with procedurally twistable

normal maps and ambient occlusion maps, and we approximate

volume conservation by locally rescaling yarn radii when they are

stretched.We provide the full rendering details in the supplementary

document Section S2.

5 RESULTS

We will now discuss examples generated by our mechanics-aware

yarn animation technique. Figure 9 shows how our algorithm com-

pares to a more typical embedded approach to animating yarn-level

geometry detail. Our method naturally reacts to the deformation of

the underlying cloth by causing loops to rearrange and tighten up

as the tension is increased. As a natural consequence, our approach

also reproduces the tendency of knitted and mesh fabrics to become

more transparent when stretched. Figure 10 shows how we can

easily apply different yarn-patterns to any cloth mesh, producing

visually distinct geometry which depends on both the deformations

of the mesh and the precomputed yarn mechanics. Our method can

add yarn-level details onto any deforming triangle mesh: examples

in this paper use deforming cloth meshes from ArcSim [Narain

et al. 2013, 2012], position-based dynamics [Müller et al. 2007], and

Blender [2020].

We enhance an offline cloth simulation solver which reproduces

the large-scale effects of knitted garments [Sperl et al. 2020]. Fig-

ure 11 compares this approximation to ground-truth yarn-level

simulations, yielding visually plausible recreations of the local pat-

tern deformation. We note that the accuracy of our method highly

depends on the accuracy of the underlying triangle deformation, so

we see higher discrepancy where the FEM cloth simulation deviates

from yarn-level simulation.

We also used our approach to add yarn-level details to a position-

based dynamics cloth solver [Bender et al. 2015], to approximate

yarn-level cloth simulation in real-time. Figure 12 shows how a user

can perform an interactive dressing operation by pulling a knitted

sock onto a foot. Note that our method still produces plausible yarn-

level deformations, despite the fact that the default position-based

elastic material model is quite far from a model derived from yarn

physics.

Fig. 10. Different yarn patterns mapped onto a twisted cloth with our

method react differently to the mesh deformation. The second row shows a

zoom and compares it to naive embedding in the third row. Our method

captures the subtle tightening in all cases, while the naive method results

in unrealistic gaps between yarns.

Fig. 11. Comparison of yarns animated with our method applied to a pre-

computed cloth simulation (left) against full yarn-level simulation (right,

courtesy of Sperl et al. [2020]). Our yarn level deformations differ the most

where the triangle-level cloth simulation is least accurate.

✘
✘
✘✘✿

Fig. 12. We use position-based dynamics to simulate a sock being pulled

over a foot in real-time, where the user can interactively control the force.

Figure 13 shows we can render our yarn geometry offline to

produce higher quality path-traced scenes with łfuzzž from a pro-

cedural particle system. Figure 14 shows how our GPU-based yarn

ACM Trans. Graph., Vol. 40, No. 4, Article 168. Publication date: August 2021.

Mechanics-Aware Deformation of Yarn Pattern Geometry • 168:7

Fig. 13. Two examples of our yarn geometry that were rendered offline

using path tracing and hair particles.

Fig. 14. Our method scales favorably with increasing yarn density. We

deform yarn geometry for a sweater with 0.8 million vertices at well over

100 FPS (left), and a sweater with 42.7 million vertices at over 14 FPS (right).

displacement algorithm allows for the animation of garments with

millions of individual yarn vertices at interactive rates. Please refer

to our supplementary video for additional highly detailed results.

For reproducibility, we release the source code and data used to

generate our results (https://git.ist.ac.at/gsperl/MADYPG).

Performance. We ran our method on a desktop computer with an

Intel Core i7-7820X processor and an NVIDIA GeForce GTX 1080

Ti graphics card and gathered performance statistics. Table 1 breaks

down the computational cost of our algorithm for each of the various

examples in this paper. Almost all examples in this paper perform

both geometry generation and rendering in real-time (well over 60

fps). To stress-test our method, we created the knitted sweater in

Figure 14 (right), which has more than 40 million yarn vertices and

generates yarn geometry at over 14 fps. The total time including

rendering (depending on the complexity of the renderer and the

amount of geometry per pixel due to camera zoom) is around 4 fps

for this example. Please see our submission video for more detailed

demonstrations of our method.

Dataset Size. The number of samples in our precomputed yarn

database only modestly affects the visual quality of the animation.

Figure 15 shows a deformed rib pattern with a varying number of

database samples and a visualization of the associated interpolation

error. We also provide animations with several sampling densities

in our supplementary material. In practice, we found that a small

number of samples was sufficient to capture strong effects like

loops tightening under tension, and we noticed surprisingly few

obvious interpolation errors (like interpolated threads leading to

self-collisions).

2R

0

Fig. 15. Comparison of different data sampling densities. The top and bot-

tom rows show results generated with 5 × 5 × 5 and 31 × 31 × 31 samples

respectively. In the top images, we color-code the L2 error in vertex positions

between the coarse and fine model, compared to the yarn radius R ; red color

corresponds to a larger difference. The coarse model produces plausible

geometry even in the presence of larger errors.

On the other hand, a large number of database samples led to

unwanted noise in the animations, like sudden ‘pops’ from one

configuration to another, instead of gradual ones. We believe our

observations are consistent with those of Sperl et al. [2020], who

noted that a dense sampling rate (especially in the compressive

regime where fabric buckles chaotically) required explicit filtering

to remove high-frequency noise. In our case, simply removing sam-

ples from the database acts as an effective low-pass filter, and our

compression clamping technique strongly reduces popping.

The complexity of our yarn database has only a small affect on

runtime. Table 2 relates the number of precomputed yarn-level sim-

ulations in our database to the memory and runtime of our method.

Notably, a 238× increase in database size caused a proportional

increase in memory but only a 2.8× increase in runtime. Unless

stated otherwise, the results shown in this paper use datasets of 93

samples sampled uniformly over the ranges sx , sy ∈ [−0.2, 1.0] and
sa ∈ [−0.7, 0.7].

Bending Models. Finally, we compare the effect of our linearized

bending approximation in Figure 16. We compare our linearized

model described in Section 4.2 to a bending model that explicitly

captures combined stretching and bending. (See Appendix C for

details on these comparison models, and see our supplementary

videos for an animated version of this and similar tests.) First of all,

we found that the importance of bending depends on the knit pattern:

łthickž patterns like the rib (Figure 10 red, center) exhibit more

differences than nearly planar ones like the stockinette (Figure 10

blue, right). The further away the geometry is from the surface φ,

the more it is locally stretched or compressed by bending. Second,

even for a thick pattern, the differences between the two models are

minor and localized to regions of strong curvature. Most importantly,

the linearized model is muchmore efficient Ðwhen comparing CPU-

based implementation, our linearized model ran roughly 8× faster.

An extra benefit of the linearized bending model is that it trans-

forms bending-induced buckling into compression, which can be

filtered with our compression clamping algorithm (Section 4.3). Oth-

erwise, it would be non-trivial to filtering both compression- and

bending-related buckling in a compatible and coherent manner.

ACM Trans. Graph., Vol. 40, No. 4, Article 168. Publication date: August 2021.

168:8 • Sperl, Narain, and Wojtan

Table 1. Performance breakdown of results in this paper. From left to right, we list: the respective figure, the number of animated yarn vertices and average

per-frame times of mesh strain computation (Section 4.1), data look-up and local yarn displacements (Sections 4.2 to 4.4), and embedded world-space mapping

(Section 4.5). The mesh stage is implemented on the CPU, whereas yarn displacement and mapping are implemented on the GPU. In comparison, the

CPU-implemented position-based dynamics step for the sock example averaged to 19.24 ms.

animation # vertices strainsCPU displacementGPU mappingGPU

sleeve Fig. 9 94k 1.02 ms 0.13 ms 0.10 ms

patterns (averaged) Fig. 10 82k 0.82 ms 0.09 ms 0.07 ms

honeycomb stretch Fig. 11 top 74k 0.61 ms 0.08 ms 0.07 ms

rib stretch Fig. 11 center 154k 0.77 ms 0.16 ms 0.12 ms

stockinette stretch Fig. 11 bottom 119k 0.59 ms 0.12 ms 0.11 ms

stockinette sweater Fig. 14 left 862k 2.59 ms 0.81 ms 0.66 ms

fine stockinette sweater Fig. 14 right 42.7M 2.59 ms 35.34 ms 27.68 ms

rib twist Fig. 13 left 433k 0.38 ms 0.51 ms 0.38 ms

table cloth Fig. 13 right 130k 1.50 ms 0.16 ms 0.13 ms

sock Fig. 12 139k 7.5 ms 0.14 ms 0.11 ms

Table 2. Comparison of rib pattern displacement data for different dataset

sizes. łgenerationž refers to the time needed to precompute the data,

and łdisplacementž refers to the per-frame time of computing Q̂ = Q +

∆Q (sx , sa, sz) on a representative sweater animation with 1.8 million yarn

vertices.

samples memory generation displacement

53 = 125 0.7 MB 2.2 min 1.58 ms

93 = 729 4.2 MB 12.7 min 1.82 ms

153 = 3375 19.2 MB 59.8 min 2.30 ms

313 = 29791 169.7 MB 533.6 min 4.35 ms

2R

0

Fig. 16. We compare our linearized bending model against a model incorpo-

rating bending strains explicitly on an animated knit sweater. We measure

the difference between the models as the L2 norm of the difference in yarn

vertex positions, and we color code them relative to the yarn radius R ; red

color corresponds to a larger difference. The cut-outs show how knit loops

appear to tighten more with the linearized model (top) than the explicit

bending model (bottom).

We animated most of the figures and concepts in this paper and

included them in a supplementary video .zip file, which is separate

from this paper’s main explanatory submission video.

Fig. 17. Approximating a seam by folding one piece of cloth over another

on the mesh-level, rather than the thread level.

6 DISCUSSION

Because our method is based on geometric interpolation of yarn

vertices rather than an exact simulation of yarn-level geometry, it

cannot exactly reproduce all yarn-level effects. Our method funda-

mentally assumes that the deformations sampled in the database are

representative of the deformations in the online simulation. Because

our per-vertex mesh strains only communicate deformations on the

scale of a single triangle, the method will not be able to accurately re-

act to fine-scale collision events like pulling on an individual thread.

Similarly, our method relies on the mesh simulation to handle colli-

sions; it will not exactly resolve object collisions on the level of the

individual thread, and it will not exactly resolve collisions for very

thick fabrics if the mesh is modeled as infinitely thin.

Our database currently also ignores time-dependent effects like

hysteresis and damping, so repeating a mesh deformation will yield

exactly the same fine-scale yarn arrangements. Our method interpo-

lates the precomputed behaviors of a periodic yarn pattern, so we

cannot yet simulate clothes consisting of completely aperiodic or

disorganized threads, and it will be significantly more expensive to

simulate ornate patterns with a large number of yarn vertices. We

also do not yet handle non-periodic connections between different

patches of cloth, so our method cannot yet sew together seams on

the individual thread level. However, we can approximate larger

seams by folding a piece of thin fabric over itself (Figure 17).

On the other hand, our geometric approximation affords us a

number of advantages and leads to a few novel challenges. The data-

driven approach completely avoids the expense of online collision

ACM Trans. Graph., Vol. 40, No. 4, Article 168. Publication date: August 2021.

Mechanics-Aware Deformation of Yarn Pattern Geometry • 168:9

handling, and its exploitation of periodic structures avoids redun-

dant computations resulting from structurally similar yarn patterns.

The method cuts the complexity of brute-force yarn level cloth by

several orders of magnitude, and as far as we know, our method

is the only way to simulate millions of yarn vertices at interactive

rates. The interpolative nature of the approach also guarantees un-

conditional numerical stability, so the method cannot blow up even

in unrealistic video game environments. The speed and detail of our

approach for animating knitted garments also creates new research

challenges: zooming out from a pattern made of millions of threads

can cause aliasing patterns when many of them occupy a single

pixel, potentially requiring novel geometry anti-aliasing techniques

in the future.

Conclusion. We have presented a method for deforming yarn

patterns in a mechanics-aware manner. It reproduces characteristic

yarn-level cloth behaviors like knitted loops that tighten when

the fabric is stretched. We introduced practical heuristics such as

linearizing bending and limiting buckling, which make the method

significantly more efficient and tunable by artists. The method is

lightweight and GPU-parallelizable, so it is capable of animating

millions of yarn vertices at real-time rates.

In the future, we are interested in new research challenges intro-

duced by the massive scale of these yarn simulations. The method

could further benefit from level-of detail approaches simplifying

yarn geometry where it is not visible. Our technique might also be

useful for research into deformation-dependent microfacet render-

ing or anti-aliasing techniques, for smoothly replacing extremely

dense yarn geometry with an analytic or data-driven shading model.

ACKNOWLEDGMENTS

We wish to thank the anonymous reviewers and the members of the

Visual Computing Group at IST Austria for their valuable feedback.

We also thank Seddi Labs for providing the garment model with

fold-over seams.

This research was supported by the Sci-

entific Service Units (SSU) of IST Austria

through resources provided by Scientific

Computing. This project has received funding from the European

Research Council (ERC) under the European Union’s Horizon 2020

research and innovation programme under grant agreement No.

638176. Rahul Narain is supported by a Pankaj Gupta Young Fac-

ulty Fellowship and a gift from Adobe Inc.

REFERENCES
David Baraff and Andrew Witkin. 1998. Large steps in cloth simulation. In Proceedings

of the 25th annual conference on Computer graphics and interactive techniques. ACM,
43ś54.

Jan Bender, Matthias Müller, and Miles Macklin. 2015. Position-Based Simulation
Methods in Computer Graphics.. In Eurographics (tutorials). 8.

Miklós Bergou, Basile Audoly, Etienne Vouga, Max Wardetzky, and Eitan Grinspun.
2010. Discrete viscous threads. ACM Transactions on Graphics (TOG) 29, 4 (2010),
1ś10.

Juan J Casafranca, Gabriel Cirio, Alejandro Rodríguez, Eder Miguel, and Miguel A
Otaduy. 2020. Mixing yarns and triangles in cloth simulation. In Computer Graphics
Forum, Vol. 39. Wiley Online Library, 101ś110.

Nuttapong Chentanez, Miles Macklin, Matthias Müller, Stefan Jeschke, and Tae-Yong
Kim. 2020. Cloth and skin deformation with a triangle mesh based convolutional
neural network. In Computer Graphics Forum, Vol. 39. Wiley Online Library, 123ś
134.

Gabriel Cirio, Jorge Lopez-Moreno, David Miraut, and Miguel A Otaduy. 2014. Yarn-
level simulation of woven cloth. ACM Transactions on Graphics (TOG) 33, 6 (2014),
1ś11.

Gabriel Cirio, Jorge Lopez-Moreno, and Miguel A Otaduy. 2015. Efficient simulation
of knitted cloth using persistent contacts. In Proceedings of the 14th ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. 55ś61.

Gabriel Cirio, Jorge Lopez-Moreno, and Miguel A Otaduy. 2016. Yarn-level cloth
simulation with sliding persistent contacts. IEEE Transactions on Visualization and
Computer Graphics 23, 2 (2016), 1152ś1162.

Blender Online Community. 2020. Blender - a 3D modelling and rendering package.
Blender Foundation, Stichting Blender Foundation, Amsterdam. http://www.blender.
org

Charles-Alban Deledalle, Loic Denis, Sonia Tabti, and Florence Tupin. 2017. Closed-
form expressions of the eigen decomposition of 2 x 2 and 3 x 3 Hermitian matrices.
(2017).

Petros Faloutsos, Michiel Van De Panne, and Demetri Terzopoulos. 1997. Dynamic
free-form deformations for animation synthesis. IEEE Transactions on Visualization
and Computer Graphics 3, 3 (1997), 201ś214.

Lin Gao, Yu-Kun Lai, Jie Yang, Zhang Ling-Xiao, Shihong Xia, and Leif Kobbelt. 2019.
Sparse data driven mesh deformation. IEEE transactions on visualization and com-
puter graphics (2019).

Eitan Grinspun, Yotam Gingold, Jason Reisman, and Denis Zorin. 2006. Computing
discrete shape operators on general meshes. In Computer Graphics Forum, Vol. 25.
Wiley Online Library, 547ś556.

Sunil Hadap, E Bongarter, Pascal Volino, and Nadia Magnenat-Thalmann. 1999. An-
imating wrinkles on clothes. In Proceedings Visualization’99 (Cat. No. 99CB37067).
IEEE, 175ś523.

Jonathan Hoffman, Matt Kuruc, Junyi Ling, Alex Marino, George Nguyen, and Sasha
Ouellet. 2020. Hypertextural Garments on Pixar’s Soul. In ACM SIGGRAPH 2020
Talks. Association for Computing Machinery, Article 75.

Doug L James. 2020. Phong deformation: a better C0 interpolant for embedded defor-
mation. ACM Transactions on Graphics (TOG) 39, 4 (2020), 56ś1.

Ning Jin, Yilin Zhu, Zhenglin Geng, and Ronald Fedkiw. 2020. A Pixel-Based Framework
for Data-Driven Clothing. InComputer Graphics Forum, Vol. 39.Wiley Online Library,
135ś144.

Jonathan M Kaldor, Doug L James, and Steve Marschner. 2008. Simulating knitted cloth
at the yarn level. In ACM Transactions on Graphics (TOG). Vol. 27. 65.

Jonathan M Kaldor, Doug L James, and Steve Marschner. 2010. Efficient yarn-based
cloth with adaptive contact linearization. In ACM Transactions on Graphics (TOG),
Vol. 29. ACM, 105.

Ladislav Kavan, Dan Gerszewski, AdamWBargteil, and Peter-Pike Sloan. 2011. Physics-
inspired upsampling for cloth simulation in games. In ACM SIGGRAPH 2011 papers.
1ś10.

Josef Kiendl, Ming-ChenHsu, Michael CHWu, and Alessandro Reali. 2015. Isogeometric
KirchhoffśLove shell formulations for general hyperelastic materials. Computer
Methods in Applied Mechanics and Engineering 291 (2015), 280ś303.

Yuki Koyama, Kenshi Takayama, Nobuyuki Umetani, and Takeo Igarashi. 2012.
Real-time example-based elastic deformation. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. 19ś24.

Jonathan Leaf, Rundong Wu, Eston Schweickart, Doug L James, and Steve Marschner.
2018. Interactive design of periodic yarn-level cloth patterns. ACM Transactions on
Graphics (TOG) 37, 6 (2018), 1ś15.

Wan-Chun Ma, Andrew Jones, Jen-Yuan Chiang, Tim Hawkins, Sune Frederiksen,
Pieter Peers, Marko Vukovic, Ming Ouhyoung, and Paul Debevec. 2008. Facial
performance synthesis using deformation-driven polynomial displacement maps.
ACM Transactions on Graphics (TOG) 27, 5 (2008), 1ś10.

Sebastian Martin, Bernhard Thomaszewski, Eitan Grinspun, and Markus Gross. 2011.
Example-based elastic materials. In ACM SIGGRAPH 2011 papers. 1ś8.

Zahra Montazeri, Sùren B Gammelmark, Shuang Zhao, and Henrik Wann Jensen. 2020.
A practical ply-based appearance model of woven fabrics. ACM Transactions on
Graphics (TOG) 39, 6 (2020), 1ś13.

Zahra Montazeri, Chang Xiao, Yun Fei, Changxi Zheng, and Shuang Zhao. 2019.
Mechanics-Aware Modeling of Cloth Appearance. IEEE transactions on visualization
and computer graphics 27, 1 (2019), 137ś150.

Matthias Müller and Nuttapong Chentanez. 2010. Wrinkle Meshes.. In Symposium on
Computer Animation. Madrid, Spain, 85ś91.

Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. 2007. Position
based dynamics. Journal of Visual Communication and Image Representation 18, 2
(2007), 109ś118.

Matthias Muller, Matthias Teschner, and Markus Gross. 2004. Physically-based simula-
tion of objects represented by surface meshes. In Proceedings Computer Graphics
International, 2004. IEEE, 26ś33.

Rahul Narain, Tobias Pfaff, and James F O’Brien. 2013. Folding and crumpling adaptive
sheets. ACM Transactions on Graphics (TOG) 32, 4 (2013), 51.

Rahul Narain, Armin Samii, and James F O’Brien. 2012. Adaptive anisotropic remeshing
for cloth simulation. ACM Transactions on Graphics (TOG) 31, 6 (2012), 152.

ACM Trans. Graph., Vol. 40, No. 4, Article 168. Publication date: August 2021.

168:10 • Sperl, Narain, and Wojtan

José M Pizana, Alejandro Rodríguez, Gabriel Cirio, and Miguel A Otaduy. 2020. A
Bending Model for Nodal Discretizations of Yarn-Level Cloth. In Computer Graphics
Forum, Vol. 39. Wiley Online Library, 181ś189.

Damien Rohmer, Tiberiu Popa, Marie-Paule Cani, Stefanie Hahmann, and Alla Sheffer.
2010. Animation wrinkling: augmenting coarse cloth simulations with realistic-
looking wrinkles. ACM Transactions on Graphics (TOG) 29, 6 (2010), 1ś8.

Nadine Abu Rumman and Marco Fratarcangeli. 2016. State of the Art in Skinning
Techniques for Articulated Deformable Characters.. In VISIGRAPP (1: GRAPP). 200ś
212.

Rosa M Sánchez-Banderas, Alejandro Rodríguez, Héctor Barreiro, and Miguel A Otaduy.
2020. Robust eulerian-on-lagrangian rods. ACM Transactions on Graphics (TOG) 39,
4 (2020), 59ś1.

Igor Santesteban, Miguel A Otaduy, and Dan Casas. 2019. Learning-Based Animation
of Clothing for Virtual Try-On. In Computer Graphics Forum, Vol. 38. Wiley Online
Library, 355ś366.

Christian Schumacher, Bernhard Thomaszewski, Stelian Coros, Sebastian Martin,
Robert Sumner, and Markus Gross. 2012. Efficient simulation of example-based
materials. In Proceedings of the 11th ACM SIGGRAPH/Eurographics conference on
Computer Animation. Citeseer, 1ś8.

Eftychios Sifakis, Tamar Shinar, Geoffrey Irving, and Ronald Fedkiw. 2007. Hybrid simu-
lation of deformable solids. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics
symposium on Computer animation. 81ś90.

Georg Sperl, Rahul Narain, and Chris Wojtan. 2020. Homogenized Yarn-Level Cloth.
ACM Transactions on Graphics (TOG) 39, 4 (2020).

Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. 1987. Elastically de-
formable models. In Proceedings of the 14th annual conference on Computer graphics
and interactive techniques. 205ś214.

Raquel Vidaurre, Igor Santesteban, Elena Garces, and Dan Casas. 2020. Fully Convolu-
tional Graph Neural Networks for Parametric Virtual Try-On. In Computer Graphics
Forum, Vol. 39. Wiley Online Library, 145ś156.

KevinWampler. 2016. Fast and reliable example-basedmesh IK for stylized deformations.
ACM Transactions on Graphics (TOG) 35, 6 (2016), 1ś12.

Huamin Wang, Florian Hecht, Ravi Ramamoorthi, and James F O’Brien. 2010. Example-
based wrinkle synthesis for clothing animation. In ACM SIGGRAPH 2010 papers.
1ś8.

Chris Wojtan, Nils Thürey, Markus Gross, and Greg Turk. 2009. Deforming meshes
that split and merge. In ACM SIGGRAPH 2009 papers. 1ś10.

Chris Wojtan and Greg Turk. 2008. Fast viscoelastic behavior with thin features. In
ACM SIGGRAPH 2008 papers. 1ś8.

Kui Wu and Cem Yuksel. 2017. Real-time fiber-level cloth rendering. In Proceedings of
the 21st ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. 1ś8.

Cem Yuksel, Jonathan M Kaldor, Doug L James, and Steve Marschner. 2012. Stitch
meshes for modeling knitted clothing with yarn-level detail. ACM Transactions on
Graphics (TOG) 31, 4 (2012), 1ś12.

Shuang Zhao, Fujun Luan, and Kavita Bala. 2016. Fitting procedural yarn models for
realistic cloth rendering. ACM Transactions on Graphics (TOG) 35, 4 (2016), 1ś11.

Evgeny Zuenko and Matthias Harders. 2019. Wrinkles, Folds, Creases, Buckles: Small-
Scale Surface Deformations as Periodic Functions on 3D Meshes. IEEE Transactions
on Visualization and Computer Graphics (2019).

Javier S Zurdo, Juan P Brito, and Miguel A Otaduy. 2012. Animating wrinkles by
example on non-skinned cloth. IEEE Transactions on Visualization and Computer
Graphics 19, 1 (2012), 149ś158.

A OPTIMIZATION MID-SURFACE

The fundamental forms I and II define the midsurface φ used in the

optimization of Section 3. We construct φ like Sperl et al. [2020]

by solving for ∇φ ≈ RS in the least-squares sense (with ∇φ = RS

exactly for single curvature). To do so, we compute a rotation R

describing curvature and an in-plane deformation matrix S from

the two input fundamental forms I and II. The 3 × 2 matrix S is

computed from the principal square root of I as

S =

[√
I

0 0

]
. (10)

To compute the rotation, we first compute normal derivatives

∇n =
[
n1,1 n1,2
n2,1 n2,2

]
= −

(√
I

)−⊤
II. (11)

Then, with

a =

2∑

α=1

n1,αXα , b =

2∑

α=1

n2,αXα , r =
√
a2 + b2, (12)

we compute R(X1,X2) as

R =

1 − 1
2a

2 sinc(r/2)2 − 1
2ab sinc(r/2)2 a sinc(r)

− 1
2ab sinc(r/2)2 1 − 1

2b
2 sinc(r/2)2 b sinc(r)

−a sinc(r) −b sinc(r) cos(r)

. (13)

Finally, we solve for φ with the Poisson equation ∇2φ = ∇ · RS
and natural boundary conditions discretized on a grid. For further

details, we refer to the paper and supplementary document of [Sperl

et al. 2020]. The sliding constraint (3) is thus ũ · (RS N) = 0.

B PULLBACK INTO MATERIAL SPACE

Here, we detail the Newton iteration to transform optimized yarn

geometry from Section 3 back into material space. The goal is to

find X̂ s.t. x = x(X̂), which we do using Newton’s method on

f (X̂) = x − x(X̂), for which we need the gradient ∇f .
The mapping x is defined as

x(X̂) = φ(X̂1, X̂2) + X̂3 n(X̂1, X̂2), (14)

whereφ is the deformed midsurface andn its normal. Its gradient is

∇x(X̂) =
[
∇φ(X̂1, X̂2) + X̂3 ∇n(X̂1, X̂2), n(X̂1, X̂2)

]
. (15)

By definition (see [Sperl et al. 2020]) we have

∇φ = RS, (16)

and we compute ∇n with (11). The Newton iterations are

X̂i+1 = X̂i − ∇f (X̂i)−1 f (X̂i) (17)

starting from the rest configuration X̂0 = X .

In our experiments, the iterations converge to a fraction of the

yarn radius within three iterations and the cost is negligible com-

pared to the elastostatic optimization. For pure in-plane deforma-

tions, II = 0, and thus R = Id and ∇f = −
[√

I 0

0 1

]
, simplifying

the pullback into the constant expression

X̂ = X +

[(√
I
)−1

0

0 1

]
ũ . (18)

C BENDING MODELS

We briefly outline the two bending models we experimented with:

a 4D combination of in-plane and bending deformations (19), and

the linearization of bending as stretching (22).

Due to tileability constraints, Sperl et al. [2020] only generate

data for singly curved deformations and split the contributions of

general bending onto data sampled for bending along either the

X1 or X2 directions. We apply the same idea to define our łground-

truthž bending model. For brevity, we write s = (sx , sa , sy). Then,
we compute two sets of data for combined in-plane deformation

with the two bending directions: ∆QX1
(s, λ) and ∆QX2

(s, λ). With

the eigenvalues λ1 and λ2 of II and the cosine c of the angle between

ACM Trans. Graph., Vol. 40, No. 4, Article 168. Publication date: August 2021.

Mechanics-Aware Deformation of Yarn Pattern Geometry • 168:11

the X1 axis and the eigenvector corresponding to λ1, we distribute

the bending contributions to get

∆Q(s, II) = c2 ∆QX1
(s, λ1) + (1 − c2)∆QX1

(s, λ2)
+ c2 ∆QX2

(s, λ2) + (1 − c2)∆QX2
(s, λ1)

− ∆QX1
(s, 0)

(19)

Since both datasets include the displacements caused by pure in-

plane deformations λ1 = λ2 = 0, we have to subtract these displace-

ments once to avoid double counting. This model exactly reproduces

the data samples for bending aligned with eitherX1 orX2. However,

it requires five 4D-texture look-ups and is thus much more expen-

sive than the linearized model requiring only a single 3D-texture

look-up. For the speed comparison mentioned in Section 5, we used

two sets of 94 samples for the 4D model and 93 samples for the lin-

earized model. The linearized model was still 7× faster even when

increasing its sample density to 153.

C.1 Linearized Bending

For a thin shell represented by a midsurface φ with normal n, its

full domain is

x = φ + hn, (20)

with the normal coordinate h ∈ [−H/2,H/2] for shell thickness H .

Its right Cauchy-Green deformation tensor is

∇x⊤∇x = ∇φ⊤∇φ + h (∇φ⊤∇n + ∇n⊤∇φ) +O(h2), (21)

which can be interpreted as a first fundamental form I(h) depending
quadratically on h. The quadratic term is commonly neglected (e.g.

[Kiendl et al. 2015]). Additionally, we see that ∇φ⊤∇φ = I and

similarly ∇φ⊤∇n = ∇n⊤∇φ = −II are the fundamental forms of φ.

As a result, we get the linearized expression

I(h) ≈ I − 2h II. (22)

Then, with precomputed data ∆Qs (s) for in-plane deformations s ,

the linearized bending model is

∆Q(I, II) = ∆Qs (s(I − 2h II)). (23)

ACM Trans. Graph., Vol. 40, No. 4, Article 168. Publication date: August 2021.

	Abstract
	1 Introduction
	2 Related Work
	3 Data Generation
	3.1 Deformation Optimization
	3.2 Sampling
	3.3 Material-Space Displacements

	4 Real-time Displacement
	4.1 Mesh Strains
	4.2 Linearized Bending
	4.3 Compression Clamping
	4.4 Local Displacement
	4.5 World-Space Mapping
	4.6 Real-Time Rendering

	5 Results
	6 Discussion
	Acknowledgments
	References
	A Optimization Mid-Surface
	B Pullback Into Material Space
	C Bending Models
	C.1 Linearized Bending

