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Fig. 1. The figure shows our pipeline to fit yarn-level mechanical parameters to real-world knits, applied to a double knit pique fabric (DKP). (1) We take as
input the fabric composition, knit schematics, high-resolution photographs, and swatch-level physical tests. (2) We fit a thin-shell model to the non-uniform
physical data, and we use it to generate target uniform data. (3) Then, we fit the yarn-level model to the uniform data, leveraging periodic simulations to
reduce the computational cost. (4) The images show the yarn model for DKP, under uniform stretch on the weft, bias, and warp directions.

This paper introduces a methodology for inverse-modeling of yarn-level
mechanics of cloth, based on the mechanical response of fabrics in the
real world. We compiled a database from physical tests of several different
knitted fabrics used in the textile industry. These data span different types
of complex knit patterns, yarn compositions, and fabric finishes, and the
results demonstrate diverse physical properties like stiffness, nonlinearity,
and anisotropy.
We then develop a system for approximating these mechanical responses
with yarn-level cloth simulation. To do so, we introduce an efficient pipeline
for converting between fabric-level data and yarn-level simulation, includ-
ing a novel swatch-level approximation for speeding up computation, and
some small-but-necessary extensions to yarn-level models used in computer
graphics. The dataset used for this paper can be found at http://mslab.es/
projects/YarnLevelFabrics.
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1 INTRODUCTION
The simulation of cloth at the yarn level has demonstrated outstand-
ing capabilities, allowing results not possible with classic mesh-
based simulation models. Thanks to yarn-level models, we can pro-
duce animation results with extreme detail, as well as mechanical
behavior that exhibits structural nonlinearity [Cirio et al. 2014;
Kaldor et al. 2008]. Yarn-level models also enable visual design of
complex knit patterns [Leaf et al. 2018].
Previous works have shown that computer-graphics yarn-level

models can provide a qualitative match to the mechanical response
of real-world fabrics; however, they have not tried to match this
mechanical response in a quantitative manner. In this project, we
have documented, scanned, and tested a library of knit fabrics from
real textile production, and we have fitted yarn-level simulation
models that match their mechanical response.
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In doing this, we have faced two major challenges. First, we
demonstrate that real-world yarns exhibit complex deformation
behavior that is not sufficiently captured by the Kirchhoff rodmodels
typically used in computer animation and numerical simulation.
Second, the best real-world data available is in the form of physical
tests at the swatch-level, which is computationally prohibitive to
simulate efficiently at the level of individual yarns — straightforward
simulation-in-the-loop parameter estimations are intractable for
this problem.

We introduce the first technique for the modeling and estimation
of yarn-level fabric mechanics that succeeds to capture the macro-
scopic (swatch-level) response of textile-production knitted fabrics.
We achieve this through three main contributions that address the
challenges discussed above.

Data set of real-world fabrics. We compiled a data set of physical
test data from 33 different knitted fabrics used by industry profes-
sionals in the production of casual and sports garments. The fabrics
span different knit patterns (e.g., multiple layers), yarn compositions
(e.g., plated yarns), and yarn finishes. On a macroscopic level, they
show diverse stiffness, nonlinearity, and anisotropy. The data set
consists of physical information about each yarn type, manually
registered yarn geometry, high-resolution photographic scans, and
physical measurements from experiments for each fabric type, and
it will be made available to the research community.

Efficient fitting procedure. To estimate yarn-level parameters from
swatch-level physical tests, we have designed a two-step procedure
that circumvents the computational cost of simulating full fabric
swatches at yarn level: we first fit a thin-shell model to swatch-
level data [Miguel et al. 2012; Wang et al. 2011], then we generate
analytical stress-strain data using the thin-shell model, and we
finally fit a periodic version of the yarn-level model [Sperl et al.
2020].

Practical and versatile simulation models. Basic models for yarns
and thin shells cannot capture the diversity of behaviors of real-
world knitted fabrics, while complex models with a large number of
parameters are vulnerable to overfitting. After experimenting with
many of these models and observing how well they fit real-world
data, we propose a few minimal extensions to typical models used in
computer graphics to help strike the balance between simplicity and
expressive power: an anisotropic area-preserving thin shell model,
and a yarn model with two-phase stretching and contact energies.

In this work, we focus on the major aspects of macroscopic me-
chanical response, including nonlinearity and anisotropy of stretch,
shear, and bending deformation. We leave for future work more
complex aspects such as extreme nonlinearity, hysteresis, or curl-
ing. Under these limitations, we maximize parallelism between the
data, parameterization, and estimation processes of thin-shell and
yarn-level fitting; we do this to minimize the error introduced by
using the thin-shell model as an intermediate representation, while
circumventing the challenge of simulating full-swatch non-uniform
deformations at yarn level.

After discussing related work, we give an overview of our ap-
proach in Section 3. We then describe the input data to the yarn-
model estimation process in Section 4. We describe the thin-shell
model, its estimation, and how it is used as an intermediate target
for the yarn-level model in Section 5, and we continue with the
description of the yarn-level model in Section 6 and the estimation
of its parameters in Section 7. We discuss our results in Section 8 and
end with a discussion and conclusion in Section 9 and Section 10.

2 RELATED WORK

2.1 Yarn-Level Cloth Simulation
Over two decades ago, Rémion et al. [1999] simulated knitted fabrics
as deformable rods in contact, in contrast to finite-element modeling
of yarn volumes, as commonly done in textile engineering [Liu et al.
2018]. Later, Kaldor et al. [2008] demonstrated the ability to simulate
full garments at the yarn level. They showed that such models
could reproduce qualitative macroscopic behavior of real-world
knits. To accelerate computational speed, Kaldor et al. [2010] later
introduced optimizations in the update of costly nonlinear contact
terms. With the same goal of accelerating computations, Cirio et
al. [2014] introduced an approach that avoids contact detection
altogether, thanks to a reduced model of sliding yarns in persistent
contact. This model was initially applied to woven fabrics, and later
extended to knits [Cirio et al. 2017] and multi-layer fabrics [Sánchez-
Banderas et al. 2020].

As discussed in the introduction, an important gap in yarn-level
modeling of fabrics is their connection to real-world materials. Leaf
et al. [2018] showed that varying the stiffness and rest-shape pa-
rameters of yarns could lead to the design of yarn patterns that
matched the geometry of complex real-world knits. However, they
did not validate the mechanical behavior of the resulting fabric
models. In their work, they leveraged a key tool for computational
efficiency, as they simulated periodic yarn patches under uniform
deformations. We borrow this approach in our work. Schumacher
et al. [2018] also used computations under uniform deformations
with periodic boundary conditions, to characterize the mechanical
response of two-dimensional microtextures. While these were not
fabrics, they share similarities in the underlying deformation model.
In contrast to their ‘forward’ characterization, in our work we look
at inverse modeling of yarn-level fabrics. In textile engineering,
recent works have looked at correctly initializing the yarn geome-
try for volumetric finite-element simulation [Wadekar et al. 2020].
In our experience, this leaves many open unknowns, such as the
rest-shape geometry of the yarns and the contact model.

Another line of work has addressed the computational cost of full
yarn-level simulations by bridging the gap with thin shell models.
One approach is to enable hybrid simulations [Casafranca et al.
2020], focusing yarn-level computational effort only where needed.
Another approach is to estimate thin-shell models that best-fit the
mechanical response of yarn-level models [Sperl et al. 2020]. This
approach uses simulations with periodic boundary conditions as
discussed above, and applies the theory of homogenization to thin-
shell deformation. This work has been later extended to incorporate
yarn-level deformation variance in texture map representations for
visual display [Sperl et al. 2021].
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One of themain targets of yarn-level models in computer graphics
has been the development of authoring tools. They include data
structures to represent knit geometry on surface meshes [Wu et al.
2019; Yuksel et al. 2012], or algorithms to simplify the editing and
fabrication of real-world knits [Kapllani et al. 2021; Narayanan et al.
2019] and even 3D woven fabrics [Wu et al. 2020].
Our work also relates to the inverse design of simulated fibers

[Derouet-Jourdan et al. 2010; Hadap 2006]. Aside from our appli-
cation, these ideas are useful for hair animation [Derouet-Jourdan
et al. 2013], the physical fabrication of curve networks [Pérez et al.
2015; Zehnder et al. 2016], and the design of materials which couple
rods and elastic sheets [Pérez et al. 2017].

2.2 Estimation of Mechanical Parameters of Cloth
The estimation of the parameters of cloth models has addressed
to date thin-shell models that describe fabric as a continuum. This
line of work has a long history in the textile engineering field,
where the approach was to design mechanical tests that could elicit
mechanical properties in a separable way [Kawabata 1980; Peirce
1930]. When fabric is deformed, it is challenging to apply uniform
stress; therefore, multiple mechanical properties lead to a complex
interplay. We face a similar challenge when trying to circumvent the
computational cost of yarn-level simulations by leveraging periodic
deformations.

In computer graphics, we can distinguish two main directions in
the estimation of cloth simulation models. One direction focuses on
the accuracy of the estimation, in particular trying to address the
nonlinear and anisotropic behavior of cloth. Works in this direction
entail the design of physical tests to produce force-deformation
examples, parameterization of the cloth model, and estimation al-
gorithms [Miguel et al. 2012; Wang et al. 2011]. Some works have
considered the hysteresis behavior in cloth deformations, by esti-
mating models of internal friction [Miguel et al. 2013].

Another direction focuses on estimating simulation models from
more casual data, such as video. The pioneering work of Bhat et
al. [2003] used optimization methods to estimate mass, elasticity
and damping parameters from videos of cloth motion. Bouman et
al. [2013] used a machine-learning technique, where they learned a
mapping from cloth model parameters to video features, and then
inverted this mapping to fit parameters to new video footage. This
approach has received major thrust with the explosion of deep learn-
ing methods [Runia et al. 2020; Yang et al. 2017]. Recent works look
at the design of semi-controlled setups where particular mechanical
properties are exposed, e.g., contact friction [Rasheed et al. 2020].

Modernmachine learningmethods have also posed the problem of
efficient simulation-in-the-loop optimization. To this end, research
on differentiable simulation answers how to compute gradients of
(dynamic) equilibrium constraints for cloth simulation [Liang et al.
2019].

3 OVERVIEW
The main goal of our system is to efficiently solve for the yarn-level
simulation parameters that will reproduce the large-scale in-plane
responses measured by real-world knitted fabrics. The brute-force
approach—simulating every yarn in a swatch of fabric, comparing

Fig. 2. This image shows an all-needle fabric (A2) stretched along the bias
direction. Notice the spatially non-uniform shear and curved shape near
the clamps.

the results to the measured data, and looping until the correct pa-
rameters are found—is computationally infeasible, as a single swatch
can easily contain tens of thousands of knit loops. To avoid full-
scale simulation, we approximate the fabric swatch as a periodically
repeating pattern; this allows us to take advantage of recent technol-
ogy for simulating knits with periodic boundary conditions [Leaf
et al. 2018; Sperl et al. 2020, 2021].
However, simply tiling these periodic yarn physics over a patch

the size of the physical knitted fabric swatch is insufficient to re-
produce our physical test data. In particular, it cannot model the
spatially non-uniform deformations that occur when fabrics are
sheared (Figure 2). To ensure that our method performs well even in
the presence of spatially non-uniform deformations, we introduce
an intermediate thin-shell model and solve for a physical model
that reproduces the test data. Once we have this model, we generate
spatially uniform deformations that can finally be modeled with
periodic yarn-level simulation.

Our parameter-fitting pipeline is illustrated in Figure 1. We first
solve for a thin-shell model that reproduces the real world data
samples. Next, we use this thin-shell model to generate spatially
uniform data samples. We then fit yarn-level simulation parameters
to these new uniform data.

We want our simulation models to be complex enough to model
important features in the data, while simultaneously minimizing ad-
ditional complexity to avoid overfitting.We discuss in Section 5 how
a simple StVK thin shell model is insufficient to adequately capture
array of behaviors observed in our physical tests, but we are able to
reproduce the data well with the simple addition of anisotropy and
an area-preservation term. Similarly, although we found the basic
discrete elastic rod model insufficient for reproducing the behaviors
of real-world textiles, Section 6 explains how we are able to repro-
duce the real-world data with the addition of two-phase models for
contact and stretching model for capturing the behavior of plated
yarns.

4 INPUT DATA
This section discusses the different types of data that can be gathered
from real-world fabrics, and how the data can be used in practice
for achieving our goals.
The first type of data we consider is the information used for

fabricating each material. Examples of such data are the type(s) of
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Fig. 3. Initialization of the yarn geometry for an all-needle fabric (A2). We
take as input a schematic visualization that depicts the topology of the yarn
construction (left) and high-res photographs that show the yarn geometry
on the visible layers (middle). The squares highlight the repeat of the yarn
pattern. We initialize the yarn geometry (right) by manually registering the
yarn curves to the photographs, and smoothly interpolating to unobserved
regions.

yarn used to create the fabric, and the knitting/weaving instructions.
Another type of data is experimental measurements, such as yarn-
level mechanical tests, swatch-level mechanical tests, and high-
resolution images.

We could follow a number of approaches for using these data in
simulation. A “bottom-up” modeling approach could take the fab-
rication settings and yarn-level mechanical tests, and simulate the
mechanics of the knitting/weaving process that yield the final fabric
pattern and its macroscopic response. A “top-down” approach, on
the other hand, could take high-resolution images and swatch-level
tests, and estimate both the pattern geometry and the yarn-level
mechanical response. Unfortunately, both approaches suffer serious
challenges. In the bottom-up approach, the fabrication process en-
tails many unknowns, such as the forces applied by the needles or
the plastic deformation of yarns, and there is no known procedure
to measure the mechanical response of yarns in tight contact. In the
top-down approach, the yarn pattern is not fully observable due to
severe occlusion, especially in multi-layer fabrics, and the strains of
individual yarns are unknown.
To work around these challenges, our project follows a hybrid

approach, by combining fabrication settings and experimental mea-
surements to design and fit yarn-level models. We use the yarn topol-
ogy defined by knitting instructions, together with high-resolution
photographs, to initialize the geometry of the yarn pattern. We
also use swatch-level mechanical tests to estimate the mechanical
parameters of the yarn-level model.

Section 4.1 describes the composition of the yarns used in our ex-
periments; Section 4.2 describes the initialization of yarn geometry;
and Section 4.3 describes the mechanical tests. Later in Section 9
we discuss additional yarn data that we considered but did not use
in our system.
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Fig. 4. Testing principles and fabric measurements for swatch-level stretch
and bending tests. We have performed these tests along three directions
(weft, bias, warp) to all 33 fabrics in our library.

4.1 Yarn Composition
For each fabric swatch in our data set, we list the associated yarn
types, the number of filaments, the denier of each yarn type (i.e.,
mass in grams per 9,000 meters of unstretched yarn), the stiffness
of each yarn type (measured in response to a force of 5cN), and the
mass percentage of each yarn type. For example, 72D/75F polyester
90%, 20D spandex 10%, indicating that 90% of the fabric mass cor-
responds to a 75-filament 72-denier polyester, and 10% of the mass
corresponds to 20-denier spandex. This information allows us to
assign basic parameters like the density of each simulated yarn, and
we have the option to derive additional information, as discussed in
Section 9.

4.2 Initialization of Yarn Geometry
To define the yarn topology from knitting instructions, we leverage
existing tools by knitting machine providers. Specifically, we have
used the M1plus by STOLL, which outputs a schematic representa-
tion of the knit pattern (Figure 3-left). Note that this schematic de-
fines topology, but it does not accurately define where yarn contacts
occur. We also use this data to identify a representative repeating
periodic tile of the pattern.
We obtain front and back high-resolution photographs of the

knit pattern using a custom-built optical system, which captures
photographs of 4912×3684 pixels at a resolution of 1.8 𝜇m per pixel,
with close-to-uniform illumination (Figure 3-middle). We first use
these images to estimate a yarn radius, which we use for visual-
ization and to help with initial yarn registration. Next, we identify
the corresponding periodic tile on the photographs, and manually
register the yarn topology to the visible layer on both front and
back photographs. Manual registration took 1 to 10 hours per fabric,
depending on pattern complexity. This step assigns 2D coordinates
of the portions of the yarns visible in the photographs, so we still
need to approximate the geometry of the occluded yarns, as well as
the depth coordinates. We approximate this missing geometry by
constraining the centerlines of yarns that overlap in the images to
be two yarn radii apart in depth, and by smoothly interpolating the
yarn geometry in unobserved regions. We include these manually
registered 3D yarn geometries in our data set, and we use them
as input to our yarn model parameter estimation (which is free to
optimize the initial guess further, as in Section 7.2).
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4.3 Physical Tests
To fit accurate yarn-level parameters, we seek physical test data that
captures the force-deformation response of the fabric under stretch
and bending in different directions, accounting also for nonlineari-
ties and transverse behavior. We have developed a custom-built test
rig capable of executing two state-of-the-art experiments: a clamped
stretch test [Kawabata 1980] and a pear-loop bending test [Peirce
1930]. The principles of the tests and the size of the fabric swatches
are shown in Figure 4. We chose the pear-loop test vs. the cantilever
bending test [Wang et al. 2011] because in our early experiments it
showed better sensitivity at low bending stiffness.
In the stretch test, a swatch of length 𝑙 = 10 cm (excluding the

clamped region) and width �̄� = 6 cm is clamped on two ends and
stretched horizontally under known forces. In practice, the stretch
test is controlled by displacement, while force is measured. For each
stretch force 𝑓𝑠 , we compute the stretch 𝑠 = 𝑙/𝑙 − 1 (with 𝑙 the
deformed length) and the orthogonal compression 𝑐 = 1−𝑤/�̄� (with
𝑤 the deformed width). In the bending test, the same swatch is bent
by bringing the clamps together. For each inter-clamp distance 𝑑 ,
we measure the aspect ratio 𝑟 = ℎ/𝑝 of the pear-shaped loop (with ℎ
the height of the loop and 𝑝 its width).
One of the important decisions for the estimation of yarn-level

models is the definition of a working range, which in turn affects the
range of the physical test data. In garment design, fabric stretch is
quantified for thewarp direction, which is typically the stiff direction
of the fabric, and is usually vertically aligned with the subject’s body
direction along the torso and limbs. Weft is often too compliant to
be aligned with the vertical direction, as clothes would hang loose;
instead it allows a comfortable fit along the body’s circumference
and flexibility for (un)dressing. Fashion ergonomics studies suggest
a comfort stretch (i.e., stretch necessary in the warp direction for
casual wear) of 5 to 30%, and a power stretch (i.e., stretch necessary
for active wear) of 30 to 50% [Lyle 1977; Wang et al. 2008]. For
the fabrics in our library, we have observed that the average warp
stretch at 2 N stretch force is 31%, and at 5 N it is 52%. This suggests
that 2 N and 5 N are rough upper bounds for comfort stretch and
power stretch, respectively. Therefore, we have executed stretch
tests up to 5 N. We have done this, together with bending tests, on
three directions: weft (0 deg), bias (45 deg) and warp (90 deg). In
the weft direction we often fall short of 5 N, as we reach the rig’s
stretch limit (160%).
In this project, we have not addressed the hysteresis of force-

deformation tests, i.e., the force difference between loading and
unloading regime, produced by inter-yarn friction [Miguel et al.
2013]. We leave this phenomenon as future work, which requires
estimating a model of the inter-yarn friction forces. In the physical
tests, we only consider stretch under loading conditions, from rest
to 5 N.

4.4 Summary of Data
To summarize, our data set consists of the following information
for each set of 33 different fabric samples:

• Physical characteristics of the yarn used in each fabric, includ-
ing the material used, its density, its stiffness, and information
about any special coating on the fibers
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Fig. 5. Our thin-shell formulation augments the anisotropic StVK model
with a Neo-Hookean area-preservation term [Smith et al. 2018]. This term
does not affect the stress-stretch behavior (left), but it eliminates inversion
problems (right). Both models, with and without the Neo-Hookean term, are
fitted to a double-knit interlock fabric (DKIN1). Without the Neo-Hookean
term, the fitted model is stable but suffers inversion (i.e., it reaches 100%
compression).

• Schematics describing the topology of each knitted pattern
• High resolution photographs of both sides of the fabric
• Initial yarn geometry and topology derived from knitting
instructions and photographs

• Measurements resulting from mechanical tests of stretching
and bending properties of the fabric

5 INTERMEDIATE THIN-SHELL MODEL
As outlined in Section 3, we use a thin-shell model as an interme-
diary between mechanical tests on full-scale swatches (which can
exhibit spatially non-uniform deformations) and periodic yarn-level
simulations (which assume spatially uniform deformation). To solve
for the material parameters in the thin shell model, we focus our ef-
forts on in-plane scenarios where bending plays no role (Section 5.1).
Additionally, although it is not the main result of our work, we of-
fer a preliminary method for solving for bending parameters in
Section 5.2.

5.1 In-Plane Deformation Model
We seek a deformation model that captures the anisotropic and
nonlinear behavior of knitted fabrics, while minimizing the number
of parameters. Note that the input data (Section 4.3) approximates
uniaxial deformations, and lacks information about the fabric’s
response to biaxial deformations. Adding high-order strain depen-
dency to the parameters, as done in previous works [Miguel et al.
2012; Wang et al. 2011], could over-parameterize the model and lead
to overfitting. While limited, we opt for the robustness provided by
a strain-independent parameterization.

A simple choice to represent both anisotropy and nonlinearity is
the anisotropic Saint Venant-Kirchhoff (StVK) model [Volino et al.
2009]. However, we have observed that anisotropic StVK might
exhibit a high directional Poisson’s ratio (up to 2 in some cases),
and inversion within the tested stretch range. Note that this does
not make the model unstable, but it is of course unrealistic. To
address this, we augment the anisotropic StVK model with a Neo-
Hookean area-preservation term [Bonet and Wood 2008; Smith
et al. 2018]. As shown in the plots in Figure 5 for a uniaxial stretch
deformation with zero orthogonal stress, the stretch-aligned stress
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Fig. 6. Fitting of the in-plane thin-shell model to the physical test data,
for an all-needle fabric (A2). Top: force vs. stretch fits. Bottom: orthogonal
compression vs. stretch fits. Notice the extreme anisotropy of the fabric.

of the Neo-Hookean-augmented model remains the same as the
original anisotropic StVK model, but inversion no longer occurs.

Formally, the Neo-Hookean-augmented anisotropic StVK model
is formulated as follows. Given the deformation gradient F, Green
strainE = 1

2

(
F𝑇 F − I

)
written in Voigt notation as 𝜺 = (𝐸11, 𝐸22, 2𝐸12),

and area ratio 𝐽 = det(F), the strain energy density is:

Ψinplane =
1
2
𝜺𝑇

©«
𝑘𝑥𝑥 𝑘𝑥𝑦 0
𝑘𝑥𝑦 𝑘𝑦𝑦 0

0 0 𝑘𝑠𝑠

ª®¬ 𝜺 + 𝑘𝑛1 (𝐽 − 1)2 + 𝑘𝑛2 log2 𝐽 .

(1)
To estimate the parameters (𝑘inplane = {𝑘𝑥𝑥 , 𝑘𝑥𝑦, 𝑘𝑦𝑦, 𝑘𝑠𝑠 , 𝑘𝑛1, 𝑘𝑛2}

in (1)), we follow a simulation-in-the-loop optimization strategy [Miguel
et al. 2012]. We search for the parameters that produce the best
match to the stretch deformation data described in Section 4.3, sub-
ject to static equilibrium of the simulated cloth swatch. Formally,
this is

𝑘inplane = arg min
∑︁
𝑖

𝑤𝑠 ∥ 𝑓𝑠 (𝑘inplane, 𝑠𝑖 ) − 𝑓𝑠,𝑖 ∥2+

𝑤𝑐 ∥𝑐 (𝑘inplane, 𝑠𝑖 ) − 𝑐𝑖 ∥2 . (2)

Specifically, we use 6 target deformations for each weft, bias, and
warp direction, distributed evenly along the stretch range. For each
𝑖 target deformation, we apply the measured stretch 𝑠𝑖 , simulate the
fabric swatch to equilibrium, and evaluate the error with respect
to measured stretch force 𝑓𝑠,𝑖 and orthogonal compression 𝑐𝑖 . The
weights𝑤𝑠 and𝑤𝑐 normalize stretch force and compression error
using the average measured values.

Figure 6 shows a representative fit of the in-plane thin-shell model
for an all-needle fabric (A2). Notice the extreme anisotropy of the
fabric. Results are discussed in more detail in Section 8, but the
proposed model provides an accurate overall fit across all fabrics
(avg. 17.59% ± 8.33% error for stretch force, and avg. 16.84% ± 8.11%
error for orthogonal compression). We have noticed that the fabrics
in our data set exhibit higher nonlinearity than the StVK model, but

Fig. 7. This single-jersey fabric (SJ14) has a tendency to strongly curl out of
plane, even during in-plane stretching tests. Such behaviors pose difficulties
to the accurate measuring and modeling of bending properties.

the fit quality is sufficient to act as intermediate representation for
the yarn-level model.

We use this thin shell model to generate target data for our yarn-
level model by reproducing spatially uniform versions of the me-
chanical test scenarios in our data-set. Notably, the stretch tests
clamp two ends of the fabric swatch but leave the other two sides
free, which leads to a minimization of stress in the direction orthog-
onal to the stretch. To reproduce this behavior, we compute uniaxial
stretch deformations with zero orthogonal stress of the strain en-
ergy density (1). Denoting the known applied stretch as 𝑠 and the
unknown orthogonal compression as 𝑐 , the stretching direction can
be defined by a unit vector u and the compression direction by an
orthogonal vector v, or alternatively by a rotation matrix U = (u v).
The resulting deformation gradient is F = U diag(1 + 𝑠, 1 − 𝑐) U𝑇 =

(1 + 𝑠) u u𝑇 + (1 − 𝑐) v v𝑇 . We then compute the orthogonal com-
pression as:

𝑐 = arg minΨinplane (F(𝑠, 𝑐,U)) . (3)

Once the minimum-energy compression is known, we evaluate the
stretch stress 𝜎𝑠 =

𝜕Ψinplane
𝜕𝑠 = u𝑇

𝜕Ψinplane
𝜕F u, with 𝜕Ψinplane

𝜕F the first
Piola-Kirchhoff stress. We generate analytical stretch data {𝑠, 𝑐, 𝜎𝑠 }
for weft, bias, and warp directions for each fabric, using the stretch
range measured on the real fabric along each direction.
Because this thin shell model acts as a translator from the po-

tentially non-uniform data to the perfectly uniform periodic yarn
simulator, we should avoid encoding additional noise from numer-
ical errors into the thin shell results. To verify its accuracy, we
recomputed our results on meshes that were uniformly subdivided
two times and found the average difference in output between the
original and refined meshes to be only 2%.

5.2 Bending Model
The fabrics in our database exhibit a wide range of complex be-
haviors when subject to our physical bending test; for example,
some fabrics curl out of plane when stretched (Figure 7) or break
symmetry during bending tests. These complications make it chal-
lenging to isolate simple bending relationships from our data and to
accurately reproduce these results in simulation. Nevertheless, we
document here our first efforts toward fitting the bending behavior
of the materials in our data set.
We first note that, although the bending behavior of our fabrics

appears more isotropic than the in-plane behavior, some fabrics (like
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Fig. 8. Fitting of the thin-shell bending model to the physical test data,
for a links fabric (L1). The plots show the aspect ratio of the pear loop vs.
inter-clamp distance.

the links fabric in Figure 8) exhibit noticeable bending anisotropy.
To ensure our model generalizes to these scenarios, we fit these
behaviors with a discrete-shell bending model with anisotropic
stiffness.
In the computer graphics literature, there are multiple choices

for discrete curvature models [Grinspun et al. 2003; Wardetzky et al.
2007]. We opt for an edge-based curvature metric, as this allows sim-
ple parameterization of anisotropy using the rest-shape orientation
of mesh edges. Given an edge with bend angle 𝜃 , and incident trian-
gles with average altitude from base to vertex 𝐻 , we define the edge
curvature as 𝜅 = 3𝜃/𝐻 . This curvature metric converges to the mean
curvature of a cylinder with edges aligned with the cylinder axis.
This is particularly important for estimating the yarn-level model
using analytical deformation data, as periodic yarn deformations
will be designed following cylindrical bending (see Section 7.1).

Based on the curvature metric above, the bending energy density
is:

Ψbending = 𝑘𝜃 𝜅
2 . (4)

We multiply this energy density by the area of the incident triangles
to obtain the discrete edge energy. We define bending stiffness
values 𝑘𝜃 for the weft, bias, and warp directions, and interpolate
linearly between them. The bending parameters are then 𝑘bending =

{𝑘𝜃,weft, 𝑘𝜃,bias, 𝑘𝜃,warp}.
Similar to the estimation of in-plane model parameters, we use a

simulation-in-the-loop optimization approach to estimate the bend-
ing parameters. We search for the parameters that produce the best
match to the bending deformation data described in Section 4.3,
subject to static equilibrium of the simulated cloth swatch. Formally,
this is

𝑘bending = arg min
∑︁
𝑖

∥𝑟 (𝑘bending, 𝑑𝑖 ) − 𝑟𝑖 ∥2 .

Specifically, we use 7 target deformations for each weft, bias, and
warp direction, distributed evenly between inter-clamp distances
of 0.3 and 3.4 cm. For each 𝑖 target deformation, we impose the
inter-clamp distance 𝑑𝑖 , simulate the fabric swatch to equilibrium,
and measure the aspect ratio 𝑟 of the bending loop.

Figure 8 shows a representative fit of the bending thin-shell model
for a links fabric (L1). Again, results are discussed in more detail in
Section 8, but the proposed model provides an accurate overall fit
across all fabrics (avg. 5.61% ± 2.21% error).

polyester

spandex

Fig. 9. High-res photographs of a plated double-knit interlock fabric (DKIN8)
at 20% warp stretch (left) and 150% weft stretch (right). A multi-filament
stiff yarn, polyester, provides texture and stiff response under high forces.
A single-filament flexible yarn, spandex (partially highlighted), provides
flexible response under low forces. The flexible yarn is stretched during
knitting, and then it compresses the stiff yarn as it retracts and relaxes into
the stitch structure.

To generate analytical target data for yarn-level estimation, we
simply evaluate the bending stress 𝜎𝜅 =

𝜕Ψbending
𝜕𝜅 = 2𝑘𝜃 𝜅 . We obtain

data {𝜅, 𝜎𝜅 } for weft, bias, and warp directions for each fabric, using
the curvature range observed on the real fabric along each direction.

6 YARN MODEL PARAMETERIZATION
Our next goal is to find the parameters of a periodic yarn-level
simulation so that it reproduces the same response to deformation
as the thin-shell model described in the previous section (and thus,
the fabric-level deformation tests in our data set).
We seek a yarn model with a minimal number of parameters,

and which inherently captures the complexity of the coarse-scale
behavior. In this regard, we start with rodmodels used previously for
yarn-level cloth simulation [Bergou et al. 2008; Kaldor et al. 2008],
and we introduce the minimal extensions necessary to capture the
behavior of real fabrics with potential complications like plated
yarns made of multiple materials. We describe in turn the models
we use for yarn stretch, bending, and contact. We observe in our
use case that twist forces are small and do not affect the overall
mechanical response. Our current model does not account for inter-
yarn friction, and we leave this to future work.

6.1 Stretch
Many fabrics blend yarns of different types to achieve complex
mechanical and/or aesthetic behavior. One common example in our
fabric library is plating, where two or more yarns are knitted side
by side. Figure 9 shows a plated fabric consisting of both a flexible
spandex yarn and a stiff polyester yarn. At rest, the flexible yarn is
stretched, while the stiff yarn is compressed. As a result, the fabric
is flexible under low forces, and then it turns stiff under high forces,
once the stiffer polyester yarn is stretched. The complex interplay
of plated yarns cannot be captured by modeling each yarn type
separately.

Motivated by this complex stretch behavior of multi-yarn fabrics,
we have designed a yarn stretch model that represents the combined

𝑘𝑠2
 𝜖𝑠 𝜖𝑠

𝑘𝑠1

𝑘𝑠2

forceresponse of multiple yarns. The force profile in-
cludes three linear regimes: one for low stretch
with stiffness 𝑘𝑠1; another one for stretch
larger than 𝜀𝑠 with stiffness 𝑘𝑠2; and the com-
pression regime again with stiffness 𝑘𝑠2. The
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inset shows the force profile as a function of yarn stretch 𝜀𝑠 . Roughly,
𝑘𝑠2 represents the stiffness of the stiffer yarn in a plated fabric, and
𝜀𝑠 the onset of stretch for this yarn. 𝑘𝑠1 represents the combined
response at low stretch. The stretch energy of a yarn segment with
rest length 𝐿 is formally:

𝑊𝑠 =


1
2 𝐿 𝑘𝑠2 𝜀𝑠 2 𝜀𝑠 ≤ 0
1
2 𝐿 𝑘𝑠1 𝜀𝑠 2 0 ≤ 𝜀𝑠 ≤ 𝜀𝑠
1
2 𝐿

(
𝑘𝑠2 (𝜀𝑠 − 𝜀𝑠 )2 + 𝑘𝑠1 𝜀𝑠 (2 𝜀𝑠 − 𝜀𝑠 )

)
𝜀𝑠 ≤ 𝜀𝑠

(5)

Surprisingly, we found that this proposed nonlinear stretching
behavior is important even for simulating fabrics made only of a
single stiff yarn (e.g., polyester). We speculate that this could be
due to uncertainty in rest lengths and/or friction state, as well as
inherent stretch nonlinearity under low forces (e.g., due to filament
realignment). For this reason, we use the nonlinear stretch model
for all fabrics in the project.

6.2 Bending
We choose a yarn bending model following the formulation of
Bergou et al. [Bergou et al. 2010, 2008], but we disconnect the
bending stiffness and stretch stiffness of the yarn, making them
independent model parameters. In addition, under the uncertainty
about the yarn’s cross-section shape, we choose an isotropic bend-
ing model in our project, and we leave the design of richer bending
models to future work.

Following the discrete curvature vector 𝜿 proposed by Bergou et
al. [2008], we define the bending energy at a yarn vertex as

𝑊𝑏 =
1
2

2
𝐿𝑎 + 𝐿𝑏

𝑘𝑏 ∥𝜿 − 𝜿 ∥2, (6)

where 𝜿 is the rest curvature, and 𝐿𝑎 and 𝐿𝑏 are the rest lengths of
the incident yarn edges.

6.3 Contact
The cross-section of yarns deforms in a complex and nonlinear way
when yarns are compressed into contact. For a multi-filament yarn,
fibers may be loose and voluminous under low stretch, and they
may realign anisotropically under combined stretch and contact.
This phenomenon is even more complex for plated yarns (Figure 9)
when viewed as a single composite yarn.

For these reasons, we choose to model both moderately soft con-
tacts over a large distance and stiff contacts over a small distance.
This models both the forgiving collision response of knit loops
gently touching when the fabric is relaxed, as well as a strong resis-
tance when the space within braided fibers collapses and there is no

2𝑅1 2𝑅2

energy

𝐷

𝑅2𝑅1

more room to compress.Wemodel this two-
phase contact force by combining two bar-
rier potentials, one modeling softer large-
radius contact, and another one modeling
stiffer small-radius contact, as shown in
the inset. Each barrier potential is param-
eterized by its radius 𝑅𝑖 and stiffness 𝑘𝑐𝑖 ,
𝑖 ∈ 1, 2.

We build on the yarn-yarn contact model of Kaldor et al. [2008],
but we substitute their barrier term with the one proposed by Li et

al. [2020]. However, we slightly modify it to use relative distances,
as this improved the scale of the stiffness for parameter optimization.
Given a yarn-yarn centerline distance 𝐷 , contact radius 𝑅𝑖 , contact
stiffness 𝑘𝑐𝑖 , and a barrier function 𝑓 (𝑥) = −(𝑥 − 1)2 log𝑥 , the
contact energy is

𝑊𝑐 = 𝑘𝑐𝑖 𝐿𝑎 𝐿𝑏

∫ 1

0

∫ 1

0
𝑓

(
min

(
𝐷

2𝑅𝑖
, 1

)2
)
𝑑𝑎 𝑑𝑏, (7)

with 𝐿𝑎 and 𝐿𝑏 the rest lengths of the two colliding yarn edges, and
the double integral over colliding edges 𝑎 and 𝑏 is evaluated with
Simpson’s rule.

7 YARN MODEL ESTIMATION
We now discuss how to estimate yarn-level parameters in order to
best fit the data produced by the thin-shell model. Section 7.1 sum-
marizes the simulation of yarn-level fabrics under periodic boundary
conditions, which are key to compare to the thin-shell data.
The yarn-level model contains two types of unknown parame-

ters: yarn rest shapes and mechanical parameters. We follow an
optimization procedure that alternates the estimation of these two
parameter subsets. Section 7.2 describes the estimation of yarn rest
shapes, and Section 7.3 the optimization of mechanical parameters.

7.1 Periodic Yarn-Level Simulations
We build on previous work on periodic simulation of yarns and
rods [Leaf et al. 2018; Schumacher et al. 2018], and we follow in
particular the formulation by Sperl et al. [2020]. We refer the reader
to their paper for implementation details, and here we summarize
the connection between yarn-level and uniform coarse quantities.

We separate two sets of degrees of freedom on a periodic yarn tile:
a uniform coarse deformation q = (𝑠, 𝑐, 𝜅,U), which gathers stretch
𝑠 , orthogonal compression 𝑐 , bending curvature 𝜅 , and a 2D rotation
matrix U which defines the direction of stretch and/or bending;
and a vector of nodal yarn displacements u, expressed relative to
the coarse deformation. Together, these degrees of freedom define
full nodal yarn positions x(q, u). To make the overall behavior of
the yarn simulation match the prescribed coarse scale behavior, the
nodal yarn displacements must satisfy periodic boundary conditions
and must be absent of yarn sliding, yarn twist, and net rigid motion.
We express all these constraints together as c(u) = 0.

The various deformation components described in Section 6
(stretch, bending, and contact) compile a set of discrete energy
elements {𝑊𝑖 } over a periodic tile of rest area 𝐴. We compute the
overall energy density of the tile as

Ψyarns (x(q, u)) =
1
𝐴

∑︁
𝑖

𝑊𝑖 (x(q, u)) . (8)

Given a coarse deformation q, the yarn-level deformation can be
obtained as the minimum-energy configuration (i.e., equilibrium)
that satisfies the constraints:

u = arg minΨyarns (x(q, u)), s.t. c(u) = 0. (9)

We solve this optimization using the constrained Newton approach
of Sperl et al. [2020]. As each yarn tile contains only tens to hundreds
of yarn nodes, the optimizations are fast in practice.
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To compare yarn simulations to the thin-shell analytical target
data, we need two additional ingredients. First, we need to compute
stretch deformations under minimum-energy orthogonal compres-
sion. To this end, given a stretch 𝑠 , we find the compression 𝑐 that
minimizes Ψyarns in (8), subject to equilibrium conditions (9) on
the yarn deformation. We implement this optimization using the
COBYLA method [Powell 1994b], solving (9) before every energy
evaluation.
Second, we need to compute homogenized coarse stress, in par-

ticular the stretch stress 𝜎𝑠 =
𝜕Ψyarns
𝜕𝑠 . Applying the chain rule to (8)

for a coarse stretch 𝑠 yields:

dΨyarns
d𝑠

=
𝜕Ψyarns

𝜕x

(
𝜕x
𝜕𝑠

+ 𝜕x
𝜕u

𝜕u
𝜕𝑠

)
, (10)

which simplifies to dΨyarns
d𝑠 =

𝜕Ψyarns
𝜕x

𝜕x
𝜕𝑠 under equilibrium, as the

force on yarn displacements 𝜕Ψyarns
𝜕x

𝜕x
𝜕u is orthogonal to the gradient

of yarn displacements 𝜕u
𝜕𝑠 . Moreover, again due to equilibrium, net

yarn forces 𝜕Ψyarns
𝜕x are zero in the interior of the tile; therefore, the

computation of the coarse stress simplifies to a gathering of tile
boundary forces [Schumacher et al. 2018]. Note that we compute
stretching stress analytically and compute bending stress by finite
differencing Ψyarns.

7.2 Yarn Rest-Shape Estimation
The rest shape of individual yarns, i.e., their rest length and rest
curvature, is unknown, as it is heavily influenced by plasticity during
the knitting process [Sperl et al. 2020]. One way to address this is
to estimate both the yarn rest shape and mechanical parameters
together, to best fit the thin-shell mechanical data. However, we have
seen that the error function with respect to mechanical parameters
alone is plagued with local minima, requiring the use of global
optimization methods. Global optimization of both the rest shape
and mechanical parameters together appears intractable; therefore,
we have devised a different procedure for rest-shape estimation,
motivated by the stability of the fabric’s coarse-level rest state.
At the fabric’s rest state, net yarn forces are zero, due to equi-

librium between all force components. However, the input yarn
geometry (Section 4.2) is not at rest, due to unbalanced inter-yarn
contact. If we let the yarns relax to reach equilibrium under no coarse
deformation, the fabric suffers a non-zero coarse stress 𝜕Ψyarns

𝜕q , i.e.,
the fabric’s expected rest state is actually not stable and wants to
deform (e.g. contract).

Based on these observations, we separate the full parameter esti-
mation into two problems. We let yarn rest shapes ensure stability
of the fabric’s rest state, and we let mechanical parameters fit the
coarse mechanical response. In our experience, finding a stable but
slightly pre-tensed rest state (i.e., with non-zero though balanced
yarn forces) was key for obtaining good fits of the mechanical re-
sponse with a small mechanical parameter set.

We pose the problem of yarn rest-shape estimation as follows: We
seek rest shapes such that the coarse stress at the fabric’s expected
rest state is small, and the equilibrium configuration of the yarns
deviates little from the input yarn geometry. To solve this problem,
we follow a heuristic approach, alternating equilibrium solves (9)

Fig. 10. High-resolution photograph (left), hand-registered yarn geometry
(center), and simulated yarn rest-shapes (right) for an all-needle fabric (A1).

with resetting of yarn rest shapes at the current configuration.While
doing this, and to bound the deviation from the initial geometry,
we bound the change in yarn rest lengths to 20%. Every time rest
shapes are reset, contact forces push the yarns away. At initial steps,
these contact forces may be very strong and too localized, therefore
we run only a few simulation steps before resetting rest shapes. At
later steps, contacts become smooth, and we let simulations run
toward convergence. See Figure 10 for an example comparing the
real-world fabric, the hand-registered initial yarn geometry, and the
result of our rest-shape optimazation.

Yarn rest-shape estimation must be executed after every change
to the mechanical parameters, as the yarn equilibrium configuration
is changed. For this reason, we alternate rest-shape estimation and
the mechanical parameter optimization described next.

7.3 Mechanical Parameter Estimation
To estimate the mechanical parameters of the yarn model, we pose
and solve a numerical optimization problem. The remainder of this
section discusses the objective function, the optimized parameters,
and the solvers we use.

7.3.1 Objective function. We have designed various error metrics
between the yarn model and the target thin-shell data. The stretch
error component 𝑒𝑟𝑟stretch measures error in stretch stress. The de-
fault error, based on the first Piola-Kirchhoff stress 𝜎𝑠 , ramps up
at high stretches, due to the high nonlinearity of the stress func-
tion. Instead, we measure error in the second Piola-Kirchhoff stress,
obtained as 𝜎𝑠

1+𝑠 . The compression error component 𝑒𝑟𝑟compress mea-
sures simply the difference in orthogonal compression. To generate
the stretch and compression values, we computed zero-orthogonal-
stress deformations on both the thin-shell and yarn models, sampled
over the stretch range of the physical test data, for all three direc-
tions weft, bias, and warp. The yarn-level zero-orthogonal-stress
computation is a slowly-varying function that is expensive to eval-
uate on-demand but well-approximated by simple interpolation;
therefore, we compute the optimal orthogonal compression only on
both ends of the stretch range, and linearly interpolate in between.

For the estimation of the yarn model, we have used the following
objective function, with stretch and compression error components:

𝑔 =
∑︁
𝑖

𝛼𝑖 𝑒𝑟𝑟stretch,𝑖
2 +

∑︁
𝑗

𝛽 𝑗 𝑒𝑟𝑟compress, 𝑗
2 . (11)

To set the weights {𝛼𝑖 , 𝛽 𝑗 } of the error components, we follow
these heuristics. First, we normalize each error component based
on the maximum target value in the comfort stretch range. Second,
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Fig. 11. The performance of our systemwith a local non-linear solver (purple)
compared to a particle swarm optimization (blue), on an all-needle fabric
(A2). Without the swarm optimization, the fitting gets stuck in a local
minimum, causing the stretching error to blow up. The black bar denotes
the transition from the “comfort” to the “power” range of stretches.

we apply a decaying weight 𝑣comfort/max(𝑣comfort, 𝑣target) on both
stretch and compression error components to favor high-quality
fitting of the comfort stretch range vs. the power stretch range
(see Section 4.3 for the definitions). 𝑣comfort is the target value at
the maximum comfort stretch. As such, this weight is 1 within the
comfort range, and decays under further stretching.

We found it hard to robustly incorporate bending energy into the
objective function without hurting the quality of in-plane fitting.
Therefore, we opted to fit stretch and compression only, and use
bending data for post-hoc test of the results. This strategy gave us
good qualitative fitting of bending, but the design of a good error
metric for quantitative fitting appeared challenging. We provide a
full discussion in Section 9.1.

7.3.2 Optimized parameters. The mechanical parameters of the
yarn model are (Section 6): low-stretch stiffness 𝑘𝑠1, high-stretch
stiffness 𝑘𝑠2, high-stretch onset 𝜀𝑠 , bending stiffness 𝑘𝑏 , outer con-
tact radius 𝑅1, outer contact stiffness 𝑘𝑐1, inner contact radius 𝑅2,
and inner contact stiffness 𝑘𝑐2.

Three of our parameters can be set according to a general heuris-
tic and removed from the optimization procedure. First, we set the
high-stretch stiffness 𝑘𝑠2 as the yarn-stretch stiffness (which is pro-
vided as input) of the stiffest yarn in the fabric. Next, the inner
contact acts as a non-penetration constraint, and we found that the
fabric’s mechanical response is barely sensitive to its actual param-
eter values. Therefore, we fix the inner contact stiffness 𝑘𝑐2 to 1e3,
and the inner contact radius 𝑅2 to be 25% of a base radius 𝑅est. We
define 𝑅est geometrically as the minimum required radius such that
all yarn segments are in contact in the registered geometry.
After pruning these parameters, the final set of 5 optimized pa-

rameters is p = {𝑘𝑠1, 𝜀𝑠 , 𝑘𝑏 , 𝑅1, 𝑘𝑐1}.
We also use 𝑅est to define the optimization range of the outer con-

tact radius, which we optimize in 𝑅1 ∈ [0.5𝑅est, 1.5𝑅est]. Similarly,
we define a base bending stiffness as the default stiffness in discrete
rod simulation 𝑘𝑏,base = 𝑘𝑠2

𝑅2
est
4 , to optimize 𝑘𝑏 ∈ [10−3𝑘𝑏,base,

10𝑘𝑏,base]. We further fit 𝑘𝑠1 ∈ [10−3𝑘𝑠2, 𝑘𝑠2], 𝜀𝑠 ∈ [0.0, 0.15],
𝑘𝑐1 ∈ [10−2, 102]. 𝑘𝑠1, 𝑘𝑏 , and 𝑘𝑐1 are fit as log-space parameters.
Finally, we specifically allow 𝜀𝑠 up to 0.20 for DKIN10, to mitigate
extreme stiffening under stretching.

Fig. 12. Some examples of the diversity of fabrics in our data set. The fabrics
are (clockwise from top-left): all-needle (A1), double-knit interlock (DKIN9),
single jersey (SJ9), and links (L3). Each is stretched in the weft direction for
better visibility.

7.3.3 Optimization solvers. We found that our optimization land-
scape features numerous local minima. Therefore, we combine
global optimization for initialization and local optimization for re-
fining of optimized material parameters. Figure 11 gives an example
of how local optimization can get stuck and result in strong errors.
For the global step, we found naïve grid sampling to be infeasi-

ble. Instead, we use 10 steps of swarm optimization [Bonyadi and
Michalewicz 2017] with 64 particles. Each particle corresponds to a
set of candidate material parameters and will compute stress and
compression error using 7 samples per direction. For performance,
we compute everything as parallel as possible; first, the rest-shape
heuristic (Section 7.2) per particle, then the optimal compression
optimizations (Section 7.3.1) per particle and direction for interpola-
tion, and finally the individual stress samples to evaluate the errors.
Our implementation uses a decaying inertia weight from 0.9 to 0.1
for each particle with heuristic repulsion enabled.
For local optimization we use COBYLA [Powell 1994a], starting

from the best parameters found by the swarm optimization. Here, we
first compute the two optimal compressions (for the purpose of quick
evaluation via linear interpolation as described in Section 7.3.1) and
then 20 simulations per direction for error evaluation.

8 RESULTS
We collected results for 33 diverse fabrics, exhibiting a range of
different knits and yarn compositions used in real-world industrial
applications. The supplementary material accompanying this pa-
per details the following fabric samples: all-needle fabrics made of
polyester fiber (labeled A1 - A3); double-knit interlock fabric made
with high-gauge polyester fiber (DKIN1 - DKIN7), spandex/polyester
plated yarn (DKIN8), and low-gauge polyester fiber (DKIN9 - DKIN11);
double-knit pique fabric made of spandex/polyester plated yarn
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Fig. 13. Overview over our thin-shell fitting results. The 𝑥-axis is error
percentage, and the 𝑦-axis lists specific types of fabric in our database.
Specifically, the error is relative to the average ground-truth measured
stretching, compression, or bending datum per pattern as discussed in
Section 5.1.
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Fig. 14. Estimated parameter values of the yarn-level model for all 33 fabrics
in the test database. A linear (resp. log) scale is used when the parameters
are estimated in linear (resp. log) scale.
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Fig. 15. Overall ability of our yarn-level solver to reproduce the correspond-
ing real-world behaviors of materials in our database. The 𝑥-axis is error
percentage, and the 𝑦-axis lists specific types of fabric in our database. The
error is relative to the maximum ground-truth datum in the comfort stretch
per pattern (see Section 7.3.1).

(DKP); links fabric made of spandex/polyester plated yarn (L1 - L3);
and single jersey fabric made of high-gauge multi-yarn (SJ1 - SJ12)
and low-gauge polyester fiber (SJ13 - SJ15). Within each family of
fabrics, the samples vary in yarn composition, gauge, and fabric
finish. Figure 12 displays some rendered examples. This data set
offers a unique level of access to industrial quality yarns and knitted
fabrics; we consider the collection and publication of this data to be
an important contribution of our work.
Figure 13 shows how well our thin shell model reproduces the

behavior of the fabrics in our database (which are color-coded based
on knit family) after we optimize for its parameters. We display
results for all 33 fabrics, measuring the percentage error relative
to the average measured data in stretching force, orthogonal com-
pression, and the pear-loop ratio for quantifying bending discussed
in Section 4. We test against a wide range of fabrics with different
material behaviors and find that, although some fabric families have
a wider standard deviation of error (SJ vs A, for example), our shell
model fits each fabric family with roughly the same magnitude of
error.
The main result of our work is a system for producing a peri-

odic yarn-level solver with the exact same topology as the original
fabric, but with yarn-level parameters chosen such that the yarn-
level simulation approximately matches the physical tests of the
real fabric. Figure 14 shows the range of the estimated parameters
for all 33 fabrics in the database. Figure 15 shows the fitting errors,
indicating how well our yarn-level simulation is able to reproduce
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Fig. 16. The performance of our optimization with and without our bi-
phasic yarn-stretching model, on an all-needle fabric (A2). Omitting the
more complex yarn model massively increases the overall stretching error
and adds to the compression error (purple line).

the fabrics. The leftmost plot shows the ability of our method to
accurately model the behavior of materials within a “comfortable”
range of stretching motions considered in fashion ergonomics, as
defined in Section 4.3. We plot here the percentage differences in
stress, so smaller errors imply a more accurate modeling of the
material. As discussed in Section 7.3, our optimization emphasizes
the accuracy within this “comfort” range more heavily, due to its
importance in industrial applications. The next adjacent plot shows
the accuracy of our yarn-level solver over the “power stretch” range
of motion expected of an athletic garment, but normalized using the
maximum target value in the comfort stretch range. Although many
fabrics still produce remarkably accurate results for the full range
(particularly the “A1-3” fabrics), the accuracy is lower overall due to
our solver’s intentional bias toward accuracy within the “comfort”
region. The rightmost plot in Figure 15 shows how accurately our
yarn-level model matches the orthogonal compression experienced
by garments within the stretch tests. We discuss our yarn simu-
lation’s ability to model fabric bending in Section 9. Overall, out
of our data set of 33 fabrics, 24 of our yarn-level simulations are
accurate to within 10% of the target data in the most important
“comfort stretch” range of forces. The error tends to increase as we
enter highly non-linear behaviors with larger stretches with very
large stretches, with one optimization (DKIN10) failing to converge.

We tested our optimization (with a periodic yarn simulation in the
loop) with both a local gradient-based solver and an optimizer based
on particle swarms on a number of machines, the most powerful of
which was a AMD EPYC 7662 server with 256 cores and 1TB of RAM;
all optimizations were run simultaneously in parallel on different
cores of the same machine. The local solver averaged 11m49s per
fabric, with a minimum of 2m15s and maximumum of 46m11s. The
swarm-based solver took about twice as long, averaging 25m19s per
solve, with a minimum time of 5m18s and maximum of 1h15m25s.
Figure 16 shows the effect of our bi-phasic yarn stiffness model

discussed in Section 6.2. The naive elastic rod stiffness model works
reasonably well for most fabrics, but it can fail to find suitable
parameters, especially in cases with plated yarnsmade frommultiple
types of fabric. Our new two-phase yarn stiffness model, in contrast
succeeds to map the behavior without a blow-up in fitting error.
Figure 17 illustrates the importance of the yarn rest-shape estimation
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Fig. 17. The performance of our optimization with and without our rest-
shape optimization, on an all-needle fabric (A2). Omitting the rest-shape
optimization causes the stretching error to blow up and adds to the com-
pression error (purple line).

discussed in Section 7.2. The black bar in these figures denotes the
transition from the “comfort” to the “power” range of stretches.

The thin shell simulator obviously approximates fabric at a com-
pletely different level than the periodic yarn-based model, so we
should expect some differences in fitting error between the two. The
thin shell model is in a sense “closer to the data” in that we treat
both the model and the real-world samples as geometric surfaces.
The fabric samples are also much larger than individual stitches,
and they occasionally exhibit features (like non-uniform deforma-
tion) that are not possible to model with our yarn-level solver. For
these reasons, it is reasonable to expect that the thin shell model
might provide a more accurate fit than the yarn level model. We also
note that the thin shell model has almost twice as many degrees
of freedom as our yarn-level solver (9 vs 5 DOFs), so it should also
have more representation power.

9 DISCUSSION AND FUTURE WORK

9.1 Bending
Our database includes data from mechanical stretching tests as
well as bending tests. Although, the main effort of our work is
to accurately reproduce the stretching tests, we can also consider
matching the bending data. Unfortunately, matching the bending
data is challenging or a number of practical and theoretical reasons.
The bending data itself is difficult to capture using the processes we
proposed — by fitting the fabric to a single curve and measuring
curvature information from it. This single-curve assumption breaks
down when the fabrics curl dramatically (Figure 7), or when sheared
fabrics asymmetrically bulge out of plane. (Note that the tendency of
fabrics to curl makes it difficult to measure orthogonal compression
as well.)
We started our investigation with a yarn-level model that was

optimized to match stretching data for a given fabric, as explained
in the previous section. We wondered whether such a model could
reproduce the bending behavior of that fabric, even though it was not
trained on its bending data. Perhaps unsurprisingly, the fits to the
bending data were not nearly as precise as the fits to the stretching
data, but we did find that the bending behaviors actually match
fairly well qualitatively. Essentially, our solver correctly exhibits
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Fig. 18. The performance of our yarn-level model with (blue) and without
(purple) training on bending data in the objective function, on a double-knit
interlock fabric (DKIN1). Including bending data makes the stretching error
worse (left) but dramatically improves the bending error (right).

weaker bending stiffness for weak fabrics, and stronger bending
stiffness for strong fabrics.
To quantify bending error, we considered a bending error com-

ponent 𝑒𝑟𝑟bend that measures the difference in bending stiffness 𝑘𝜃
between the thin-shell and yarn models. On the yarn model, we
compute this stiffness through central-difference approximation
of the second derivative of the yarn energy Ψyarns at ±20% of the
curvature range in the physical test data. We considered measuring
error on stiffness, and not on stress, because the thin-shell bending
model does not account for curling effects, and it assumes a flat rest
state. Some of the fabrics, e.g., jersey knits, showed evident curling
on the yarn model, which manifests as an offset bending stress that
cannot (and probably should not) be removed by the parameter
optimization.

If we actually add the bending data into the objective function (11),
our yarn-level solver matches bending behavior much better, but
compromises stretching quality. (Figure 18 shows a representative
example, and Table 1 compiles the total effect on all fabrics.) This
trade-off behavior is somewhat unsurprising given the weighted
least-squares form of our objective function, but we also wonder
whether the bending metric can be improved. The bending stiff-
nesses of the fabrics in our database span several orders of mag-
nitude, so it may be the case that the absolute difference from the
input data is the wrong metric to use in the future.

9.2 Other Yarn Data
We use yarn density and average stiffness data measured from phys-
ical tests to inform our simulated yarn-models, as discussed in Sec-
tion 4.1. We also considered using yarn mass and yarn-level stretch
tests for improving fidelity; by combining the yarn’s physical mass
with the fabric’s mass density, it is possible to estimate each yarn’s
rest length. However, when we compared the estimated values to the
actual yarn lengths measured from the yarn geometry (Section 4.2),
we found that the resulting pre-stretch values would require unrea-
sonable stretch forces for stiff yarns such as polyester.
We also obtained individual yarns of all the tested fabrics, and

we performed yarn-level stretch tests using a commercial device.
With this data, we are able to estimate the stretching stiffness of
individual yarns. Specifically, we linearly approximate the yarn

Table 1. Effect on various fitting errors for all fabrics if we omit bending
energy (“No bending” column) or include it (“Bending” column) in the yarn-
level parameter optimization.

No bending Bending
Regime avg err std dev avg err std dev

Stress Comfort 10.40% ±5.27% 15.05% ±5.12%
Stress Full 31.69% ±44.51% 41.41% ±50.39%
Compression 16.28% ±11.58% 24.32% ±15.03%
Bending 97.78% ±98.26% 64.03% ±39.37%

stretch response in the 5 cN range, which is an upper bound of
per-yarn forces under 5 N of swatch-level force. However, we do
not use this yarn stretch stiffness alone in the simulation model
(only as large-stretch and compression stiffness 𝑘𝑠2) for multiple
reasons: (i) the fitting procedure is sensitive to experimental noise
in the low-stretch regime, yielding an unrealistically large stiffness
fit in the 5 cN range; (ii) many of the tested fabrics combine multiple
yarn types, and the composite stiffness is a complex combination
of the stiffness of individual yarn types; and (iii) production fabrics
undergo finishes that could change the mechanical response of
yarns.

9.3 Future Work
Wepresented two novel extensions to our yarn-level simulation: two-
phase stiffness (for modeling plated yarns) and two-phase contact
modeling. During this project, we also considered a number of other
phenomenologically plausible extensions to the yarn level model.
We could model the yarn’s anisotropic cross section [Montazeri
et al. 2019], and extend that to an anisotropic bending model. Our
current model ignores friction and hysteresis in models, but we
can consider this in the future. We note that our yarn simulations
are well conditioned without friction because they are subject to
periodic boundary conditions, but in a non-periodic simulation, a
fabric full of frictionless fibers may unravel. Adding friction or even
cohesion to model “fuzz” may also increase the realism of our yarn
contact and fabric modeling.

As noted in Section 9.1, some fabrics have a tendency to curl. We
do not yet model this curly, non-flat rest shape in our thin shell
model. We could do this in the future by adding non-zero rest angles
to the edges and solving for these additional degrees of freedom.
When fitting real-world materials with computer models, vali-

dation is an important task [Oberkampf and Roy 2010]. As we use
the thin-shell model as an intermediate representation, the final
estimated yarn-level model is not validated against the measured
ground-truth data, and the final results may suffer higher error
than the one reported. However, comparing full, non-periodic yarn-
level simulations to the swatch-level mechanical tests comes with
challenges. We would need to model the free edges of the swatches,
including critical items such as yarn-yarn contact frictionmentioned
above. The error added by these modeling aspects would introduce
high uncertainty to the validation. Romero et al. [2021] recently
developed a protocol for validating rod simulation models, but it
does not support the complex contact interactions of knitted yarns.
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Finally, we would like to consider more complicated fabrics in the
future, notably those composed of multiple layers, or those fabri-
cated by 3D weaving [Wu et al. 2020] or warp knitting. These fabrics
would challenge our geometry initialization procedure, because we
would need to do more work to estimate the location of the yarns
at the start of the simulation.

10 CONCLUSION
This work marks the first demonstration that yarn-level simulation
is capable of approximating the mechanical stretching response of
real-world fabrics. We compiled a database from physical tests of
several different knitted fabrics used in the textile industry, which
spans several complex knit patterns, yarn compositions, and yarn
coatings, resulting in diverse physical properties like stiffness, non-
linearity, and anisotropy.
We developed a system for optimizing yarn-level parameters in

order to match these real-world data, and we offer a few novel
extensions to make yarn-level simulation models more capable of
replicating the bi-phasic stiffness behavior of plated yarns and real-
world contact scenarios. We are releasing our data set to the public
research community, in hopes that it inspires future work and acts
as a potential benchmark for yarn-level cloth research. In particular,
we hope that future scholars use our data set and results as an
inspiration for potentially finding a reliable connection between
yarn-level parameters and large-scale material behavior. Finding
such a connection will address a long-standing problem in material-
science and directly aid in the fabrication of novel fabrics.
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