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Fig. 1. Overview. Left: Spinnability of a spinning top can be ensured by solving a topology optimization problem on the interior (pink) of a target shape
(transparent-gray). Center-left: We show that the optimal mass distribution is always obtained by placing material where a degree-two polynomial attains
positive values (yellow), and leaving the rest of the domain empty (blue). Isolevels of the polynomial are shown on a cutoff plane. Center-right: This results in a
material-air interface shaped like a quadric; in this example, a hyperboloid (yellow). Right: A physical prototype, 3d printed in two parts and then glued.

The behavior of a rigid body primarily depends on its mass moments, which

consist of the mass, center of mass, and moments of inertia. It is possible

to manipulate these quantities without altering the geometric appearance

of an object by introducing cavities in its interior. Algorithms that find

cavities of suitable shapes and sizes have enabled the computational design

of spinning tops, yo-yos, wheels, buoys, and statically balanced objects.

Previous work is based, for example, on topology optimization on voxel

grids, which introduces a large number of optimization variables and box

constraints, or offset surface computation, which cannot guarantee that

solutions to a feasible problem will always be found.

In this work, we provide a mathematical analysis of constrained topol-

ogy optimization problems that depend only on mass moments. This class

of problems covers, among others, all applications mentioned above. Our

main result is to show that no matter the outer shape of the rigid body to

be optimized or the optimization objective and constraints considered, the

optimal solution always features a quadric-shaped interface between mate-

rial and cavities. This proves that optimal interfaces are always ellipsoids,

hyperboloids, paraboloids, or one of a few degenerate cases, such as planes.

This insight lets us replace a difficult topology optimization problem with

a provably equivalent non-linear equation system in a small number (<10)

of variables, which represent the coefficients of the quadric. This system

can be solved in a few seconds for most examples, provides insights into the
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geometric structure of many specific applications, and lets us describe their

solution properties. Finally, our method integrates seamlessly into modern

fabrication workflows because our solutions are analytical surfaces that are

native to the CAD domain.
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1 INTRODUCTION
The mass, center of mass, and inertia tensor of a three-dimensional

body completely determine its rigid-body behavior, as dictated by

Newton’s second law of motion. Thesemass moments are comprised

of ten scalars, and encompass all information needed to evaluate

properties such as the static stability of an object in a given orien-

tation, or the stability of a rotational motion around a given axis.

Hence, controlling the values of mass moments is critical for the

design of floor stands, suspended fixtures, wheels, buoys, and a

variety of toys, such as yo-yos, spinning tops, and roly-poly dolls.

Advances in digital fabrication methods such as 3d-printing have

simplified the manufacture of objects with a high geometric and

topological complexity. In particular, this facilitates the introduc-

tion of cavities into the interior of an object, which can be used to

control its mass moments without altering the outward appearance.

ACM Trans. Graph., Vol. 43, No. 4, Article 78. Publication date: July 2024.

HTTPS://ORCID.ORG/0009-0009-4582-8569
https://orcid.org/0009-0009-4582-8569
https://doi.org/10.1145/3658194
https://doi.org/10.1145/3658194
https://doi.org/10.1145/3658194


78:2 • Christian Hafner, Mickaël Ly, and Chris Wojtan

Motivated by this prospect, Bächer et al. [2014] posed the following

computational design question: Can we find a binary mass distribu-

tion inside a given three-dimensional body, such that the resulting

object will solve a constrained topology optimization problem that

depends only on mass moments?

This task can be formalized as follows: Given a design domain

Ω ⊂ R3
, determine among all subsets𝜔 ⊂ Ω the one that minimizes

𝑓 (𝑚𝜔 , 𝑐𝜔 , 𝐼𝜔 ) s.t. 0 = 𝑔𝑖 (𝑚𝜔 , 𝑐𝜔 , 𝐼𝜔 ) for all 𝑖 = 1, . . . , 𝑘, (1)

where𝑚𝜔 , 𝑐𝜔 , and 𝐼𝜔 denote the mass, center of mass, and inertia

tensor of 𝜔 , respectively. The functions 𝑓 and 𝑔1, . . . , 𝑔𝑘 describe

the optimization objective and constraints, and depend on 𝜔 only

via these mass moments. The solution 𝜔 can be interpreted as a

binary mass distribution on Ω by considering 𝜔 to be filled by a

medium of constant density, and Ω \ 𝜔 to be empty.

Our main contribution is to show a universality property for

problems of this type: The interface of the optimal mass distribution
is always the solution of a degree-two polynomial equation on Ω,
regardless of the domain, objective, and constraints considered. The

interfaces that arise this way are shaped like quadrics, a family of

surfaces comprised of ellipsoids, hyperboloids, and paraboloids, as

well as degenerate quadrics, which include double cones and planes

among others. This characterization of solutions holds under very

general assumptions that amount only to the differentiability of 𝑓

and 𝑔𝑖 , and a non-degeneracy property of the optimization problem.

Besides providing a geometric insight, our result is immediately

useful for finding numerical solutions: It allows us to reduce the

search space to a small parametrized family of surfaces, namely

that of all quadrics, while preserving the optimal solution to the

continuous topology optimization problem. By contraposition, this

can also give us a certificate of infeasibility for the original problem:

If there is no feasible solution among the quadrics, there will be no

feasible solution at all.

Our method also fits neatly into a computational design and

fabrication pipeline, because the result is an analytical surface that

can be processed natively in CAD software. If the three-dimensional

object was originally designed using CAD, this avoids switching

representations after optimization and can significantly simplify

post-processing steps such as partitioning the object to prepare a

3d-print or modeling an assembly.

1.1 Related Work
Fabrication-aware design research has discovered many different

uses for the ability of 3d printers to produce objects that are partially

hollow. Wang et al. [2013] and Lu et al. [2014] add large cavities

in order to improve the strength-to-weight ratio of 3d models and

to make 3d printing more cost-effective. Wu et al. [2017] take this

idea further by computing a fine network of cavities that mimic

the porous structure of bones. Another line work uses spatially-

varying microstructures to achieve controlled elastic deformations

of 3d-printed objects [Ion et al. 2016; Panetta et al. 2015]. More

applications that focus on intricate cavity systems can be found in

a survey [Feng et al. 2018].

Optimization of mass moments is a particular goal that can
be achieved through the introduction of cavities. In graphics, many

works have explored this topic to optimize specific objectives, and to

Fig. 2. Previous Work. Top: Results for static and buoyant stability from
Prévost et al. [2013], Wang and Whiting [2016], and Musialski et al. [2016].
Bottom: Spinning tops from Bächer et al. [2014] and Musialski et al. [2015].

design 3d objects with specific functionalities. A popular approach is

to represent the interior of a 3d model using a voxel grid, and employ

density-based topology optimization [Bendsoe and Sigmund 2003;

Deaton and Grandhi 2014] to decide in which voxels to deposit

material. Prévost et al. [2013] optimize the center of mass to enable

a 3d-printed object to stand stably on a small contact area, or to

hang in a prescribed orientation from a string. Bächer et al. [2014]

optimize a non-linear objective that depends on the center of mass

and moments of inertia in order to produce yo-yos and spinning

tops with asymmetric shapes. Furthermore, they solve the topology

optimization problem hierarchically using an octree in order to

accelerate the process. Wang and Whiting [2016] enable 3d-printed

objects to float at a particular height and orientation when partially

submerged in water by optimizing for stable hydrostatic equilibria.

Zhao et al. [2016] propose a method for designing so-called roly-

poly dolls by hollowing a 3d model in order to control its center of

mass, and attaching it to a rounded base.

The topology-optimization approach is very general in that it can

solve for cavities with arbitrary shape and topology, but it leads

to a large-scale optimization problem with >10,000 variables, even

for a moderate grid resolution of 25 × 25 × 25. Furthermore, the

variables are subject to box constraints, and the objective function

is often non-linear, which necessitates sophisticated optimization

algorithms to achieve high performance.

Another approach to mass-moment optimization is to define

the shape of a cavity as an offset surface of the model boundary

towards the medial axis [Musialski et al. 2015, 2016]. Using a reduced

basis, this leads to an optimization problem in ∼100 variables. The
downside of this approach is that the topology and approximate

shape of the cavity are fixed a priori, and that offsets cannot go

beyond the medial axis. As a consequence, it is not guaranteed that

a feasible solution exists in this formulation, even if the topology

optimization problem was originally feasible.
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Fig. 3. Numerical Algorithm. Left: We draw a random quadric that sat-
isfies the minimizing properties derived for a particular application, see
Section 4. Center: We optimize the quadric parameters iteratively by com-
puting the residual of Eq. 14 and taking a Newton step on the (𝑛−1)-sphere,
see Section 5. Right: The algorithm terminates successfully if a local mini-
mum was found; otherwise, it restarts from a new random sample.

Some results from previous work are shown in Fig. 2. It is

striking how closely the voxel-based solutions approximate either a

planar interface (top-left & top-center), or a hyperboloid of one sheet
(bottom-left). This is less evident for the solutions based on offset

surfaces, but a resemblance to a planar interface (top-right) and a

strongly smoothed-out hyperboloid (bottom-right) can be imagined.

In this work, we show that the true optimizers of all mass-moment

problems previously studied are indeed quadrics, so this resemblance

is not a coincidence. We leverage this insight to drastically reduce

the effort needed to solve problems of this type by directly determin-

ing the coefficients of the optimal quadric from a small system of

equations. This way, we can avoid solving a large-scale optimization

problem and are still guaranteed to recover the true solution up to

numerical tolerances.

2 OVERVIEW
Our core contribution is a mathematical analysis of topology opti-

mization problems whose objective function and constraints depend

only on the mass moments of the rigid body that is to be optimized.

The main insight is that the optimal mass distribution is always such

that the interface between material and void forms a quadric, which

we show in Section 3. We also derive a set of optimality conditions

for the coefficients of the quadric, see Eq. 7, which is the basis for

our numerical solution procedure.

In Section 4, we apply our theory to problems studied in previous

work, ranging from static and buoyant stability to fidget spinners, yo-

yos, and spinning tops. This results in concrete optimality conditions

for each application, and leads to geometric insights such as the

quadric type of the solution.

Section 5 discusses our numerical method, which is a variant of

Newton’s root-finding algorithm to solve the system of optimal-

ity conditions. It also discusses a practical method for evaluating

the mass moments of a rigid body whose geometry arises by inter-

secting a triangle mesh with a quadric. The steps of the numerical

solution procedure are shown schematically in Fig. 3. Finally, Sec-

tion 6 shows results of applying our numerical method to two- and

three-dimensional geometry.
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Fig. 4. RawMoments. The raw moments are computed by integrating con-
stant and linear (top) as well as quadratic and bilinear (bottom) polynomials
over the domain 𝜔 (pink) with characteristic function 𝜒 , here for 𝑑 = 2.

3 OPTIMALITY CONDITIONS
In this section, we show that the topology optimization problem

formulated in the introduction is always solved by a binary mass dis-

tribution whose interface is a quadric. More generally, for problems

in dimension 𝑑 , the interface is always the solution of a degree-two

polynomial equation on the domain Ω ⊂ R𝑑 . This insight can be

used to transform the original problem into a system of non-linear

equations in a small number of unknowns.

We first rephrase the topology optimization problem in terms

of notation that simplifies the exposition. Then we give necessary

and sufficient versions of our optimality conditions, which differ by

a small gap that accounts for solutions where constraint qualifica-

tions are not met. The proof of the sufficient conditions uses only

elementary methods, so we give it in full. Proving the necessary

conditions is more technical, so we relegate part of the proof to the

supplemental document and describe the important steps here.

3.1 Notation
We restate the topology optimization problem from Eq. 1 in a slightly

modified form, and generalize the design domain to Ω ⊂ R𝑑 . The
choice of dimension 𝑑 ∈ {1, 2, 3} allows for the design of linear, flat,

and volumetric objects. Instead of considering the subset 𝜔 ⊂ Ω
as the unknown directly, we encode it as a characteristic function

𝜒 : Ω → {0, 1}, such that 𝜒 (𝑥) = 1 if 𝑥 ∈ 𝜔 , and 𝜒 (𝑥) = 0 otherwise.

Using 𝜒 , the constant, linear, and quadratic raw moments of 𝜔 can

be computed as
1

𝑣 (𝜒) =
∫
Ω
𝜒, ℓ (𝜒) =

∫
Ω
𝜒 · id, and 𝑄 (𝜒) =

∫
Ω
𝜒 · id⊗ id, (2)

where id denotes the identity map on R𝑑 . For 𝑑 = 3, and written in

coordinates, these definitions are equivalent to

𝑣 =

∫
𝜔

1 d𝑉 , ℓ =

∫
𝜔

(
𝑥
𝑦
𝑧

)
d𝑉 , and 𝑄 =

∫
𝜔

(
𝑥2 𝑥𝑦 𝑥𝑧

𝑥𝑦 𝑦2 𝑦𝑧

𝑥𝑧 𝑦𝑧 𝑧2

)
d𝑉 ,

1
Our notation omits the variable of integration when it is not needed. For example, the

expression for the linear moment expands to ℓ (𝜒 ) =
∫
Ω
𝜒 · id =

∫
Ω
𝜒 ( ®𝑥 ) · id( ®𝑥 ) d®𝑥 =∫

Ω
𝜒 ( ®𝑥 ) · ®𝑥 d®𝑥 =

∫
𝜔

®𝑥 d®𝑥.
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where d𝑉 = d𝑉 (𝑥,𝑦, 𝑧). Fig. 4 illustrates the individual components

of this computation for𝑑 = 2. Note that the definitions imply 𝑣 (𝜒) ≥
0, ℓ (𝜒) ∈ R𝑑 , and 𝑄 (𝜒) ∈ R𝑑×𝑑 symmetric positive-semi definite.

We collect the independent entries of 𝑣 , ℓ , and 𝑄 in the vector

𝑟 ∈ R𝑛 of raw moments. This gives a total of 𝑛 = 1 + 𝑑 + 𝑑 (𝑑+1)
2

components becausewe omit the redundant entries of the symmetric

matrix 𝑄 . For 𝑑 = 3, we have 𝑛 = 1 + 3 + 6 = 10, and

𝑟 = (𝑣, ℓ1, ℓ2, ℓ3, 𝑄11, 𝑄22, 𝑄33, 𝑄23, 𝑄13, 𝑄12)⊤ . (3)

As discussed further in Section 4.1, the mass𝑚𝜔 , center of mass 𝑐𝜔 ,

and inertia tensor 𝐼𝜔 , which were used in the introduction, can be

expressed in terms of 𝑟 . This allows us to rewrite the optimization

objective and constraints to depend on 𝑟 directly, instead of on𝑚𝜔 ,

𝑐𝜔 , and 𝐼𝜔 . This yields the topology optimization problem

min

𝜒 :Ω→{0,1}
𝑓 (𝑟 (𝜒)) s.t. 0 = 𝑔𝑖 (𝑟 (𝜒)) for all 𝑖 = 1, . . . , 𝑘, (TOP)

with 𝑓 , 𝑔1, . . . , 𝑔𝑘 : R𝑛 → R assumed differentiable. The unknown

in this problem is the subset 𝜔 ⊂ Ω encoded by its characteristic

function 𝜒 such that 𝜔 = 𝜒−1 (1). This subset will be interpreted as

the portion of Ω filled by a solid material, and Ω \ 𝜔 as a void.

Specific optimization problems, such as optimizing stably stand-

ing objects or spinning tops, can be obtained from this general form

by choosing a specific objective function 𝑓 and constraint functions

𝑔1, . . . , 𝑔𝑘 that depend only on the moments of 𝜔 . We will study

these specific applications in Section 4. The remainder of this section

tackles the general problem (TOP), so any property that we show

will automatically apply to all these specific applications.

3.2 Optimality Conditions
Our goal is to show that for every instance of (TOP), no matter the

specific choice of 𝑓 , 𝑔1, . . . , 𝑔𝑘 , the optimal solution can be charac-

terized as follows: The optimal subset 𝜔 ⊂ Ω consists of exactly the

points where some degree-two polynomial in 𝑑 variables is posi-

tive. In two dimensions, the shapes that arise this way are exactly

the conic sections: ellipses (see Fig. 5), parabolas, and hyperbolas;

and a few degenerate cases such as lines and line pairs. In three di-

mensions, the optimal solutions are exactly the quadrics: ellipsoids,
paraboloids, and hyperboloids; and degenerate cases such as double

cones and planes.

This result simplifies the process of solving (TOP) dramatically:

It allows us to exchange the infinite-dimensional search space of

functions 𝜒 : Ω → {0, 1} with a low-dimensional set of shapes that

is easy to parametrize and optimize over. Below we introduce our

parametrization and present a local optimality condition that iden-

tifies the specific parameter values that optimally solve an instance

of (TOP), and which is used in our numerical method.

To parametrize𝜔 ⊂ Ω, we introduce a non-vanishing polynomial

𝛽 : Ω → R of degree at most two, which can be written as

𝛽 (𝑥) = 𝑎 + ⟨𝑏, 𝑥⟩ + ⟨𝑥,𝐴𝑥⟩, (4)

with 𝑎 ∈ R, 𝑏 ∈ R𝑑 , and 𝐴 ∈ R𝑑×𝑑 a symmetric matrix. We collect

these coefficients in a vector 𝑝 ∈ R𝑛 \ {0} of unknowns, such that

the ordering matches that from Eq. 3. For 𝑑 = 3,

𝑝 = (𝑎, 𝑏1, 𝑏2, 𝑏3, 𝐴11, 𝐴22, 𝐴33, 𝐴23, 𝐴13, 𝐴12)⊤ . (5)

𝛽 : R2 → R

Ω

𝜔

−1

0

1

Fig. 5. Mass Distribution. Given a design domain Ω ⊂ R2 (pink) and a
degree-two polynomial 𝛽 whose level sets are shown (left), a new domain
𝜔 ⊂ Ω (yellow) is constructed by keeping only the points 𝑥 ∈ Ω where
𝛽 (𝑥 ) > 0 (right). This domain has characteristic function 𝜒 , see Eq. 6.

The characteristic function 𝜒 of 𝜔 is given by

𝜒 (𝑥) :=

{
1 if 𝛽 (𝑥) > 0,

0 otherwise,
(6)

which is equivalent to 𝜔 = {𝑥 ∈ Ω : 𝛽 (𝑥) > 0}. Note that any

positive multiple of 𝑝 will generate the same distribution, so we

may choose 𝑝 ∈ 𝑆𝑛−1 ⊂ R𝑛 , that is, ∥𝑝 ∥ = 1.

Assume that 𝜒 is generated from 𝑝 through this procedure. We

then show that 𝜒 is locally optimal for (TOP) if

∃` > 0, _1, . . . , _𝑘 ∈ R : ∇𝑟 𝑓 = −`𝑝 +
𝑘∑︁
𝑖=1

_𝑖∇𝑟𝑔𝑖 . (7)

This is a non-linear system of 𝑛 equations which is reminiscent

of standard first-order optimality conditions. However, instead of

containing derivatives with respect to the vector 𝑝 of unknowns,

the gradients ∇𝑟 𝑓 ,∇𝑟𝑔𝑖 ∈ R𝑛 are taken with respect to the vector

𝑟 of raw moments, and evaluated at 𝑟 (𝜒). This has a significant

advantage for computation: By solving Eq. 7 with Newton’s method,

we need only evaluate first-order derivatives with respect to 𝑝 but

achieve quadratic convergence nonetheless, as described in Section 5.

The remainder of this section is concerned with presenting a

proof of the necessity and sufficiency of Eq. 7 for solving (TOP).

Readers primarily interested in applications and an implementation

of the numerical method may skip ahead to Section 4.

3.3 Sufficiency
Our main tool for studying (TOP) is the relaxed problem

min

𝜒 :Ω→[0,1]
𝑓 (𝑟 (𝜒)) s.t. 0 = 𝑔𝑖 (𝑟 (𝜒)) for all 𝑖 = 1, . . . , 𝑘, (RP)

which is identical to (TOP) except that the codomain of 𝜒 is [0, 1]
instead of {0, 1}. This is a true relaxation in the sense that any 𝜒

which is feasible for (TOP) is also feasible for (RP), and has the

same objective value. In consequence, any local optimizer 𝜒∗ of

(RP) which is feasible for (TOP) is also locally optimal for (TOP).

Our optimality conditions turn out to be applicable even to (RP),

which is more amenable to analysis than (TOP). Thus, we show both

the necessary and sufficient version of the conditions for (RP), and

let them carry over to (TOP). The following result shows that Eq. 7

is sufficient for local minima of (RP), and distinguishes them from

local maxima and saddle points despite being only first-order:
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Theorem 1. Let 𝑝 ∈ 𝑆𝑛−1 and 𝜒∗ : Ω → {0, 1} defined by Eqs. 4–
6, and assume that 0 = 𝑔𝑖 (𝑟 (𝜒∗)) for all 𝑖 = 1, . . . , 𝑘 and Eq. 7 is
satisfied. Then 𝜒∗ is a strict local optimizer for (RP).

Proof. It suffices to show that all non-vanishing, admissible vari-

ations of 𝜒∗ strictly increase the objective value. A one-parametric

smooth family of such variations takes the form 𝜒Y : Ω → [0, 1]
with parameter Y ∈ [0, ℎ) for some ℎ > 0, such that 𝜒0 = 𝜒∗,
and 0 = 𝑔𝑖 (𝑟 (𝜒Y )) for all 𝑖 = 1, . . . , 𝑘 and Y ∈ [0, ℎ). The assump-

tion 0 ≤ 𝜒Y ≤ 1 for all Y ∈ [0, ℎ) implies that the first variation

𝛿 𝜒 (𝑥) = 𝜕
𝜕Y 𝜒Y (𝑥)

��
Y=0

satisfies, for all 𝑥 ∈ Ω,

𝛿 𝜒 (𝑥)
{
≤ 0 if 𝜒∗ (𝑥) = 1,

≥ 0 if 𝜒∗ (𝑥) = 0,
and so, 𝛿 𝜒 (𝑥)

{
≤ 0 if 𝛽 (𝑥) > 0,

≥ 0 otherwise,
(8)

by Eq. 6. The entries of 𝑟 as given by Eq. 2 are linear in 𝜒 , so the

entries of the first variation 𝛿𝑟 are given by

𝛿𝑣 =

∫
Ω
𝛿 𝜒, 𝛿ℓ =

∫
Ω
𝛿 𝜒 · id, and 𝛿𝑄 =

∫
Ω
𝛿 𝜒 · id ⊗ id. (9)

Using the chain rule, we can write the first variations of 𝑓 and 𝑔𝑖 as

𝛿 𝑓 = ⟨∇𝑟 𝑓 , 𝛿𝑟 ⟩, and 𝛿𝑔𝑖 = ⟨∇𝑟𝑔𝑖 , 𝛿𝑟 ⟩, (10)

and we know that 𝛿𝑔𝑖 = 0 for all 𝑖 = 1, . . . , 𝑘 because the family of

variations obeys the equality constraints.

The last step is to show that 𝛿 𝜒 strictly increases the objective

value. To show this, compute

𝛿 𝑓 = 𝛿 𝑓 −
𝑘∑︁
𝑖=1

_𝑖𝛿𝑔𝑖
(10)

= ⟨∇𝑟 𝑓 −
𝑘∑︁
𝑖=1

_𝑖∇𝑟𝑔𝑖 , 𝛿𝑟 ⟩
(7)

= −`⟨𝑝, 𝛿𝑟 ⟩

(5,9)
= −`

∫
Ω
𝛿 𝜒 · (𝑎 + ⟨𝑏, id⟩ +𝐴 : id ⊗ id) (4)

= −`
∫
Ω
𝛿 𝜒 · 𝛽,

where “:” denotes double contraction between matrices, and the

superscripts reference the equations used for every step.

To verify 𝛿 𝑓 > 0, we analyze the last expression: According to

Eqs. 7 and 8, −` is negative, and the integrand 𝛿 𝜒 · 𝛽 is non-positive

everywhere. The latter is even strictly negative on a set of positive

measure because 𝛿 𝜒 is non-vanishing on a set of positive measure

by assumption, and 𝛽 vanishes only on a measure-zero set because

it is a polynomial with coefficients 𝑝 ≠ 0. Thus, the integral

∫
Ω 𝛿 𝜒 ·𝛽

has a strictly negative value, which concludes the proof. □

Note that this result is stronger than what is usually achieved

with optimality conditions involving only first-order derivatives:

By satisfying Eq. 7, we conclude a strict increase of 𝑓 under non-

vanishing variations, rather than stationarity of 𝜒∗. The critical

assumption to achieve this is 𝑝 ≠ 0, and thus 𝛽 is not the zero

function:When we develop our numerical method, we will explicitly

compute 𝑝 ∈ 𝑆𝑛−1
, so we can verify this for individual solutions.

3.4 Necessity
For the necessary variant of the optimality conditions, we have to

distinguish between two solution types corresponding to 𝑝 = 0 and

𝑝 ≠ 0. The case 𝑝 ≠ 0 leads to the same isolated strict local optima

that were described by Theorem 1, and binarity of the solution

emerges as a natural consequence even though it is not imposed

a priori. The case 𝑝 = 0 accounts for solutions to instances of (RP)

that are degenerate in the sense that the box constraint 𝜒 (𝑥) ∈ [0, 1]
is non-binding for all 𝑥 ∈ Ω. This means that the same solution is

obtained even if (RP) is modified to allow any 𝜒 : Ω → R.
A rigorous proof of the case 𝑝 ≠ 0 is fairly technical and relies

on a version of the Karush–Kuhn–Tucker (KKT) theorem for opti-

mization problems in infinite-dimensional Banach spaces. Below,

we choose the KKT optimality conditions arising from this theorem

as a starting point and show the remainder of the proof, which

elucidates the most important aspects. The derivation of the KKT

conditions themselves can be found in the supplemental document.

Theorem 2. Let 𝜒∗ : Ω → [0, 1] a local optimizer for (RP). Then
one of the following holds:

(1) There exists 𝑝 ∈ 𝑆𝑛−1 such that 𝜒 : Ω → {0, 1} as defined by
Eqs. 4–6 agrees with 𝜒∗ except on a measure-zero set, and Eq. 7
holds. Furthermore, 𝜒∗ is a strict local optimizer.

(2) The solution 𝜒∗ is first-order optimal for (RP) even after modi-
fying it to allow any 𝜒 : Ω → R.

Proof. The necessary KKT optimality conditions applied to (RP)

are as follows: There exist Lagrange multipliers _1, . . . , _𝑘 ∈ R
corresponding to the equality constraints, and functional Lagrange

multipliers 𝛽0 : Ω → R≥0 and 𝛽1 : Ω → R≤0 corresponding to

the pointwise inequality constraints 𝜒 (𝑥) ≥ 0 and 𝜒 (𝑥) ≤ 1 for all

𝑥 ∈ Ω such that

𝜕𝑣L + ⟨𝜕ℓL, id⟩ + 𝜕𝑄L : id ⊗ id = 𝛽0 + 𝛽1, (11)

with L := 𝑓 − ∑𝑘
𝑖=1

_𝑖𝑔𝑖 . Furthermore, 𝛽0 (𝑥) and 𝛽1 (𝑥) may only

be non-zero if 𝜒∗ (𝑥) = 0 and 𝜒∗ (𝑥) = 1, respectively. In Eq. 11, 𝜕ℓL
and 𝜕𝑄L denote the vector and matrix of partial derivatives of L
with respect to the entries of ℓ and 𝑄 .

We define 𝛽 := −𝛽0 − 𝛽1 and see that, for all 𝑥 ∈ Ω,

𝛽 (𝑥)
{
≤ 0 if 𝜒∗ (𝑥) = 0,

≥ 0 if 𝜒∗ (𝑥) = 1,
and so, 𝜒∗ (𝑥) =

{
0 if 𝛽 (𝑥) < 0,

1 if 𝛽 (𝑥) > 0.
(12)

The left-hand side of Eq. 11 is a polynomial of degree at most two,

and the right-hand side equals −𝛽 . Thus, we can write 𝛽 in terms of

its coefficients according to Eqs. 4 and 5. Equating coefficients in

Eq. 11 yields ∇𝑟L = −𝑝 , which is exactly Eq. 7 with ` = 1.

(1) If 𝑝 ≠ 0, then 𝛽 is not the zero function and only vanishes

on a measure-zero set. In consequence, 𝜒∗ is uniquely determined

by Eq. 12 except on this measure-zero set, and agrees with 𝜒 as

defined by Eq. 6 except on this set. Furthermore, we can replace 𝑝

by 𝑝 := 𝑝/∥𝑝 ∥ ∈ 𝑆𝑛−1
and set ` = ∥𝑝 ∥ in Eq. 7 in order to satisfy

the conditions of Theorem 1. Application of this theorem shows

that 𝜒∗ is a strict local optimizer for (RP).

(2) If 𝑝 = 0, then ∇𝑟L = 0 according to Eq. 7. This equation

implies the first-order optimality condition obtained from (RP) after

modifying it to allow any 𝜒 : Ω → R, and thus 𝜒∗ is first-order

optimal for this problem. □

For many practical choices of 𝑓 and 𝑔1, . . . , 𝑔𝑘 in (RP), we can

exclude the case 𝑝 = 0 a priori by inspecting the equation∇𝑟L = −𝑝 ,
and showing that ∇𝑟L = ∇𝑟 𝑓 − ∑𝑘

𝑖=1
_𝑖∇𝑟𝑔𝑖 is nowhere zero. In

particular, this is possible for all optimization problems considered

in previous work, as we show in Section 4. This guarantees that any

optimal solution to (RP) is binary, and thus also optimal for (TOP).
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Fig. 6. Static Stability. The design domain (pink) is enclosed in a fixed solid
shell (transparent). The solutions with maximal mass (center) and lowest
center of mass (right) both have a planar interface, and their centers of mass
(◦) project downwards onto the target point (+).

Even if 𝑝 = 0 is not excluded a priori, then finding a numerical

solution with 𝑝 ∈ 𝑆𝑛−1
shows optimality by virtue of Theorem 1.

In Section 6.6, we show an academic example of a problem with

solutions that satisfy 𝑝 = 0, and argue that this will only occur for

problems that are ill-posed.

4 OPTIMIZATION PROBLEMS
We give an overview of useful optimization problems that can be

cast in the form of (TOP), with pointers to the works that introduced

them. Our optimality conditions shine a new light on the geometric

structure of these problems by guaranteeing a quadric interface

of the optimal mass distribution. For some problems, we can even

clarify the Euclidean type of the quadric and obtain more specialized

knowledge prior to computing a numerical solution.

4.1 Mass Moments
Many problems are formulated more readily in terms of auxiliary

quantities, such as the mass moments used in the introduction,

rather than the raw moments 𝑣 , ℓ , and 𝑄 . We provide a reference of

these quantities here and use them in the remainder of this section.

Assuming a constant density 𝜚 > 0, the mass𝑚, center of mass 𝑐 ,

and inertia tensor 𝐼𝑜 with respect to the origin are given by

𝑚 = 𝜚𝑣, 𝑐 = ℓ/𝑣, and 𝐼𝑜 = 𝜚 · (tr𝑄 · id𝑑×𝑑 −𝑄),
where id𝑑×𝑑 ∈ R𝑑×𝑑 denotes the identity matrix. The inertia tensor

𝐼𝑐 with respect to the center of mass is given by

𝐼𝑐 = 𝐼𝑜 −𝑚 · (⟨𝑐, 𝑐⟩ · id𝑑×𝑑 − 𝑐 ⊗ 𝑐) .
Applications also benefit from the ability to prescribe part of the

object as solid. This is useful, e.g., to add a solid shell around Ω
to determine the outward appearance and conceal any cavities. To

account for this additional fixed material, one can precompute the

raw moment vector of the shell at the beginning and add it to 𝑟

before using it in further computations. This leaves all results and

formulas unchanged because it is only a constant offset.

As gravitational acceleration plays a role in many of the problems

described below, we fix the convention that gravity acts in the

“vertical” direction −𝑒3 ∈ R3
, while 𝑒1 and 𝑒2 span a “horizontal”

plane, perpendicular to gravity.

4.2 Static Stability
An object placed on a flat horizontal surface will be in static equi-

librium if its center of mass projects downwards into the convex

hull of all points that are in contact with the surface. The problem

introduced by Prévost et al. [2013] is to find a mass distribution that

achieves this by constraining the first and second coordinates of the

center of mass to a desired location, usually the center of the largest

incircle of the convex hull of contact points. The objective function

may be chosen to further increase the stability of the position.

We choose our coordinate system such that the origin coincides

with the desired values of 𝑐1 and 𝑐2. This simplifies the equality

constraints to 𝑐1 = 0 = 𝑐2, which is equivalent to ℓ1 = 0 = ℓ2.

Maximize mass. One simple optimization objective that increases

the static stability of the object with respect to external forces is to

maximize its mass, or equivalently, its volume,

min−𝑣 s.t. ℓ1 = 0 = ℓ2 .

Writing Eq. 7 in coordinates for this problem gives

(1, _1, _2, 0, 0, . . . , 0)⊤ = ` · (𝑎, 𝑏1, 𝑏2, 𝑏3, 𝐴11, . . . , 𝐴12)⊤

with ` > 0. Note that because only the raw moments of up to first

order appear in this problem, all entries of 𝐴 in Eq. 4 vanish. Thus

𝛽 is an affine function, and the optimal solution will be given by a

planar interface between the empty and solid region. Using Eq. 6,

we see that the optimal mass distribution satisfies 𝜒∗ (𝑥) = 1 for

exactly those 𝑥 ∈ Ω such that 1+_1𝑥1 +_2𝑥2 > 0, for some choice of

_1, _2 ∈ R. Thus, the interface is a vertical plane, and the halfspace

containing the origin is the solid region.

Lower center of mass. Another objective to increase stability is to

lower the center of mass as much as possible:

min 𝑐3 s.t. ℓ1 = 0 = ℓ2 .

The optimality conditions for this problem are

(𝑐3/𝑣, _1, _2,−1/𝑣, 0, . . . , 0) = ` · (𝑎, 𝑏1, 𝑏2, 𝑏3, 𝐴11, . . . , 𝐴12) . (13)

This shows that the interface of the optimal mass distribution is a

non-vertical plane, and the halfspace below this plane is the solid

region. This follows from 𝑏3 = −1/(`𝑣) < 0. Moreover, we can show

that this plane contains the center of mass by verifying 𝛽 (𝑐) = 0.

Note that in both versions of the static stability problem, it was

easy to see that 𝑝 ≠ 0, because we had 𝑎 = 1/` > 0 in the first,

and 𝑏3 < 0 in the second. Thus, Theorem 2 guarantees that all

local optimizers are strict, and of the types described here. Fig. 6

illustrates both variants of the problem on a geometrically simple

example.

4.3 Buoyant Stability
A problem described by Wang and Whiting [2016] is to optimize a

three-dimensional object such that it stably floats when partially

submerged in a liquid in a prescribed orientation and at a prescribed

liquid level, assumed to coincide with {𝑥 ∈ R3
: ⟨𝑥, 𝑒3⟩ = 0}.

The conditions for mechanical equilibrium and stability depend

on Ω
displ

⊂ R3
, the domain of the liquid displaced by the object in

the prescribed floating pose. We followWang andWhiting in assum-

ing that there is a fixed solid shell Ω
shell

around the optimization

domain Ω, such that Ω
displ

= (Ω ∪ Ω
shell

) ∩ {𝑥 ∈ R3
: ⟨𝑥, 𝑒3⟩ ≤ 0}

is known ahead of time. This allows us to compute the volume

𝑣
liquid

> 0 of the displaced liquid, and its center of mass 𝑐𝑏 , known as
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Ω
displ

𝐴
level

Ω
shellΩ

Fig. 7. Buoyant Stability. Center: Target configuration with design domain
Ω (pink) enclosed by fixed solid shell Ωshell (transparent) and the prescribed
waterline. Left: Volume of displaced liquid Ωdispl (blue) and its top surface
𝐴level (striped). Right: Optimal mass distribution (yellow).

the center of buoyancy. After choosing coordinates so 𝑐𝑏,1 = 0 = 𝑐𝑏,2,

the conditions for equilibrium are

𝜚 · (𝑣 + 𝑣
shell

) = 𝜚
liquid

· 𝑣
liquid

, and 𝑐1 = 0 = 𝑐2,

where 𝑣
shell

> 0 is the volume of the solid shell, and 𝜚
liquid

> 0 is

the density of the liquid.

For the floating pose to be retained in the real world, one has

to guarantee stability of the equilibrium under perturbations. The

condition 𝑐3 < 𝑐𝑏,3 is sufficient, but impractical to enforce and

fortunately not necessary. A weaker sufficient condition is 𝑐3 < 𝑧𝑚 ,

with 𝑧𝑚 the height of the so-called metacenter. This condition takes

into the account the stabilizing moment produced by changes of

Ω
displ

under tilting motions of the floating object. The metacenter

depends on the level area, the two-dimensional domain

𝐴
level

= {(𝑥,𝑦)⊤ ∈ R2
: (𝑥,𝑦, 0)⊤ ∈ Ω

displ
},

which represents the top surface of the displaced liquid volume. We

can compute the rawmoments of𝐴
level

from Eq. 2 with𝑑 = 2, and its

second-order area tensor 𝐼𝑐
level

∈ R2×2
with respect to the area center

from the formulas in Section 4.1 (setting 𝜚 = 1 in this calculation).

Finally, the height of the metacenter is 𝑧𝑚 = 𝑐𝑏,3 + _min/𝑣liquid,
where _min > 0 is the smallest eigenvalue of 𝐼𝑐

level
.

To test whether the problem is feasible, we solve

min 𝑐3 s.t. ℓ1 = 0 = ℓ2, 𝑣 = (𝜚
liquid

/𝜚 ) · 𝑣
liquid

− 𝑣
shell

.

If the optimal solution satisfies 𝑐3 < 𝑧𝑚 , the equilibrium is stable;

otherwise, the problem is infeasible. The optimality conditions are

the same as Eq. 13 except for the first component, which is 𝑐3/𝑣+_3 =

` ·𝑎 in this problem. Qualitatively, this does not change the solution

type, which has a non-vertical, planar interface, with the halfspace

below the plane solid. Fig. 7 shows an example of a floating body,

with an illustration of all the domains relevant for computations.

4.4 Fidget Spinners
A fidget spinner is a flat mechanism optimized to stably rotate about

its center of mass with high angular momentum. We can achieve

this through optimization by finding a mass distribution on Ω ⊂ R2

that maximizes the polar moment of inertia. Assuming that the

origin coincides with the desired center of mass, this yields

min−tr 𝐼𝑜 s.t. ℓ1 = 0 = ℓ2,

where we note that tr 𝐼𝑜 = 𝜚 · (𝑄11 +𝑄22). Eq. 7 gives

(0, _1, _2, 𝜚, 𝜚, 0)⊤ = ` · (𝑎, 𝑏1, 𝑏2, 𝐴11, 𝐴22, 𝐴12)⊤,

and Eq. 6 shows that the solid region contains exactly those 𝑥 ∈ Ω
such that ⟨𝑥 + _/𝜚, 𝑥⟩ > 0, with _ = (_1, _2)⊤. This shows that the
optimal interface is a circle that intersects the origin, having center
−_/(2𝜚 ). The empty region is the disk bounded by this circle.

4.5 Yo-yos
A yo-yo is a toy that can stably spin about a given axis when sus-

pended from its center of mass. For this example only, we assume

that coordinates axes are chosen to align 𝑒3 with the desired spin-

ning axis, rather than the direction of gravity; this is to keep notation

consistent with the section on spinning tops, below. A stable spin is

possible only if 𝑒3 is an eigenvector of 𝐼𝑐 and corresponds either to

the minimal or maximal eigenvalue. As such, 𝐼𝑐 needs to be block-

diagonal with blocks spanning indices {1, 2} and {3}. To maximize

angular momentum, Bächer et al. [2014] suggest to maximize the

eigenvalue of 𝑒3 relative to the others and arrive at

min 𝑓yo :=
(𝐼𝑐

11
)2 + (𝐼𝑐

22
)2 + 2(𝐼𝑐

12
)2

(𝐼𝑐
33
)2

s.t. ℓ = 0, 𝐼𝑐
13

= 0 = 𝐼𝑐
23
,

where the numerator of the objective is the sum of squared eigenval-

ues of the {1, 2}-block of 𝐼𝑐—which equals 𝐼𝑜 at any feasible point

due to the constraint on ℓ . The optimality conditions are

(0, _1, _2, _3, _4, _5)⊤ = ` · (𝑎, 𝑏1, 𝑏2, 𝑏3, 𝐴13, 𝐴23)⊤,
2/(𝐼𝑜

33
)2 · (𝑓yo𝐼𝑜33

− 𝐼𝑜
22
, 𝑓yo𝐼

𝑜
33

− 𝐼𝑜
11
,−(𝐼𝑜

11
+ 𝐼𝑜

22
), 𝑓yo𝐼𝑜33

+ 2𝐼𝑜
12
)⊤

= ` · (𝐴11, 𝐴22, 𝐴33, 𝐴12)⊤,
and we can deduce from 𝑎 = 0 and𝐴33 < 0 that the optimal interface

intersects the origin, and that any line parallel to the spinning axis 𝑒3

will be contained in the empty region, except for at most a segment

of finite length. It also follows that 𝑝 ≠ 0, so the problem is not

degenerate for any domain.

4.6 Spinning Tops
Bächer et al. [2014] model spinning tops in a way similar to yo-yos,

but with the spinning axis aligned to gravity, and the center of mass

allowed to move along this axis during optimization. They also

suggest adding a secondary objective to lower the center of mass,

which yields

min 𝑓yo +𝑤𝑐 · 𝑐3 s.t. ℓ1 = 0 = ℓ2, 𝐼𝑐
13

= 0 = 𝐼𝑐
23
,

with the optimization weight𝑤𝑐 having units of reciprocal length.

Because 𝑐 is free to move along 𝑒3, we have

𝐼𝑐 = 𝐼𝑜 −𝑚𝑐2

3
· (𝑒1 ⊗ 𝑒1 + 𝑒2 ⊗ 𝑒2),

at any feasible point instead of 𝐼𝑐 = 𝐼𝑜 , slightly complicating the

optimality conditions. However, 𝐴33 = −2(𝐼𝑐
11

+ 𝐼𝑐
22
)/[` (𝐼𝑐

33
)2] < 0

still holds, so 𝑝 ≠ 0 is guaranteed.

5 NUMERICAL METHOD
To discover local optimizers of (TOP) numerically, we need to find

𝑝 ∈ 𝑆𝑛−1
such that the mass distribution 𝜒 : Ω → {0, 1} as defined

by Eqs. 4–6 satisfies Eq. 7 and 0 = 𝑔 := (𝑔1, . . . , 𝑔𝑘 )⊤. As demon-

strated in the previous section, the expressions for the entries of

∇𝑟L = ∇𝑟 𝑓 − ∑𝑘
𝑖=1

_𝑖∇𝑟𝑔𝑖 tend to be simple for most practical

problems, but they depend on the raw moments 𝑟 ∈ R𝑛 . These
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quantities arise from integrating monomials of up to second order

over 𝜔 = {𝑥 ∈ Ω : 𝛽 (𝑥) > 0}, a task which we discuss in Section 5.2

under the assumption that the boundary 𝜕Ω of Ω is triangulated.

5.1 Solving the Optimality Conditions
We apply a variant of Newton’s method in order to find solutions

to the non-linear equation system

∇𝑟 𝑓 (𝑟 (𝑝)) = −`𝑝 + Jac𝑟𝑔(𝑟 (𝑝))⊤_, 𝑔(𝑟 (𝑝)) = 0, ∥𝑝 ∥2 = 1, (14)

in the unknowns 𝑝 ∈ R𝑛 , _ := (_1, . . . , _𝑘 )⊤ ∈ R𝑘 , and ` > 0. Here,

Jac𝑟𝑔(𝑟 (𝑝)) ∈ R𝑘×𝑛 denotes the Jacobian matrix of 𝑔.

Our numerical method starts with an initial guess 𝑝0 ∈ 𝑆𝑛−1
and

then computes iterates 𝑝1, 𝑝2, . . . until the ℓ2-error of Eq. 14 is below

a termination threshold, which we set to 10
−12

. We update 𝑝 by trac-

ing geodesic arcs on 𝑆𝑛−1
, so ∥𝑝 𝑗 ∥2 = 1 is satisfied by construction

for all 𝑗 ≥ 0. The unknowns _ and ` are not updated according to

Newton’s method, but recalculated in every step to minimize the ℓ2-

error of the left-most equation in Eq. 14. This is done by computing

the orthogonal projection of ∇𝑟 𝑓 onto span{−𝑝,∇𝑟𝑔1, . . . ,∇𝑟𝑔𝑘 }
and taking its coefficients.

Algorithm. We compute one iteration as follows: Given 𝑝 𝑗 ∈ 𝑆𝑛−1
,

find the corresponding _ 𝑗 and ` 𝑗 according to

(_ 𝑗 , ` 𝑗 ) = arg min

_,`
∥∇𝑟 𝑓 (𝑟 (𝑝 𝑗 )) + `𝑝 𝑗 − Jac𝑟𝑔(𝑟 (𝑝 𝑗 ))⊤_∥2,

by solving a linear system. Then, we compute the residuals

𝑒
𝑗

𝑓
= ∇𝑟 𝑓 (𝑟 (𝑝 𝑗 )) + ` 𝑗𝑝 𝑗 − Jac𝑟𝑔(𝑟 (𝑝 𝑗 ))⊤_ 𝑗 , 𝑒

𝑗
𝑔 = 𝑔(𝑟 (𝑝 𝑗 )),

and, omitting the argument 𝑟 (𝑝 𝑗 ), the Newton step Δ𝑝 𝑗 from

©«
Hess𝑟L 𝑗 · Jac𝑝𝑟 + ` 𝑗 · id𝑛×𝑛 −Jac𝑟𝑔

⊤ 𝑝 𝑗

Jac𝑟𝑔 · Jac𝑝𝑟 0𝑘×𝑘 0𝑘×1

2(𝑝 𝑗 )⊤ 0
1×𝑘 01×1

ª®®¬
©«
Δ𝑝 𝑗

∼
∼

ª®®¬ =

©«
−𝑒 𝑗

𝑓

−𝑒 𝑗𝑔
0

ª®®®¬ ,
withL 𝑗 = 𝑓 (𝑟 (𝑝 𝑗 ))−⟨𝑔(𝑟 (𝑝 𝑗 )), _ 𝑗 ⟩, and Hess denoting the Hessian
matrix. Note that Hess𝑟L 𝑗 · Jac𝑝𝑟 = Jac𝑝∇𝑟L 𝑗

.

The next iterate is computed as

𝑝 𝑗+1 = cos 𝑡 𝑗 · 𝑝 𝑗 + sin 𝑡 𝑗 · Δ𝑝 𝑗/∥Δ𝑝 𝑗 ∥,
which lies on the geodesic arc emanating from 𝑝 𝑗 in direction Δ𝑝 𝑗

on 𝑆𝑛−1
. The step size 𝑡 𝑗 > 0 is initialized with min{∥Δ𝑝 𝑗 ∥, 𝑡max}

and then iteratively reduced by a factor of 𝛼 ∈ (0, 1) until the ℓ2-
error of Eq. 14 is smaller at 𝑝 𝑗+1

than at 𝑝 𝑗 . The choice 𝑡 𝑗 = ∥Δ𝑝 𝑗 ∥
produces a true Newton step, but outside basins of attraction, this

may result in large jumps. In particular, 𝑡 𝑗 = 𝜋 implies 𝑝 𝑗+1 = −𝑝 𝑗 ,
which inverts the mass distribution, and is clearly too large a step.

Thus 𝑡max should be chosen well below 𝜋 . In our implementation,

we set 𝛼 = 1/2 = 𝑡max, but the convergence speed is insensitive to

the exact values.

Initial Guess. We draw 𝑝0 ∈ 𝑆𝑛−1
in such a way that it respects

the properties that can be derived a priori for the specific instance of

(TOP) as discussed in Section 4, e.g., 𝑎 = 0 and𝐴33 < 0 for the yo-yo

problem. An initial guess is accepted if `0 > 0 and Jac𝑝𝑟 (𝑝0) ≠ 0𝑛×𝑛 .
The inequality encourages the outcome that ` > 0 still holds after

convergence, corresponding to the discovery of a local minimizer.

The non-vanishing of Jac𝑝𝑟 avoids starting the optimization in a

Fig. 8. Quadric Triangulation. Top: Uniform triangulation of a sphere
(blue) is mapped to different ellipsoids in such a way that each vertex keeps
its original normal. Bottom: Only vertices in the blue region correspond to
valid surface normals on the hyperboloid, so the gray region of the sphere
is truncated. Normals at the boundary of the blue region (left) are mapped
to ideal normals “at infinity” (right).

state where the interface {𝑥 ∈ R𝑑 : 𝛽 (𝑥) = 0} does not intersect Ω,
which would zero out all sensitivities with respect to 𝑝 . We run the

iteration starting from a randomly drawn initial guess that meets

these conditions and check if ` > 0 holds after convergence. If

so, the algorithm terminates; otherwise, the iteration is restarted

from another random initial guess. For the optimization problems

considered in Section 4, it is rare that any restarts are needed.

5.2 Moment Computation
Most of the computation time in running the numerical iteration

goes into computing 𝑟 (𝑝) and Jac𝑝𝑟 (𝑝), the raw moments defined

in Eq. 2 and their derivatives. The computation of 𝑟 amounts to

integrating monomials over the domain 𝜔 = Ω ∩𝑄+
, where 𝑄+

:=

{𝑥 ∈ R𝑑 : 𝛽 (𝑥) > 0}. Assuming that the boundary 𝜕Ω is a trian-

gulated surface, 𝜕𝜔 will generally consist of a triangulated portion

inherited from 𝜕Ω and a smooth portion which is contained in the

surface 𝑄 := {𝑥 ∈ R𝑑 : 𝛽 (𝑥) = 0}. In dimension three, 𝑄 is either

an ellipsoid, hyperboloid, paraboloid, or a degenerate quadric.

In theory, these integrals can be solved analytically by computing

the conic sections resulting from 𝜕Ω ∩𝑄 explicitly, and applying

Stokes’ theorem to reduce the volume integrals to surface integrals,

and finally to curve integrals. However, this involves case distinc-

tions depending on the types of the quadric and conic sections, and

many algebraic manipulations to arrive at a closed-form result.

Below, we describe a different approach, in which we triangulate

the smooth quadric 𝑄 such that the vertex positions are differen-

tiable in 𝑝 . This simplifies the problem by letting us use a triangle

mesh Boolean between 𝜕Ω and the discretized quadric to produce a

triangulation of 𝜕𝜔 . This in turn allows the computation of 𝑟 by ap-

plying the divergence theorem once and using triangle quadrature

rules that integrate polynomials of the required degree exactly.
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Quadric Triangulation. We propose a triangulation of non-degen-

erate quadrics whose vertex density is adapted to (Gaussian) cur-
vature by construction. The algorithm is based on the Gauss map
a : 𝑄 → 𝑆2 ⊂ R3

, which assigns to every point 𝑥 ∈ 𝑄 the oriented

unit normal vector a (𝑥). On any surface, this map has the property

that its Jacobian determinant equals curvature; on non-degenerate

quadrics, a is also injective. Thus, applying the inverse Gauss map

a−1
: a (𝑄) → 𝑄 to a uniformly distributed point set on the image

a (𝑄) yields a point set on 𝑄 whose density is directly proportional

to curvature.

We use this idea for triangulation by fixing a uniform-density

discretization of the unit sphere 𝑆2
, such as an icosphere. If 𝑄 is an

ellipsoid, then a is bijective, and we can triangulate 𝑄 simply by

applying a−1
to the vertices of the icosphere. If 𝑄 is a hyperboloid,

then a is not surjective, and not all vertices of the icosphere will have

a preimage under a . In this case, we only apply a−1
to the icosphere

vertices contained in a (𝑄), and add vertices at the intersections of

icosphere edges and the boundary of a (𝑄). These newly created

vertices correspond to ideal points of 𝑄 , which can be thought of as

points at infinity. Finally, to arrive at a bounded discretization, we

truncate our triangulation of 𝑄 at a radius large enough so as not

to affect the result of the intersection between 𝑄+
and Ω.

All vertex positions, including those of ideal vertices, are differ-

entiable in 𝑝 , as evidenced by the formulas in the supplemental

document. The mapping procedure is shown in Fig. 8 on ellipsoids

(top), and a hyperboloid (bottom).

6 RESULTS

6.1 Implementation and Fabrication Details
We implemented our numerical method as a single-threaded Matlab

application that calls the mesh Boolean code of Cherchi et al. [2022]

in order to compute the intersection between the problem domain

and a triangulated quadric in every iteration. Our examples have all

been modeled in the CAD system Onshape, and consist of a solid

shell, which remains fixed during optimization, and the domain.

To run our code, we temporarily convert shell and domain to

a triangle mesh representation, and uniformly rescale it to have

approximately unit length. This is to make the convergence thresh-

old comparable between different examples. After our numerical

method finds the optimal mass distribution in the form of a quadric

surface, we use a CAD script to construct this quadric inside On-

shape and incorporate the mass distribution into the model. Then

we prepare the model for fabrication by splitting it up into geomet-

rically simpler pieces in order to reduce support material, and to

prevent cavities that would trap support material during the print.

All of our samples are 3d-printed from PLA, using PVA as a

support material, on an Ultimaker S7 Pro 3d printer, set to a precision
of 0.1 mm layer height. We use a solid fill-in of 100% in order to

mimic a homogeneous constant-density material as accurately as

possible. For the examples involving buoyant stability, the relative

density of the solid material and water enters the computation. To

esimate it, we printed and weighed a 2 cm × 2 cm × 2 cm sample

cube, which yielded 𝜚 = 1187 kg/m
3
for printed PLA.

6.2 Baseline Examples
Figs. 1 and 9 show all of our fabricated examples in three stages:

the initial CAD geometry consisting of the fixed shell (transparent

gray) and the design domain (pink); the optimized mass distribution

(yellow) in a cut-off view; and the 3d-printed prototype. The supple-

mental video also shows the 3d-printed parts before assembly, as

well as the finished prototype in action.

Static Stability. We designed a vase with several topological han-

dles that leans to one side and is balanced on a small cut-off portion

of the bottom edge. The fixed material takes the form of a double-

walled shell, see Fig. 9 (row 1, gray), which encloses the design

domain. We use mass maximization as the optimization objective,

which leads to an optimal mass distribution with a vertical planar

interface. To prepare the model for printing, we separate the filled

and hollow portions of the vase, and furthermore split the hollow

portion between the two walls, as seen in the supplemental video.

Buoyant Stability. We tested this application on two different

models. The first is a tea infuser, consisting of a hollow duck-shaped

torus with a handle, and a submerged strainer containing tea leaves.

The prescribed waterline is chosen so the torus is about two-thirds

underwater. The optimal solution partially fills the torus with mate-

rial, in such a way that there is more material on the side opposite

the handle, in order to balance the weight, see Fig. 9 (row 2).
The second model is a floating platform consisting of two parts.

Part A has a cat on one side, and a dog on the other. It is optimized

such that it only floats stably if the cat is pointing upwards, and the

dog is submerged. Part B, which has a person standing on one side,

can be attached to part A such that the person stands next to the

dog. In this configuration, the assembled platform floats only if the

dog is pointing upwards, and the cat is submerged, as seen in Fig. 9

(row 3). To realize this example, we first optimized part A separately,

and then used the optimized solution as part of the fixed shell when

optimizing part B.

Spinning Tops. The spinning top shown in Fig. 1 consists of an

asymmetrically placed heart on a pin that acts as the spinning axis

and is inspired by an example of Bächer et al. [2014]. The optimal

mass distribution is the result of balancing two competing objectives

that try to place mass away from the spinning axis while simulta-

neously lowering the center of mass. This results in a material-air

interface shaped like a one-sheeted hyperboloid.

The second spinning top, shown in Fig. 9 (row 6) is a stress test
in terms of geometric complexity. Here, the solid shell is formed

by an array of curved tendrils extending out from the center of the

spinning top. The design domain is an ellipsoid pierced by these

tendrils, resulting in a volume with many thin, long holes and high

geometric complexity. Our numerical method finds that the optimal

interface is a two-sheeted hyperboloid, resulting in a spinning top

that allows for long and stable spins as shown in the video.

Yo-yo. The yo-yo optimization problem is similar to that of the

spinning top, and tends to result in similarly shaped optimal mass

distributions. Fig. 9 (row 5) shows an example of a yo-yo modeled

after a jellyfish, for which the optimal interface was found to be a
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Fig. 9. Optimized Examples. The left column depicts the fixed outer shell in transparent-grey, the design domain in pink, and for the buoyancy examples,
the target water line in blue. The middle column shows a cut-away view of the optimized mass distribution in yellow (see Section 6 for the detailed description)
and the fabricated objects are represented in the photographs in the right column.
ACM Trans. Graph., Vol. 43, No. 4, Article 78. Publication date: July 2024.
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Fig. 10. Quadratic Convergence. Convergence plots for our numerical method, grouped by application. From left to right: Static stability, buoyant stability,
spinning tops, yo-yo. We plot the ℓ2-error of Eq. 14 at iteration 𝑛 against that at iteration 𝑛 + 1, for all successful runs used to generate the data in Table 1. A
graph parallel to the dashed line indicates quadratic convergence. The shaded region at the bottom contains points below the convergence threshold.

two-sheeted hyperboloid. The supplemental video shows that the

yo-yo can run stably up and down a string without losing balance.

Fidget Spinner. For this 2d example, we represent the domain

geometry as a set of edge loops that form the boundary of a flower

design with many topological holes. The center of mass does not

initially coincide with the center of the flower because of the asym-

metric hole placement. We design the fidget spinner by extruding

three layers: The ones at the top and bottom are fixed parts of the

shell, and the center part contains the design domain, enclosed by

a solid rim on the outside and a solid ring at the center to house

the ball bearing, as shown in Fig. 9 (row 4, left). Despite being three-

dimensional in this illustration, the relevant mass moments can be

computed from the 2d domain and the shell parts, so the example

is computationally 2d. The optimal solution cuts away a circular

region from the design domain in such a way that the center of mass

of the leftover material coincides with the center of the ball bearing.

6.3 Convergence and Computation Time
For each baseline example, we ran our numerical method 50 times

from randomly chosen initial points, which are pruned according to

the heuristic discussed in Section 5.1. In Table 1, we record statistics

for each example, such as the geometric complexity, average number

of random restarts necessary to find a minimum, the number of

Newton steps until convergence, number of function evaluations,

and computation time. Fig. 10 shows the trajectory of the ℓ2-error

and clearly indicates quadratic convergence across all applications.

The median computation time until convergence is split into

the time that goes into computing the residual vector of Eq. 14,

and the time spent on computing derivatives for the Newton step.

The former contains the mesh Boolean operation as well as the

computation of mass moments on the resulting triangle mesh.

For most attempts, our numerical method converges from the

first random initial point, as evidenced by a number close to 1.00 in

the “Avg. restarts” column of Table 1. This number is highest for the

heart spinning top example, for which the algorithm needed to try

a second initial point in 28% of all runs to achieve convergence. The

attempts that did not converge were interrupted after 60 function

evaluations. The only other failure mode was convergence to a local

maximum instead of a minimum, which happened in 2/50 attempts

for each of the spinning tops, and 1/50 attempts for the yo-yo, also

causing a restart.

6.4 Pareto Exploration
In Section 4.2, we described two possible objective functions to

improve the static stability of an object, based on maximizing the

volume and lowering the center of mass. We can explore the trade-

off between the two criteria by considering a weighted objective

Table 1. Performance. We ran our numerical method for each example from a set of randomly drawn initial points, and report the statistics of the Newton
solve and computation times across 50 runs. Avg. restarts: Average number of restarts from random initial points until numerical method converges (1 =
convergence on first attempt). We restart if 60 function evaluations have been reached without convergence. Med. Newton iterations: The median number of
Newton iterations to convergence among all successful runs.Med. function evaluations: The median number of function evaluations among all successful
runs. This also counts function evaluations due to back-propagation steps.Med. computation time: The median computation time until convergence, split
between the time spent on evaluating the residual vector, which includes the mesh Boolean operation and mass moment computation, and the derivatives for
the Newton step. †For the 2d fidget spinner example only, we used Matlab’s fsolve method with the trust-region-dogleg algorithm instead of our own
method. Due to the code organization, the computation time is only available as a whole. Here, we report #edges instead of #faces.

Example #vertices /
#faces Avg. restarts Med. Newton

iterations
Med. function
evaluations

Med. computation time (s)

Residual Derivatives

Static tilted vase 23k / 46k 1.00 7 8 1.97 2.26

Floating tea infuser 8.1k / 16k 1.00 8 10 0.51 0.30

Floating island (Cat side) 204 / 408 1.02 11 15 0.23 0.04

Floating island (Dog+human side) 1.3k / 2.6k 1.00 7 7 1.52 0.15

Heart spinning top 5.2k / 10k 1.28 14 16 1.30 0.81

Noodles spinning top 60k / 120k 1.06 11 13 6.93 7.40

Jellyfish yo-yo 14k / 27k 1.02 8 9 1.08 0.81

Flower fidget spinner† 4.7k / 4.7k 1.13 11 12 0.53 -
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Fig. 11. Pareto Front Static Stability. Pareto front (blue) of the two ob-
jectives for the static stability problem. Four particular solutions (yellow)
of Pareto points shown, from maxiziming the volume 𝑣 only (top-most) to
minimizing 𝑐3 only (left-most).

that combines the two, leading to

min−^ · 𝑣 + (1 − ^) · 𝑐3, s.t. ℓ1 = 0 = ℓ2,

for a weight ^ ∈ [0, 1]. Swiping the whole range of ^, and plotting

the two objective values (𝑣, 𝑐3) ∈ R2
for each optimal solution, we

recover the Pareto front of the problem. This gives rise to a range of

mass distributions that interpolate between the extremal solutions

attained for ^ = 0 and ^ = 1. The Pareto front, as well as four

particular solutions are shown in Fig. 11 on a model of three stacked

eggs, inspired by an example of Prévost et al. [2013].

Similarly, the spinning top problem from Section 4.6 incorporates

an extra weighted term to enhance the rotational stability of the

object by lowering the center of mass. By swiping the range of

weights and plotting the points (𝑓yo, 𝑐3) ∈ R2
corresponding to

each optimal solution, we obtain the Pareto front of this problem.

Fig. 12 shows this front along with four particular solutions of

the heart spinning top example, with the render at the bottom-left

corresponding to the physical prototype shown in Fig. 1. Note that

the Euclidean type of the quadric changes as we move along the

Pareto front: It starts as a one-sheeted hyperboloid at the top of the

graph, transitions to a two-sheeted hyperboloid near the center, and

back to a one-sheeted hyperboloid near the right-most point.

If a point on the Pareto front has already been computed, then

adjusting the solution to compute a nearby point takes less than

a second on either of these examples with our numerical method.

This allows exploration of the Pareto front at an interactive rate.

6.5 Problem Feasibility
It is possible to choose the constraints 𝑔1, . . . , 𝑔𝑘 and the domain Ω
in (TOP) such that no feasible solution exists. For example, this will

occur in the static stability problem, see Section 4.2, if the target

point lies outside the convex hull of Ω ∪ Ω
shell

, projected onto

the ground plane. In other applications, such as the spinning top

problem, it is often not obvious from visual inspection whether a

given domain and shell geometry will admit a feasible solution.

𝑐3

𝑓yo
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

0.46

0.48

0.50

0.52

Fig. 12. Pareto Front Spinning Top. Pareto front (blue) of the two com-
peting objectives for the spinning top problem. Four particular solutions
(yellow) of Pareto points shown, from minimizing 𝑓yo only (top-most) to
minimizing 𝑐3 only (right-most).

We investigate the behavior of our numerical method for prob-

lems with a very small feasible region. To this end, we use the input

geometry shown in Fig. 13 as input to the spinning top problem.

The geometry consists of a tilted cube on a pin and is parametrized

by the distance 𝑑 > 0 between the cube center and the centerline of

the pin, which acts as the spinning axis. Beyond a certain critical

distance 𝑑crit ≈ 1, which we determined through binary search to an

accuracy of nine significant digits, the problem becomes infeasible.

We tested convergence of our algorithm by setting 𝑑 to

𝑑𝑚 := 𝑑crit − 10
−𝑚, for 𝑚 = 1, . . . , 9,

and plotting the ℓ2-error of Eq. 14 as a function of the number of

Newton iterations in Fig. 13. For high values of𝑚, when the feasible

region is very small, our numerical method spends more iterations

in the linear regime, but once an ℓ2-error of about 10
−5

is reached,

quadratic convergence is obtained even for𝑚 = 9. To make iteration

counts comparable, we started each test from the solution to the

unperturbed geometry, shown in Fig. 13 (bottom-left).

6.6 Ill-Posed Problems
In Section 3.4, we pointed out the existence of the “degenerate” case

𝑝 = 0, which we excluded for all practical applications described in

Section 4. However, we can construct academic examples that show

under which conditions 𝑝 = 0 occurs.

Consider the domain Ω = (0, 1) ⊂ R with the problem

min

𝜒 :Ω→[0,1]
(𝑣 (𝜒) − 1/2)2 .

Naturally, any function 𝜒 on Ω with an area of 1/2 below its graph

will have a vanishing objective value and is thus optimal. However,

there is an uncountably infinite number of such optimal choices,

not all of which are binary. The issue with this example is that it

is really a constraint-satisfaction problem (𝑣 = 1/2) in the guise

of an optimization problem. If the constraint can be satisfied, as is

the case here, this will cause ∇𝑓 = 0 to hold, and in consequence

𝑝 = −∇𝑓 = 0. A problem of this kind usually has infinitely many
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Fig. 13. Feasibility Test.We run our numerical method on a family of input
meshes, where the mesh labeled 𝑑𝑚 is within 10

−𝑚 units of the infeasible
region. The closer a mesh is to being infeasible, the more iterations our
method spends in the linear regime before achieving quadratic convergence.

solutionswhenever it is feasible, because 𝜒 possesses infinitelymany

degrees of freedom, but there are only finitely many constraints.

A slight variation of this problem can be obtained by matching

the size of the domain to the objective function in such a way that

there is only one optimal solution, which is obtained either when

the domain is completely empty or filled. To see this, consider the

same problem as before, but with domain Ω = (0, 1/2). Now, the
only function that achieves 𝑣 = 1/2 is 𝜒 ≡ 1, and 𝑝 = 0 still holds.

These two problem types—infinitely many optimal solutions, or

a single solution that is obtained either by 𝜒 ≡ 0 or 𝜒 ≡ 1—are the

only two instances of 𝑝 = 0 that we have found. Proving that no

others exist is an avenue for future research.

7 CONCLUSION
In this work, we analyze the class of topology optimization prob-

lems that depend only on the mass moments of the object under

consideration. This type of problem has been studied for a variety

of applications in previous work, ranging from static and buoyant

stability to the design of spinning tops and yo-yos. We show that

the optimal solutions to all these problems are binary mass distri-

butions in which the material-air interface is formed by a quadric,

regardless of the shape of the problem domain. This allows us to

replace the traditional voxel-based topology optimization approach

with a small system of equations that can be solved numerically to

compute the coefficients of the quadric.

A current limitation of our method is that the computation of

mass moments requires a detour via triangle meshes, even though

the result is always a smooth surface. It would be interesting to im-

plement our method directly in a differentiable CAD kernel in order

to compute intersections between the domain and a quadric directly

based on parametric surfaces, and drive the numerical method with

derivatives obtained from the kernel.

Despite already covering a range of applications in its current

form, the algorithm we describe is less flexible than some meth-

ods from previous work that apply cage deformations in addition

to hollowing. This can resolve some problem instances for which

hollowing alone is insufficient. Adapting our approach to optimize

the outer geometry as well as the mass distribution is a promising

direction to increase its applicability.
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