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1 QUADRIC DISCRETIZATION
Our quadric discretization is based on a uniform-density triangu-
lation (𝑉 , 𝐸, 𝐹 ) of the unit sphere 𝑆2 = {𝑥 ∈ R3 : ∥𝑥 ∥ = 1},
which is kept constant during optimization. In every iteration,
the vertices of this discretization are mapped onto the quadric
𝑄 = {𝑥 ∈ R3 : 𝛽 (𝑥) = 0} by the inverse Gauss map a−1. This
means that a vertex 𝑧 ∈ 𝑉 is mapped onto 𝑄 in such a way that the
normal at a−1 (𝑧) ∈ 𝑄 is equal to 𝑧.

Assuming that the quadric is defined as the solution to the degree-
two polynomial

𝛽 (𝑥) = ⟨𝑥,𝐴𝑥⟩ + ⟨𝑏, 𝑥⟩ + 𝑐,
the surface normal a at a point 𝑥 ∈ 𝑄 is parallel to the gradient
∇𝛽 (𝑥) = 2𝐴𝑥 + 𝑏. To find the (unique) Euclidean point with a given
oriented normal, compute

𝑤 =

√︄
4⟨a,𝐴−1a⟩

⟨𝑏,𝐴−1𝑏⟩ − 4𝑐
,

and set 𝑥 = 𝐴−1 (a/𝑤 − 𝑏/2). The case𝑤 = 0 indicates that a is the
normal vector of an ideal point. If the discriminant is negative, then
there is no point, Euclidean or ideal, with a as its normal vector. If
𝑄 is an ellipsoid, then we discretize it by interpreting every point
𝑧 ∈ 𝑉 as a normal vector a and mapping it onto 𝑄 through this
computation. In this case, the discriminant will be positive for every
point.

If 𝑄 is a hyperboloid, then the Gauss map is not surjective, i.e.,
certain points in 𝑉 will not have a preimage under a . In this case,
the image of the Gauss map a (𝑄) is a proper subset of 𝑆2. A point
𝑧 ∈ 𝑉 will be the normal of a Euclidean point if and only if 𝑧 ∈ a (𝑄).
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The boundary between of a (𝑄) relative to 𝑆2 is given exactly by
the normal vectors of ideal points, which are characterized by the
equation 0 = ⟨a,𝐴−1a⟩.

Before we can map (𝑉 , 𝐸, 𝐹 ) back to𝑄 , we need to truncate it at this
boundary, and then only map the portion contained in a (𝑄). We do
this by finding all intersections of edges in 𝐸 with the boundary of
a (𝑄). This amount to solving, for each (𝑧1, 𝑧2) ∈ 𝐸, the quadratic
equation

0 = ⟨(1 − 𝑡)𝑧1 + 𝑡𝑧2, 𝐴
−1 · ((1 − 𝑡)𝑧1 + 𝑡𝑧2)⟩

for 𝑡 ∈ (0, 1). If there is exactly one intersection, this implies that
𝑧1 ∈ a (𝑄) and 𝑧2 ∉ a (𝑄) (or vice-versa), so the edge needs to
be truncated. The new point 𝑧id = (1 − 𝑡)𝑧1 + 𝑡𝑧2 is the normal
of an ideal point having homogeneous coordinates (𝑥id, 0) with
𝑥id = 𝐴−1𝑧id. Once all edges have been processed, we stitch the
vertices of 𝑉 ∩ a (Ω) to the newly created vertices by adding new
triangles. Once mapped onto 𝑄 , these triangles will form the “semi-
infinite” triangles by connecting Euclidean points to ideal points.

At this stage, we have obtained a triangulation of 𝑄 which contains
both Euclidean and ideal points. In the last step, we will truncate
this triangulation far away from the origin in order to remove the
ideal vertices and be left with a closed surface. We do this so the
resulting triangle mesh can be used as input to a mesh Boolean
operation.

When a hyperboloid is intersected with a large sphere, the intersec-
tion will always consist of two closed loops which are approximately
ellipsoidal in shape. We choose the truncation radius large enough
to guarantee that this holds by recursively doubling the radius until
the intersection contains two components. Then we add a closed
triangle fan in each edge loop in order to close the hyperboloid on
both sides. Note that the truncation radius is initialized larger than
the diameter of Ω, so these triangle fans will not affect the result of
the boolean operation.

2 NECESSARY KKT CONDITIONS
We formulate the relaxed problem (RP) from the main document
in the standard form of an optimization problem on Banach spaces
as follows: Let 𝑋 = 𝐿∞ (Ω), 𝑍 = R𝑘 × 𝐿∞ (Ω) × 𝐿∞ (Ω). Define
𝐺 : 𝑋 → 𝑍 by𝐺 (𝜒) = (𝑔(𝜒), 𝜒, 𝜒 −1), and 𝐾 = {0}𝑘 ×{𝑢 ∈ 𝑋 : 𝑢 ≥
0} × {𝑣 ∈ 𝑋 : 𝑣 ≤ 0} ⊂ 𝑍 . Then, the problem (RP) can be written as

min
𝜒∈𝑋

𝑓 (𝑥) s.t. 𝐺 (𝜒) ∈ 𝐾,

where 𝐾 is closed and convex. The objective and equality con-
straint functions can be written as 𝑓 = 𝑓 ◦ 𝑟 and 𝑔 = 𝑔 ◦ 𝑟 , where
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𝑓 : R𝑛 → R and 𝑔 : R𝑛 → R𝑘 are assumed continuously differ-
entiable, and 𝑟 : 𝑋 → R𝑛 is the linear raw moment map. Thus 𝑓
and 𝑔 are Fréchet differentiable, with differentials 𝑓 ′ (𝜒) ∈ 𝐿(𝑋,R)
and 𝑔′ (𝜒) ∈ 𝐿(𝑋,R𝑘 ), where 𝐿(𝑈 ,𝑉 ) denotes the space of bounded
linear maps from𝑈 to 𝑉 . To simplify the proof, we assume further-
more that 𝑔 is affine, so it can be represented as 𝑔(𝑥) = 𝐴𝑥 + 𝑏 with
𝐴 ∈ R𝑘×𝑛 and 𝑏 ∈ R𝑘 . This holds in all applications shown in the
main document; however, this is not strictly necessary for the KKT
conditions to hold.

We need to verify a constraint qualification for the KKT conditions
to hold; the regularity of the inequality constraints allows us to
check the Abadie constraint qualification [Abadie 1965],

𝑇ℓ (𝐺,𝐾, 𝜒) ⊂ 𝑇 (𝐹, 𝜒),
directly, where 𝐹 = {𝑥 ∈ 𝑋 : 𝐺 (𝑥) ∈ 𝐾} denotes the feasible set.
The linearizing cone at 𝜒 is defined as

𝑇ℓ (𝐺,𝐾, 𝜒) =
{
ℎ ∈ 𝑋 : 𝐺 ′ (𝜒)ℎ ∈ cone(𝐾 −𝐺 (𝜒))

}
,

where cone(. . .) denotes the conical hull. The tangent cone simpli-
fies to

𝑇 (𝐹, 𝜒) = cone(𝐹 − 𝜒)
because 𝐹 is convex due to our simplifying assumption that 𝑔 is
affine.

Applying these definitions to 𝜒∗ ∈ 𝐹 , we find

cone(𝐾 −𝐺 (𝜒∗)) = {(0𝑘 , 𝑢, 𝑣) ∈ 𝑍 : 𝑢 (𝑥) ≥ 0 if 𝜒∗ (𝑥) = 0,
𝑣 (𝑥) ≤ 0 if 𝜒∗ (𝑥) = 1},

which is closed, so

𝑇ℓ (𝐺,𝐾, 𝜒∗) = {ℎ ∈ ker 𝑔′ (𝜒∗) : ℎ(𝑥) ≥ 0 if 𝜒∗ (𝑥) = 0,
ℎ(𝑥) ≤ 0 if 𝜒∗ (𝑥) = 1}.

The tangent cone can be written as

𝑇 (𝐹, 𝜒∗) = {_(𝜑 − 𝜒∗) : _ ≥ 0, 𝑔(𝜑) = 0, 0 ≤ 𝜑 ≤ 1}.
Note that 𝜑 − 𝜒∗ ∈ ker 𝑔′ (𝜒∗), because 𝑔 is affine. Due to 0 ≤
𝜑 (𝑥) ≤ 1, we have _(𝜑 (𝑥) − 𝜒∗ (𝑥)) ∈ [0,∞) if 𝜒∗ (𝑥) = 0, and
_(𝜑 (𝑥) − 𝜒∗ (𝑥)) ∈ (−∞, 0] if 𝜒∗ (𝑥) = 1. For 𝜒∗ (𝑥) ∈ (0, 1), we
can pick _ ≥ 0 and 𝜑 (𝑥) such that _(𝜑 (𝑥) − 𝜒∗ (𝑥)) may attain
any real number. By taking the closure, this lets us realize any
ℎ ∈ 𝑇ℓ (𝐺,𝐾, 𝜒∗) within𝑇 (𝐹, 𝜒∗) as follows. If ℎ(𝑥) = 0, then 𝜑 (𝑥) =
ℎ(𝑥)/_ + 𝜒∗ (𝑥) = 𝜒∗ (𝑥) ∈ [0, 1]. If ℎ(𝑥) > 0, then 𝜒∗ (𝑥) ∈ [0, 1).
Therefore, 𝜑 (𝑥) = ℎ(𝑥)/_ + 𝜒∗ (𝑥) ≥ 0, and 𝜑 (𝑥) ≤ 1 for all _ > 0
great enough. If ℎ(𝑥) < 0, then 𝜒∗ (𝑥) ∈ (0, 1]. Therefore, 𝜑 (𝑥) =
ℎ(𝑥)/_ + 𝜒∗ (𝑥) ≤ 1, and 𝜑 (𝑥) ≥ 0 for all _ > 0 great enough.

The KKT conditions guarantee the existence of a Lagrangemultiplier
𝑧 ∈ cone(𝐾 −𝐺 (𝜒∗))◦, which is the polar cone

cone(𝐾 −𝐺 (𝜒∗))◦ = {𝑧 ∈ 𝑍★ : ⟨𝑧,𝑦⟩ ≤ 0 ∀𝑦 ∈ cone(𝐾 −𝐺 (𝜒∗))},
where (·)★ denotes the vector space dual. Using the expression
of cone(𝐾 − 𝐺 (𝜒∗)) from above, we find that 𝑧 = (_, 𝛽0, 𝛽1) ∈
R𝑘 × 𝐿∞ (Ω)★ × 𝐿∞ (Ω)★ such that 𝛽0 (𝑥) ≤ 0 if 𝜒∗ (𝑥) = 0, and
𝛽0 (𝑥) = 0 otherwise. Likewise, 𝛽1 (𝑥) ≥ 0 if 𝜒∗ (𝑥) = 0, and 𝛽1 (𝑥) =
0 otherwise.

The KKT equation in terms of 𝑧 reads 𝑓 ′ (𝜒∗)+⟨𝑧,𝐺 ′ (𝜒∗)⟩ = 0. From
𝐺 ′ (𝜒∗) = (𝑔′ (𝑟 ) · 𝑟 ′, id, id), this expands to

(𝑓 ′ (𝑟 ) + ⟨_,𝑔′ (𝑟 )⟩) · 𝑟 ′ (𝜒∗) + 𝛽0 + 𝛽1 = 0.
Because 𝑟 is linear, the components of 𝑟 ′ (𝜒∗) do not depend on 𝜒∗,
and are given by the constant, linear, and quadratic polynomials on
Ω, i.e., 𝑟 ′ (𝜒∗) = (1, id, id ⊗ id). To match the KKT conditions from
Eq. 11 of the main document, set L = 𝑓 + ⟨_,𝑔⟩, and split up the
product in the previous equation according to the constant, linear,
and quadratic terms.
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