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Maximum likelihood estimation assigns 0 probability to any outcome it has not seen.
This can have unfortunate consequences:

» simplest probabilistic text model: p(D) = [[; p(w;) "bag of words”

» how to estimate p ?

v

take an English text: D = (wq, wa, ..., w,) where each w; is a word

v

estimate the probability, pp(w), of each English word w using maximum likelihood
take another English text: D' = (wj, ws,...,w/,). What is pp(D’)
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Laplace Smoothing
Maximum likelihood estimation assigns 0 probability to any outcome it has not seen.

This can have unfortunate consequences:
» simplest probabilistic text model: p(D) = [[; p(w;) "bag of words”
» how to estimate p ?
» take an English text: D = (w1, ws, ..., w,) where each w; is a word
» estimate the probability, pa(w), of each English word w using maximum likelihood
> take another English text: D' = (wq,w;, ..., w,,). What is ppy(D")
» most likely 0, namely whenever D’ contains a word w not present in D, so py(w) =0

ny + «
n+ La

o n o ” P
How to overcome? Pu(x) = = = Ppa(x) = Laplace smoothing
n

» where ny is the number of counts of any x € X,

» L =|X| is the number of states,

» « is a small value, e.g. 1, or % or % also: " pseudo-count”
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Maximum A-Posteriori Parameter Estimation

Role of the prior
Imagine a game:

» a roll a die five times: 1,5, 2,1, 3,5 —

puL(x) = (3, 5
» Now | offer you a bet:

@\»—t
CM»—A
O
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> | roll the die once more: if | roll a 6, you pay me 100 Euros, otherwise, | pay you 10 Euros.
» Do you accept?
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Maximum A-Posteriori Parameter Estimation

Role of the prior
Imagine a game:

» a roll a die five times: 1,5, 2,1, 3,5 —

IsML(X) = (%7 %a
» Now | offer you a bet:
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> | roll the die once more: if | roll a 6, you pay me 100 Euros, otherwise, | pay you 10 Euros.
» Do you accept?

Possibly not, even though maximum likelihood says yes:

~

pmi(6) =0 —  Ey.p,, [outcome] =0-(—100) +1-10 = 10

What about Laplace-smoothing? For o = 1:  py(x) = (3,11, L 1 1)

. 1 1 11 5
Pa=1(6) = 5 Ey~p, [outcome] = E(_IOO) + EIO =5 0
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» Now | offer you a bet:

707 70)

o
Wl

> | roll the die once more: if | roll a 6, you pay me 100 Euros, otherwise, | pay you 10 Euros.
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Maximum A-Posteriori Parameter Estimation

Role of the prior

Imagine a game:

» a roll a die five times: 1,5, 2,1, 3,5 —

Pu(x) = (3. ¢,
» Now | offer you a bet:

707 70)

o
Wl

> | roll the die once more: if | roll a 6, you pay me 100 Euros, otherwise, | pay you 10 Euros.

» Do you accept?
Possibly not, even though maximum likelihood says yes:

~

pmi(6) =0 —  Ey.p,, [outcome] =0-(—100) +1-10 = 10

What about Laplace-smoothing? For o = 1:  py(x) = (3,11, L 1 1)

. 1 1 11 5
Pa=1(6) = 5 Ey~p, [outcome] = E(_IOO) + EIO =5 0

So why not? Most likely, you have a prior belief about what probabilities to expect!

31
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Maximum A-Posteriori Parameter Estimation

» We treated 0 as a random variable instead of unknown fixed value.

» for any fixed 6, we have a distribution over x:  p(x;0) — p(x|0)
» for data xq,...,x,, we interested in p(f|x,. .., Xxp)

r ) p(0
p(0lxt, .. xy) BE™ME LA Xal6)p(6)
p(le'”;Xn)
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Maximum A-Posteriori Parameter Estimation
» We treated 6 as a random variable instead of unknown fixed value.
» for any fixed 6, we have a distribution over x:  p(x;0) — p(x|0)

» for data xq,...,x,, we interested in p(f|x,. .., Xxp)

Bayes rule ,D(Xl7 . ,Xn|9)p(9)
POt %)

p(0]x1,...,xn)

» what's the most likely value for 7 maximum a-posteriori (MAP) estimate

Onap = argmax p(6]xa, ..., xn) = argmax p(x1, . ., xa|6)p(6)
n
= argmax p(6 H p(x;)|#) = argmax {Iog p(6) + Z log p(x,-)|c9)]
0 N i=1
Prlor \—/—’ log-prior S
data likelihood data log-likelihood
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Maximum A-Posteriori Parameter Estimation

Maximum likelihood estimator for coin toss

We need a prior! How likely are different parameter values (without having seen data)?

» p(f) =1 for all 6 € [0,1]

Nhead 0

Omap =

> p(f) x (1 — 0) (more mass at § = 1)

Nhead + 1

Opnjap =
MAP n 1D
» p(0) = 2min(0,2 — 6) (also more mass at 0 = %)

no simple expression for Opjap

2.0

p(0) x 0(1— 0)
p(0) =1

— p(0) =min(20,4—20)

0.2

0.4

0.6

1.0

31
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Maximum A-posteriori estimation for coin toss

A prior should reflect our belief, but not destroy tractability of computations.

» a prior such that p(f|x) has same parametric form as p(0) is called conjugate.
» Coin example:  p(xq,...,x,|0) = 0™Me2d(1 — )" Mhead
» Conjugate prior for 8:  p(6) o< 27 1(1 — 9)>~! "beta distribution” Beta(a, b)
» Posterior distribution:
p(O]x1, .., Xn) X p(X1, - .., Xa|0)p(0) = 6271 Mead (1 — )P~ 1H1—Mhead

a—1+ Nhead

» MAP estimate: @ _ 97 & Mhead
eSHImate:  MAP = b2

» special cases:
»a=1b=1 pH)=1
»a=2b=2. p(f) x06(1—0)
in both cases, we were still able to compute Ohap
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A Fully Bayesian Treatment

> GAML and éMAp are just point estimates for 6
» Maybe the full posterior distribution contains more information?
. 7Xn) x ga*1+nhead(1 _ 9)b71+n*nhead

p(0|x1, ..
» p(0|xi1,...,xp) is a beta-distribution
Beta(t | 0, 8) = =~ t* (1 - )P . m——
’ B(o, B) 1 P i
1wt S |
L Y
4ty
E1 AN § /
1 N\¢ N
wfl /0
04 H
[N .
’ 03 04 03 06 07 08 09 1

Examples of Beta distributions
7
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A Fully Bayesian Treatment

> GAML and éMAp are just point estimates for 6
» Maybe the full posterior distribution contains more information?

p(B]x1, ..., x,) oc 31 Mead (1 — §)b=1H1=Mheas
» p(0|xi1,...,xp) is a beta-distribution
Beta(t | « 6) — ;ta—l(l _ t)B_l 25
’ B(a75) 2.0
For example, at « = 2,5 = 5: 15
» asymmetric/skewed .
Beta(2,5)
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A Fully Bayesian Treatment
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A Fully Bayesian Treatment

> GAML and éMAp are just point estimates for 6
» Maybe the full posterior distribution contains more information?

p(B]x1, ..., x,) oc 31 Mead (1 — §)b=1H1=Mheas
» p(0|xi1,...,xp) is a beta-distribution
Beta(t | @, B) = — ¢ 1(1 — )i~ =
) B(a75) vo @@ mean
For example, at « = 2,6 = b: 15
» asymmetric/skewed .
» maximum at t = a‘j_;iz. Here t = 0.2
_1 0.5
» median at t ~ aj‘_ﬁijg Here: t ~ 0.26:
3
» mean at t = ﬁiﬁ Here t ~ 0.28 *4s oz 53 o5 o3 To
Beta(2,5)

Common choice for " Bayesians”: posterior mean fpp = Egp0m)[0] 7/31
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Maximum A-Posteriori vs. Maximum Likelihood vs. Bayesian
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Maximum likelihood
+ usually the easiest to use
+ consistent estimator, if model distribution is correct
— hard to include prior knowledge, e.g. reasonable ranges
— overconfident if little data is available, e.g. probability is O for never-seen values
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Maximum A-Posteriori vs. Maximum Likelihood vs. Bayesian
Maximum likelihood
+ usually the easiest to use
+ consistent estimator, if model distribution is correct
— hard to include prior knowledge, e.g. reasonable ranges
— overconfident if little data is available, e.g. probability is O for never-seen values
Maximum a-posteriori
+ can reflect prior knowledge, e.g. known parameter ranges

4+ more robust: if n is small, estimate stays close to prior
— not always clear how to chose a prior

— computationally more challenging, especially if no conjugate prior is used
Bayesian

+ same advantages of maximum a-posteriori

+ information about uncertainty of estimate

— same disadvantages as maximum a-posteriori, computationally even more challenging
Note: for n — oo, data will dominate the prior and all pretty much the same
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Maximum Likelihood for Bayesian Networks



BN Maximum Likelihood
(o] Jelelele]e}

Example: Lung Cancer network

> Patient
» has lung cancer ¢ € {0,1}

» was exposed to asbestos a € {0,1}
» is a smoker s € {0,1} @ e

10/31
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Example: Lung Cancer network

> Patient
» has lung cancer ¢ € {0,1}

» was exposed to asbestos a € {0,1}
» is a smoker s € {0,1} @ e
» Given the following relationship

p(a;s,c) = p(c | a,s)p(a)p(s)
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» has lung cancer ¢ € {0,1}

» was exposed to asbestos a € {0,1}
» is a smoker s € {0,1} @ e
» Given the following relationship

p(a;s,c) = p(c | a,s)p(a)p(s)

» What are the parameters to learn?
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Example: Lung Cancer network

> Patient
» has lung cancer ¢ € {0,1}

» was exposed to asbestos a € {0,1}
» is a smoker s € {0,1} @ e
» Given the following relationship

p(a;s,c) = p(c | a,s)p(a)p(s)

» What are the parameters to learn? Conditional probability tables (CPT)
0 =p(a=1) eR, 0° =p(s=1) e R,
0 = (93:0,5:07 05—0.5=1> U5-15—0> 95:1,5:1) eR*

with 65 p(c=1la=1i,s=).

a=is=j —

10/31
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Example: Lung Cancer network

We observe N patients: observations D = {(a1, 51, c1), (a2, $2, &2), - -

0(1 ’95
©

}

H
H

1
’
0 Q)
: N
o :
2
plate notation

= ORI OOk
OO R IR KR O+
R OR OlIR OlR

11/31
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Example: Lung Cancer network

p(a,s,c) = p(c | a,s)p(a)p(s)
» Log-likelihood
log L(6; D) Z log p(a;, si, ¢i) Z log p(aj; 65) + Z log p(si; 0s) + Z log p(c; | aj, si; 6c)

i

12/31
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Example: Lung Cancer network

p(a,s, c) = p(c| a,s)p(a)p(s)

» Log-likelihood
log £(6; D) Z log p(ai, si, i) = > _ log plai; 6a) + Y _log p(si; 0s) + > _log p(c; | aj, sii 0c)
i i i
Now we count:
» Denote ny—gs—0,c=0 = > _;[ai=0Asi=0Ac; =0] (count number of cases)
> Analogously N3=0,5=0,c=1; - - - s Na=1,5=1,c=1

12/31
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Example: Lung Cancer network

p(a,s, c) = p(c| a,s)p(a)p(s)

» Log-likelihood
log £(6; D) Zlogp ai,si,¢i) = Y _log p(ai; 02) + Y _log p(si;0s) + > _ log p(c; | ai, si: 0c)

i
Now we count:
» Denote ny—gs—0c=0 = ;[lai=0Asi=0Ac¢ =0] (count number of cases)
» Analogously ny—gs—0,c=1,-- ., Na=1,s=1,c=1

Collapse terms in log-likelihood according to value combinations:
log L(6; D) = na—o log p(@a = 0) + na=1log p(a = 1) + ns—g log p(s = 0) + ns—1 log p(s = 1)
+ N3—=0,s=0.c=0 log p(c =0]a= 0,5 =0) +
+ =1 s=1c=1logp(c=1a=1,s=1)

12/31
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Example: Lung Cancer network

Express in terms of parameters:

log £(0) = na—olog(1l — 6?) + n,=10° + ns—g log(1 — 6°) + ns—16°
+ N3=0,5=0,c=0 |0g(1 - 0;:075:0) +o na=l,s=l,C=1‘9§:1,s:0

with conditional probability tables as parameters

» 07 =pla=1)
- 0= p(s=1)
> 05 050 =pP(c=1a=0,5s=0

v

v

)
0 0. = plc=1ja=0,5=1)
O0f—15s—0 =P(c=1la=1,5=0)
> 05 1=
Note: no interaction between parameters. We can optimize for each of them separately.

1:p(c:1|a:1,5=1)

13/31



BN Maximum Likelihood
0000080

Example: Lung Cancer network

» For example, 05_; .

log £(8) = ny=1,s=0,c=1log 05—1 s=0 + Na=1,5=0,c=0 log(1 — 9;‘":13520) + const.

14 /31



0000080
Example: Lung Cancer network
> For example, 05_; .
log £(0) = na=1,s=0,c=1l0g 05_1 s_¢ + Na=1,s=0,c=0 log(1 — 051 s—¢) + const.
» Setting the derivative to 0

Na=1,5=0,c=1 = MNa=1,5=0,c=0

=0

eaczl,s:O (]‘ B g:l,s:O)

14 /31
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Example: Lung Cancer network

» For example, 05_; .

log £(8) = ny=1,s=0,c=1log 05—1 s=0 + Na=1,5=0,c=0 log(1 — 9;‘":13520) + const.

» Setting the derivative to 0

Na=1,5=0,c=1 = Na=1,5=0,c=0 __ 0
Hc Hc -
03:1,5:0 (1 - a:1,5=0)
» Therefore
éc o Na=1,s=0,c=1
a=1l,s=0 —

Na=1,5=0,c=0 + Na=1,5=0,c=1

14 /31
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Example: Lung Cancer network

» For example, 05_; .

log £(8) = ny=1,s=0,c=1log 05—1 s=0 + Na=1,5=0,c=0 log(1 — 9;‘":13520) + const.

» Setting the derivative to 0

Na=1,5=0,c=1 = Na=1,5=0,c=0 __ 0
Hc Hc -
03:1,5:0 (1 - a:1,5=0)
» Therefore
éc o Na=1,s=0,c=1
a=1l,s=0 —

Na=1,5=0,c=0 + Na=1,5=0,c=1

Maximum Likelihood solution corresponds to empirical counts, just like in coin example!

14 /31
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Maximum Likelihood for CPTs

Unfortunately, sometimes, counting is not practical or possible:

» CPT might be too large

(L" parameters even for L-state variables)

» not enough data (most counts would be zero)
» continuous variables, xi,...,xg4 € R

» missing data: e.g. hidden Markov model
"observations” are observed, but " hidden states” are not — "latent variable models”

15/31
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Learning mixture models
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Mixture Models

A mixture model is one in which a set of simpler models is combined to produce a richer model:

» We observe and care about a random variable V/, that does not have a simple distribution.
» We model it as a generated by a two-stage procedure

» Sample the state of an auxiliary variable H ~ p(h)
» Given the value h of H, sample the value of v from a h-dependent distribution p(v|h)

(DY) pvm=pimet)  pt)= Y p(vlilelt)

heH

The variable V is visible or observable, while H is hidden or latent.

Note: the effect of the hidden H might be 'real’, or just a computational trick.

17/31
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Mixture Models

Example: Gaussian Mixture Model (GMM)

For h € {1,2,...,K}, each p(v|h) = N(x; un, £p)
12— 12— 12— 12—
vof L= #el=0 |y ol [ = #lh=2 [}, o [ = se=3]],,] — rO) ]
0.8} {o.8} {o.8} {o.8} :
0.6} {o.6} {o.6} {o.6} ]
0.4} {0.4} {0.4} {0.4} ]
0.2f {o2f {o2f lo2f M ]
0.0 220 2 4 00 720 2 4 0-0 720 2 4 0-0 2 2 0 2 4

If we only see sample vi,..., vy, can we learn p(h) and p(v|h)?

18/31
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|xtue Models

Example: Gaussian Mixture Model (GMM)
For h € {1,2,...,K}, each p(v|h) = N(x; un, Zp)

8

7 =2 - 0 2 4
7 Image: http://pypr.sourceforge.net/

Learning with latent variables

If we only see sample vy, ..., v,, can we learn p(h) and p(v|h)?

18/31
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Maximum Likelihood Estimation for GMMs

» data: vq,...,v,
> parameters:
» m:=(p(h=1),...,p(h=K)) € R¥
> 1, ...,k with ug €RY for k=1,...,K
> Y1,..., Tk with T, e RI¥9 for k=1,..., K
» model:
K 1 1 Ty-1
— v apve) T (v )
p(v) =Y e 2(vmhm)
et (2m) 9]
» data likelihood:

p(vi,...,vp) = - e 3 (Vi) T (Vim )
R | L PV

i=1 k=1

No closed-form expressions as for single Gaussian maximum likelihood estimation

— numeric optimization, e.g. gradient descent
19/31
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Expectation Maximization (EM) Algorithm for GMMs

Thinking of the generating process:
» for each example: sample a hidden value h; ~ p(h), then sample v; ~ p(v|h;)
> if we knew hy,..., hp,

» we could split data into groups, {v; : h; = k}, and
» estimate p(v|h) separately for each value of h

> in practice, we don't know h;, but if we had p(v, h), we could estimate: p(h|v;)

20/31
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Expectation Maximization (EM) Algorithm for GMMs

Thinking of the generating process:
» for each example: sample a hidden value h; ~ p(h), then sample v; ~ p(v|h;)
> if we knew hy,..., hp,

» we could split data into groups, {v; : h; = k}, and
» estimate p(v|h) separately for each value of h

> in practice, we don't know h;, but if we had p(v, h), we could estimate: p(h|v;)

Chicken and egg:
> to get a good model p(v), we need p(h|v)
» to get p(h|v), we need a good model of p(v, h)

20/31
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Expectation Maximization (EM) Algorithm for GMMs

Thinking of the generating process:
» for each example: sample a hidden value h; ~ p(h), then sample v; ~ p(v|h;)
> if we knew hy,..., hp,

» we could split data into groups, {v; : h; = k}, and
» estimate p(v|h) separately for each value of h

> in practice, we don't know h;, but if we had p(v, h), we could estimate: p(h|v;)

Chicken and egg:
> to get a good model p(v), we need p(h|v)
» to get p(h|v), we need a good model of p(v, h)

Intuition behind the Expectation Maximization (EM) algorithm:
» alternate between estimating p(h|v), p(v|h) and p(h)

20/31
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EM A|g0r|thm fOI’ GMMS [Dempster et al, 1977]

initialize parameters © = (71, ..., Tk, fl1y .- Ky L1y -5 LK)
we write gk (x) = N (x; pk, k)
repeat
E-step
fori=1,...,n, k=1...,Kdo
ik % // "responsibilities” of component k for v;
end for - I
M-step
for k=1...,K do
Nk < > Vik // total weight of components k
Ty < & // normalized weight of component k
Lk nik > i YikVi // mean, weighted by
Tk = o 2 vik(vi — ) (vi — i) "

end for
until convergence

21 /24
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EM Algorithm for GMMs

> p(h=k)=m,
> p(x|h = k) = gi(x) = N(x; pk, Zk),
> p(v) =3, p(v, h) = S5y p(vih = k)p(h = k) = Y5 megi(v)

E-step:

p(v=vi,h=k) _ T8k (Vi)
p(v = v) S mhgk(vi)

22 /31
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EM Algorithm for GMMs

> p(h=k)=m,
> p(x|h = k) = gi(x) = N(x; pk, Zk),
> p(v) =3, p(v, h) = S5y p(vih = k)p(h = k) = Y5 megi(v)

E-step:

—vih=k )
p(h=klv =v;) = plv = v ) o _ Teed) = ik

plv=v) K. me(v)
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EM Algorithm for GMMs

> p(h= k)= 7,
> p(x|h = k) = gi(x) = N(x; pk, Zk),
> p(v) =Y, p(v, h) = Y5y p(vIh = k)p(h) = Y megi(v)

M-step: for known hy, ..., h,:

n K n
log p(viy ..., Vo, h1,...hp) = Iong(v;, hi) = Iogth,.(v;) = Z [Z Oh—kTk Ioggk(v;)]
i i=1

k=1 Li=1

We can do maximum likelihood estimate for each gy separately, using a subset of the data.
If we don't know the h;? Weigh contribution of each point by how likely it belongs to
component k:

T, 1,0
a k=1 Li=1

K n
min Z [Z ~ikTk log gk(v,-)]
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Derivation of the EM algorithm

We don't really know how to maximize difficult non-convex functions.

Most common is gradient-based optimization (ascent/descent), but it has shortcomings:
» need initialization,
» takes small steps,

» converges to local maximum.

Alternative: turn difficult optimization into sequence of easier ones.

24 /31
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Derivation of the EM algorithm

@'t=2)

log P(x;8)

9:

Image: [T. Minka, " Expectation-Maximization as lower bound maximization”, TR 1998] 25 /31
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Derivation of the EM algorithm

Change notation from (v1,..., vy, h1,..., hy) to (x,z): we want to maximize
L(0) = log p(x;0) = Iogprzﬁ

First observation: it's easy to come up with lower bounds:

For any function g(z) > 0 with ), q(z) = 1:

9 ;0
log p(x; 0) IogZp x,z;0) Iogz X z =logE,q [p(:’é))}
Jensen's ineq. (X, z 9):|
E,wqlog | ———
o8 [ q(2)
=E,qlogp(x,z;0) — E,qlog q(2) =: G(0, q) "variational lower bound”

If g(z) is arbitrary, we didn't lose anything: for g(z) = p(z|x; 6) the inequality is an equality.
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Jensen's inequality

For a convex function f : R — R and any distribution p: Eeplf(t)] < f(Est)

tf (w1) + (1= 4)f (x2)

ftey + (1 —t)a)

xy tey + (1 —t)as Ty

For a concave function f : R — R the inequality holds in the opposite direction.

Figure: By Eli Osherovich - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=10764763 27 /31
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Derivation of the EM algorithm

for any g: log p(x;0) < E, qlogp(x,z;0) —E, qlogq(z) =:G(0,q)
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rivation of the EM algorithm

for any g: log p(x;0) < E, qlogp(x,z;0) —E, qlogq(z) =:G(0,q)
Coordinate ascent algorithm:
initialize 6°
for t =1,2,..., until convergence do
q* < argmax, G(0'" !, q) /] E-step
0t + argmaxy G(0,q") // M-step
end for

Observation:
» both steps increase (or at least do not decrease) G(6, q)

» at convergence, we found a large value for G(0, q), so log p(x; 0) is also large
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Derivation of the EM algorithm

a) G(0,q) increases, but does L(0) = log(x; @) also increase?
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Derivation of the EM algorithm

a) G(0, q) increases, but does L£(#) = log(x; #) also increase? Yes!

t—p(z|x:0t E- M-
£(6%) “TPE ot gty <G8, gt <

G(9t+1, qt+1) Jenseris ineq. E(gt—‘rl)
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Derivation of the EM algorithm

a) G(0, q) increases, but does L£(#) = log(x; #) also increase? Yes!

t—p(z|x:0t E- M-
E(Ot) q —P(:| %) G(9t7 qt) 26'3 G(et’ qt+1) %tep

G(9t+1, qt+1) Jenseris ineq. E(gt—‘rl)

b) When we reach a local optimum of G(0, g), is this also a local optimum of log(x; 6)?

to do
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Derivation of the EM algorithm for GMMs

Step 1: g < argmax, G(0,q)
» do the maths, or see from bound that q(z) = p(z|x; @) is optimal choice

q(z) = p(z|x; 6) Hp h|vi; 8)

p(h=klv=yv)= M = Yik M-step

> ke Tkk(vi)
Step 2: 0 < argmaxy G(¢', q)
argmax G(¢', q) = argmaxE,.4 log p(x, z; 0) — E .4 log q(z)
% %
= 3rg9f}13>< Z Yik log T gk (vi; 0)
i

Maximize the log-likelihood of Gaussians with ~;,-weighted samples:  E-step!
30/31
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Variational Inference

Lower bound derivation of EM is example of a large class of variational algorithms:

» to handle a difficult distribution p, approximate it by a tractable distribution g (or a
sequence of such distributions)
» typically, g is not arbitrary, but taken from a tractable parametric class, e.g.
» Gaussian distributions
» distributions that factorize: q(z) = q(z1) ... q(z,)
>

» if either step is hard, we don’t have to solve it exactly, as long as G(6, z) is improved
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Variational Inference

Lower bound derivation of EM is example of a large class of variational algorithms:

» to handle a difficult distribution p, approximate it by a tractable distribution g (or a
sequence of such distributions)

» typically, g is not arbitrary, but taken from a tractable parametric class, e.g.
» Gaussian distributions
» distributions that factorize: q(z) = q(z1) ... q(z,)
>

» if either step is hard, we don’t have to solve it exactly, as long as G(6, z) is improved

Currently very active area in machine learning, in particular for Bayesian
handling of graphical models.

Further read: [Martin Wainwright, Michael Jordan. " Graphical Models, Ex-
ponential Families, and Variational Inference”, Foundations and Trends in
Machine Learning 2008]
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