Statistical Machine Learning

Christoph Lampert

IST AUSTRIA Institute of Science and Technology

Institute of Science and Technology

Spring Semester 2015/2016 // Lecture 12

Unsupervised Learning Dimensionality Reduction

Dimensionality Reduction

Given: data

$$X = \{x^1, \dots, x^m\} \subset \mathbb{R}^d$$

Dimensionality Reduction – Transductive

Task: Find a lower-dimensional representation

$$Y = \{y^1, \dots, y^m\} \subset \mathbb{R}^n$$

with $m \ll d$, such that Y "represents X well"

Dimensionality Reduction – Inductive

Task: find a function $\phi : \mathbb{R}^d \to \mathbb{R}^n$ and set $y_i = \phi(x_i)$

(allows computing $\phi(x)$ for $x \neq X$: "out-of-sample extension")

Linear Dimensionality Reduction

Choice 1: $\phi : \mathbb{R}^d \to \mathbb{R}^n$ is linear or affine.

Choice 2: "*Y* represents *X* well" means:

There's a $\psi : \mathbb{R}^n \to \mathbb{R}^d$ such that $\sum_{i=1}^m \|x_i - \psi(y_i)\|^2$ is small.

Linear Dimensionality Reduction

Choice 1: $\phi : \mathbb{R}^d \to \mathbb{R}^n$ is linear or affine.

Choice 2: "*Y* represents *X* well" means:

There's a $\psi : \mathbb{R}^n \to \mathbb{R}^d$ such that $\sum_{i=1}^m \|x_i - \psi(y_i)\|^2$ is small.

Principal Component Analysis

Given $X = \{x^1, \ldots, x^m\} \subset \mathbb{R}^d$, find function $\phi(x) = Wx$ and $\psi(y) = Uy$ by solving

$$\min_{\substack{U \in \mathbb{R}^{n \times d} \\ V \in \mathbb{R}^{d \times n}}} \sum_{i=1}^{m} \|x_i - UWx_i\|^2$$

Principal Component Analysis (PCA)

$$U, W = \underset{U \in \mathbb{R}^{n \times d}, W \in \mathbb{R}^{d \times n}}{\operatorname{argmin}} \sum_{i=1}^{m} \|x_i - UWx_i\|^2$$
(PCA)

Lemma

If U, W are minimizers of the above PCA problem, then the column of U are orthogonal, and $W = U^{\top}$.

Principal Component Analysis (PCA)

$$U, W = \underset{U \in \mathbb{R}^{n \times d}, W \in \mathbb{R}^{d \times n}}{\operatorname{argmin}} \sum_{i=1}^{m} \|x_i - UWx_i\|^2$$
(PCA)

Lemma

If U, W are minimizers of the above PCA problem, then the column of U are orthogonal, and $W = U^{\top}$.

Theorem

Let $A = \sum_{i=1}^{m} x_i x_i^{\top}$ and let u_1, \ldots, u_n be *n* eigenvectors of *A* that correspond to the largest *n* eigenvalues of *A*. Then $U = (u_1 | u_2 | \cdots | u_n)$ and $W = U^{\top}$ are minimizers of the PCA problem.

- A has orthogonal eigenvectors, since it is symmetric positive definite.
- U can also be obtained by singular value decomposition, X = USV.

Principal Component Analysis – Visualization

6/36

Principal Component Analysis – Visualization

-3 -2 -1 0 1 2 3 -6/36

Principal Component Analysis – Visualization

Principal Component Analysis – Affine

Given $X = \{x^1, \dots, x^m\} \subset \mathbb{R}^d$, find function $\phi(x) = Wx + w$ and $\psi(y) = Uy + u$ by solving

$$U, W = \underset{U \in \mathbb{R}^{n \times d}, W \in \mathbb{R}^{d \times n}}{\operatorname{argmin}} \sum_{i=1}^{m} \|x_i - U(Wx_i + w) - u\|^2$$
 (AffinePCA)

Theorem

Let $\mu = \frac{1}{m} \sum_{i=1}^{m} x_i$ the mean and $C = \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu)(x_i - \mu)^{\top}$ the covariance matrix of X. Let u_1, \ldots, u_n be n eigenvectors of C that correspond to the largest n eigenvalues. Then $U = (u_1 | u_2 | \cdots | u_n)$, $W = U^{\top}$, $w = W\mu$ and $u = \mu$ are minimizers of the affine PCA problem.

Simpler to remember: $\phi(x) = W(x - \mu)$, $\psi(y) = Uy + \mu$

There's (at least) one more way to interpret the PCA procedure:

The following to goals are equivalent:

- find subspace such that projecting to it orthogonally results in the smallest reconstruction error
- find subspace such that projecting to it orthogonally results **preserves most of the data variance**

Data Visualization

If the original data is high-dimensional, use PCA with n = 2 or n = 3 to obtain low-dimensional representation that can be visualized.

Data Compression

If the original data is high-dimensional, use PCA to obtain a lower-dimensional representation that requires less RAM/storage.

n typically chosen such that 95% or 99% of variance are preserved.

Data Denoising

If the original data is noisy, apply PCA and reconstruction to obtain a less noisy representation.

n depends on noise level if known, otherwise as for compression.

Genes mirror geography in Europe

[Novembre et al, Nature 2008]

Given: paired data

$$X_1 = \{x_1^1, \dots, x_1^m\} \subset \mathbb{R}^d \qquad X_2 = \{x_2^1, \dots, x_2^m\} \subset \mathbb{R}^{d'}$$

for example (after some preprocessing):

- DNA expression and gene expression (Monday's colloquium)
- *images* and *text captions*.

Canonical Correlation Analysis (CCA)

Find projections $\phi_1(x_1) = U_1x_1$ and $\phi_2(x_2) = U_2x_2$ with $U_1 \in \mathbb{R}^{d \times m}$ and $U_2 \in \mathbb{R}d' \times m$ such that after projection X_1 and X_2 are **maximally** correlated.

One dimension: find directions $u_1 \in \mathbb{R}^d$, $u_2 \in \mathbb{R}^{d'}$, such that

$$\max_{u_1 \in R^d, u_2 \in \mathbb{R}^{d'}} \operatorname{corr}(u_1^\top X_1, u_2^\top X_2).$$

With $C_{11} = \operatorname{cov}(X_1, X_1)$, $C_{22} = \operatorname{cov}(X_2, X_2)$ and $C_{12} = \operatorname{cov}(X_1, X_2)$,

$$\max_{u_1 \in R^d, u_2 \in \mathbb{R}^{d'}} \frac{u_1^\top C_{12} u_2}{\sqrt{u_1^\top C_{11} u_1} \sqrt{u_2^\top C_{22} u_2}}$$

Find u_1, u_2 by solving generalized eigenvalue problem for maximal λ :

$$\begin{pmatrix} \mathbf{0} & C_{12} \\ C_{12}^{\top} & \mathbf{0} \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \lambda \begin{pmatrix} C_{11} & \mathbf{0} \\ \mathbf{0} & C_{22} \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$

Example: Canonical Correlation Analysis for fMRI Data

Kernel Principle Component Analysis (Kernel-PCA)

Reminder: given samples $x_i \in \mathbb{R}^d$, PCA finds the directions of maximal covariance. Assume $\sum_i x_i = \mathbf{0}$ (e.g. by first subtracting the mean).

 The PCA directions u₁,..., u_n are the *eigenvectors* of the covariance matrix

$$C = \frac{1}{m} \sum_{i=1}^{m} x_i x_i^{\mathsf{T}}$$

sorted by their eigenvalues.

- We can express x_i in PCA-space by P(x_i) = ∑ⁿ_{j=1}⟨x_i, u_j⟩u_j.
- Lower-dim. coordinate mapping: $x_i \mapsto \begin{pmatrix} \langle x_i, u_1 \rangle \\ \langle x_i, u_2 \rangle \\ \ddots \end{pmatrix} \in \mathbb{R}^n$

Kernel-PCA

•

Given samples $x_i \in \mathcal{X}$, kernel $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ with an implicit feature map $\phi : \mathcal{X} \to \mathcal{H}$. Do PCA in the (implicit) feature space \mathcal{H} .

The kernel-PCA directions . u_1, \ldots, u_n are the eigenvectors of the covariance operator

$$C = \frac{1}{m} \sum_{i=1}^{m} \phi(x_i) \phi(x_i)^{\top}$$

sorted by their eigenvalue.

- -1 Lower-dim. coordinate mapping: $x_i \mapsto \begin{pmatrix} \langle \phi(x_i), u_1 \rangle \\ \langle \phi(x_i), u_2 \rangle \\ & \ddots \\ & \ddots \end{pmatrix} \in \mathbb{R}^n$

Kernel-PCA

Given samples $x_i \in \mathcal{X}$, kernel $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ with an implicit feature map $\phi : \mathcal{X} \to \mathcal{H}$. Do PCA in the (implicit) feature space \mathcal{H} .

• Equivalently, we can use the eigenvectors u'_j and eigenvalues λ_j of $K \in \mathbb{R}^{m \times m}$, with $K_{ij} = \langle \phi(x_i), \phi(x_j) \rangle = k(x_i, x_j)$

• Coordinate mapping: $x_i \mapsto (\sqrt{\lambda_1} u_1^{\prime i}, \dots, \sqrt{\lambda_K} u_n^{\prime i})$.

Kernel-PCA

Application – Image Superresolution

- Collect high-res face images
- Use KernelPCA with Gaussian kernel to learn non-linear projections
- For new low-res image:
 - scale to target high resolution
 - project to closest point in face subspace

reconstruction in r dimensions

[Kim, Jung, Kim, "Face recognition using kernel principal component analysis", Signal Processing Letters, 2002.]

Recently, random matrices have been used for dimensionality reduction:

• Let $W \in \mathbb{R}^{d \times n}$ be a matrix with random entries (i.i.d. Gaussian)

Then one can show that $\phi : \mathbb{R}^d \to \mathbb{R}^n$ with $\phi(x) = Wx$ does not distort Euclidean distances too much.

Theorem

For fixed $x \in \mathbb{R}^d$ let $W \in \mathbb{R}^{n \times d}$ be a random matrix as above. Then, for every $\epsilon \in (0,3)$,

$$\mathbb{P}\left[\left|\frac{\frac{1}{n}\|Wx\|^2}{\|x\|^2} - 1\right| > \epsilon\right] \le 2e^{-\epsilon^2 n/6}$$

Note: The dimension of the original data does not show up in the bound!

Given: data $X = \{x^1, \dots, x^m\} \subset \mathbb{R}^d$

Task: find embedding $y^1, \ldots, y^m \subset \mathbb{R}^n$ that preserves pairwise distances $\Delta_{ij} = ||x^i - x^j||$.

Solve, e.g., by gradient descent on

$$\sum_{i,j} \quad (\|y^i - y^j\|^2 - \Delta_{ij}^2)^2$$

Multiple extensions:

- non-linear embedding
- take into account geodesic distances (e.g. IsoMap)
- arbitrary distances instead of Euclidean

Multidimensional Scaling (MDS)

Multidimensional Scaling (MDS)

2D embedding of US Senate Voting behavior

Unsupervised Learning Clustering

Clustering

Given: data

$$X = \{x^1, \dots, x^m\} \subset \mathbb{R}^d$$

Clustering – Transductive

Task: partition the point in X into **clusters** S_1, \ldots, S_K .

Idea: elements within a cluster are similar to each other, elements in different clusters are dissimilar

Clustering – Inductive

Task: define a partitioning function $f : \mathbb{R}^d \to \{1, \dots, K\}$ and set $S_k = \{x \in X : f(x) = k\}.$

(allows assigning a cluster label also to new points, $x \neq X$: "out-of-sample extension")

Clustering is fundamentally problematic and subjective

• • • • • • • • • • • • •

Clustering is fundamentally problematic and subjective

Clustering is fundamentally problematic and subjective

General framework to create a hierarchical partitioning

- initialize: each point x_i is it's own cluster, $S_i = \{i\}$
- repeat
 - ▶ take two most similar clusters and merge into a single new cluster
- until K clusters left

Open question: how to define similarity between clusters?

Clustering – Linkage-based

Given: similarity between individual points $d(x_i, x_j)$

Single linkage clustering

Smallest distance between any cluster elements

$$d(S, S') = \min_{i \in S, j \in \mathbb{S}'} d(x_i, x_j)$$

Average linkage clustering

Average distance between all cluster elements

$$d(S, S') = \frac{1}{|S||S'|} \sum_{i \in S, j \in S'} d(x_i, x_j)$$

Max linkage clustering

Largest distance between any cluster elements

$$d(S, S') = \max_{i \in S, j \in \mathbb{S}'} d(x_i, x_j)$$

Example: Single linkage clustering

Theorem

The edges of a single linkage clustering forms a minimal spanning tree.

Let $c_1, \ldots, c_K \in \mathbb{R}^d$ be K cluster centroids. Then a distance-based clustering function, $c : \mathcal{X} \to \{1, \ldots, K\}$, is given by the assignment

$$f(x) = \underset{k=1,...,K}{\operatorname{argmin}} \|x - c_i\|$$
 (arbitrary tie break)

(similar to K-means with training set $\{(c_1, 1), \ldots, (c_K, K)\}$)

K-means objective

Find $c_1,\ldots,c_K\in\mathbb{R}^d$ by minimizing the total Euclidean error

$$\sum_{i=1}^{m} \|x_i - c_{f(x_i)}\|^2$$

K-means objective

Find $c_1, \ldots, c_K \in \mathbb{R}^d$ by minimizing the total Euclidean error

$$\sum_{i=1}^{m} \|x_i - c_{f(x_i)}\|^2$$

Lloyd's algorithm

- Initialize c_1, \ldots, c_K (random subset of X, or smarter)
- repeat

► set
$$S_k = \{i : f(x_i) = k\}$$

► $c_k = \frac{1}{|S_k|} \sum_{i \in S_k} x_i$

(current assignment) (mean of points in cluster)

• until no more changes to S_k

Demo: http://shabal.in/visuals/kmeans/6.html

Alternatives:

- *k*-mediods: like *k*-means, but centroids must be datapoints update step chooses mediod of cluster instead of mean
- *k*-medians: like *k*-means, but minimize $\sum_{i=1}^{m} ||x_i c_{f(x_i)}||$ update step chooses median of each coordinate with each cluster

Clustering – graph-based clustering

For x_1, \ldots, x_m form a graph G = (V, E) with vertex set $V = \{1, \ldots, m\}$ and edge set E. Each **partitioning of the graph defines a clustering** of the original dataset.

Choice of edge set

 ϵ -nearest neighbor graph

$$E = \{(i,j) \subset V \times V : ||x_i - x_j|| < \epsilon\}$$

k-nearest neighbor graph

$$E = \{(i, j) \subset V \times V : x_i \text{ is a } k \text{-nearest neighbor of } x_j \}$$

Weighted graph

Fully connected, but define edge weights $w_{ij} = \exp(-\lambda ||x_i - x_j||^2)$.

Data set

Neighborhood Graph

Min Cut: biased towards small clusters

Normalized Cut: balanced weight of cut edges and volume of clusters

Approximate solution to Normalized Cut

Spectral Clustering

- Input: weight matrix $W \in \mathbb{R}^{m \times m}$
- compute graph Laplacian L = W D, for $D = diag(d_1, \dots, d_m)$ with $d_i = \sum_j w_{ij}$.
- let $v \in \mathbb{R}^m$ be the eigenvector of L corresponding to the second smallest eigenvalue (the smallest is 0, since L is singular)
- assign x_i to cluster 1 if $v_i \ge 0$ and to cluster 2 otherwise.

To obtain more than 2 clusters apply recursively, each time splitting the largest remaining cluster.

Scale-Invariance

For any distance
$$d$$
 and any $\alpha>0,$ $f(d)=f(\alpha\cdot d)$

Richness

 $\mathsf{Range}(f)$ is the set of all partitions of $\{1, \ldots, m\}$

Consistency

Let d and d' be two distance functions. If $f(d)=\Gamma,$ and d' is a Γ -transform of d, then $f(d')=\Gamma.$

Definition: d' is a Γ -transform of d, iff for any i, j in the same cluster $d'(i, j) \leq d(i, j)$ and for i, j in different clusters, $d'(i, j) \geq d(i, j)$.

Scale-Invariance

For any distance
$$d$$
 and any $\alpha > 0$, $f(d) = f(\alpha \cdot d)$

Richness

 $\mathsf{Range}(f)$ is the set of all partitions of $\{1, \ldots, m\}$

Consistency

Let d and d' be two distance functions. If $f(d) = \Gamma$, and d' is a Γ -transform of d, then $f(d') = \Gamma$.

Definition: d' is a Γ -transform of d, iff for any i, j in the same cluster $d'(i, j) \leq d(i, j)$ and for i, j in different clusters, $d'(i, j) \geq d(i, j)$.

Theorem: "Impossibility of Clustering". For each $m \ge 2$, there is no clustering function f that satisfies all three axioms at the same time.

Scale-Invariance

For any distance
$$d$$
 and any $\alpha > 0$, $f(d) = f(\alpha \cdot d)$

Richness

 $\mathsf{Range}(f)$ is the set of all partitions of $\{1,\ldots,m\}$

Consistency

Let d and d' be two distance functions. If $f(d) = \Gamma$, and d' is a Γ -transform of d, then $f(d') = \Gamma$.

Definition: d' is a Γ -transform of d, iff for any i, j in the same cluster $d'(i, j) \leq d(i, j)$ and for i, j in different clusters, $d'(i, j) \geq d(i, j)$.

Theorem: "Impossibility of Clustering". For each $m \ge 2$, there is no clustering function f that satisfies all three axioms at the same time. (but not all hope lost: "Consistency" is debatable...)

Final project

Part 1

 Go to https://kaggle.com/join/ist_sml2016/ and participate in the challenge: "Final project for Statistical Machine Learning Course 2016 at IST Austria"

#	∆3d	Team Name	Score 🔞	Entries	Last Submission UTC (Best - Last Submission)
1	-	AlexanderKolesnikov	0.97367	6	Tue, 01 Jul 2014 08:11:23 (-12.2h)
2		Jan Humplik	0.97263	6	Tue, 01 Jul 2014 13:56:24 (-2.7h)
3	new	Michal Rolínek	0.91640	2	Mon, 30 Jun 2014 10:45:30 (-1.3h)
4	41	Georg Nebehay	0.86330	9	Tue, 01 Jul 2014 15:07:58
5	new	michael.meidlinger	0.75163	3	Tue, 01 Jul 2014 12:05:58
6	1 2	Christoph Lampert	0.48705	1	Wed, 18 Jun 2014 15:52:14

passing criterion: beat the baselines (linear SVM and LogReg)
Part 2

 send Alex a short (one to two pages) report that explains what exactly you did to achieve these results, including data preprocessing, classifier, software used, model selection, etc.

Deadline: Thursday, 5th May midnight MEST