Statistical Machine Learning

Christoph Lampert

Institute of Science and Technology
Spring Semester 2015/2016 // Lecture 12

Unsupervised Learning
 Dimensionality Reduction

Dimensionality Reduction

Given: data

$$
X=\left\{x^{1}, \ldots, x^{m}\right\} \subset \mathbb{R}^{d}
$$

Dimensionality Reduction - Transductive

Task: Find a lower-dimensional representation

$$
Y=\left\{y^{1}, \ldots, y^{m}\right\} \subset \mathbb{R}^{n}
$$

with $m \ll d$, such that Y "represents X well"

Dimensionality Reduction - Inductive

Task: find a function $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$ and set $y_{i}=\phi\left(x_{i}\right)$
(allows computing $\phi(x)$ for $x \neq X$: "out-of-sample extension")

Linear Dimensionality Reduction

Choice 1: $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$ is linear or affine.
Choice 2: " Y represents X well" means:
There's a $\psi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$ such that $\quad \sum_{i=1}^{m}\left\|x_{i}-\psi\left(y_{i}\right)\right\|^{2} \quad$ is small.

Linear Dimensionality Reduction

Choice 1: $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$ is linear or affine.
Choice 2: " Y represents X well" means:
There's a $\psi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$ such that $\quad \sum_{i=1}^{m}\left\|x_{i}-\psi\left(y_{i}\right)\right\|^{2} \quad$ is small.

Principal Component Analysis

Given $X=\left\{x^{1}, \ldots, x^{m}\right\} \subset \mathbb{R}^{d}$, find function $\phi(x)=W x$ and $\psi(y)=U y$ by solving

$$
\min _{\substack{U \in \mathbb{R}^{n \times d} \\ W \in \mathbb{R}^{d \times n}}} \sum_{i=1}^{m}\left\|x_{i}-U W x_{i}\right\|^{2}
$$

Principal Component Analysis (PCA)

$$
\begin{equation*}
U, W=\underset{U \in \mathbb{R}^{n \times d}, W \in \mathbb{R}^{d \times n}}{\operatorname{argmin}} \sum_{i=1}^{m}\left\|x_{i}-U W x_{i}\right\|^{2} \tag{PCA}
\end{equation*}
$$

Lemma

If U, W are minimizers of the above $P C A$ problem, then the column of U are orthogonal, and $W=U^{\top}$.

Principal Component Analysis (PCA)

$$
U, W=\underset{U \in \mathbb{R}^{n \times d}, W \in \mathbb{R}^{d \times n}}{\operatorname{argmin}} \sum_{i=1}^{m}\left\|x_{i}-U W x_{i}\right\|^{2}
$$

Lemma

If U, W are minimizers of the above $P C A$ problem, then the column of U are orthogonal, and $W=U^{\top}$.

Theorem

Let $A=\sum_{i=1}^{m} x_{i} x_{i}^{\top}$ and let u_{1}, \ldots, u_{n} be n eigenvectors of A that correspond to the largest n eigenvalues of A. Then $U=\left(u_{1}\left|u_{2}\right| \cdots \mid u_{n}\right)$ and $W=U^{\top}$ are minimizers of the PCA problem.

- A has orthogonal eigenvectors, since it is symmetric positive definite.
- U can also be obtained by singular value decomposition, $X=U S V$.

Principal Component Analysis - Visualization

Principal Component Analysis - Visualization

Principal Component Analysis - Visualization

Principal Component Analysis - Visualization

Principal Component Analysis - Affine

Given $X=\left\{x^{1}, \ldots, x^{m}\right\} \subset \mathbb{R}^{d}$, find function $\phi(x)=W x+w$ and $\psi(y)=U y+u$ by solving
$U, W=\underset{U \in \mathbb{R}^{n \times d}, W \in \mathbb{R}^{d \times n}}{\operatorname{argmin}} \sum_{i=1}^{m}\left\|x_{i}-U\left(W x_{i}+w\right)-u\right\|^{2}$
(AffinePCA)

Theorem

Let $\mu=\frac{1}{m} \sum_{i=1}^{m} x_{i}$ the mean and $C=\frac{1}{m} \sum_{i=1}^{m}\left(x_{i}-\mu\right)\left(x_{i}-\mu\right)^{\top}$ the covariance matrix of X. Let u_{1}, \ldots, u_{n} be n eigenvectors of C that correspond to the largest n eigenvalues. Then $U=\left(u_{1}\left|u_{2}\right| \cdots \mid u_{n}\right)$, $W=U^{\top}, w=W \mu$ and $u=\mu$ are minimizers of the affine PCA problem.

Simpler to remember: $\phi(x)=W(x-\mu), \quad \psi(y)=U y+\mu$

There's (at least) one more way to interpret the PCA procedure:
The following to goals are equivalent:

- find subspace such that projecting to it orthogonally results in the smallest reconstruction error
- find subspace such that projecting to it orthogonally results preserves most of the data variance

Principal Component Analysis - Applications

Data Visualization

If the original data is high-dimensional, use PCA with $n=2$ or $n=3$ to obtain low-dimensional representation that can be visualized.

Data Compression

If the original data is high-dimensional, use PCA to obtain a lower-dimensional representation that requires less RAM/storage.
n typically chosen such that 95% or 99% of variance are preserved.

Data Denoising

If the original data is noisy, apply PCA and reconstruction to obtain a less noisy representation.
n depends on noise level if known, otherwise as for compression.

Genes mirror geography in Europe

Canonical Correlation Analysis (CCA)

Given: paired data

$$
X_{1}=\left\{x_{1}^{1}, \ldots, x_{1}^{m}\right\} \subset \mathbb{R}^{d} \quad X_{2}=\left\{x_{2}^{1}, \ldots, x_{2}^{m}\right\} \subset \mathbb{R}^{d^{\prime}}
$$

for example (after some preprocessing):

- DNA expression and gene expression (Monday's colloquium)
- images and text captions.

Canonical Correlation Analysis (CCA)

Find projections $\phi_{1}\left(x_{1}\right)=U_{1} x_{1}$ and $\phi_{2}\left(x_{2}\right)=U_{2} x_{2}$ with $U_{1} \in \mathbb{R}^{d \times m}$ and $U_{2} \in \mathbb{R} d^{\prime} \times m$ such that after projection X_{1} and X_{2} are maximally correlated.

Canonical Correlation Analysis (CCA)

One dimension: find directions $u_{1} \in \mathbb{R}^{d}, u_{2} \in \mathbb{R}^{d^{\prime}}$, such that

$$
\max _{u_{1} \in R^{d}, u_{2} \in \mathbb{R}^{d^{\prime}}} \operatorname{corr}\left(u_{1}^{\top} X_{1}, u_{2}^{\top} X_{2}\right) .
$$

With $C_{11}=\operatorname{cov}\left(X_{1}, X_{1}\right), C_{22}=\operatorname{cov}\left(X_{2}, X_{2}\right)$ and $C_{12}=\operatorname{cov}\left(X_{1}, X_{2}\right)$,

$$
\max _{u_{1} \in R^{d}, u_{2} \in \mathbb{R}^{d^{\prime}}} \frac{u_{1}^{\top} C_{12} u_{2}}{\sqrt{u_{1}^{\top} C_{11} u_{1}} \sqrt{u_{2}^{\top} C_{22} u_{2}}}
$$

Find u_{1}, u_{2} by solving generalized eigenvalue problem for maximal λ :

$$
\left(\begin{array}{cc}
\mathbf{0} & C_{12} \\
C_{12}^{\top} & \mathbf{0}
\end{array}\right)\binom{u_{1}}{u_{2}}=\lambda\left(\begin{array}{cc}
C_{11} & \mathbf{0} \\
\mathbf{0} & C_{22}
\end{array}\right)\binom{u_{1}}{u_{2}}
$$

Example: Canonical Correlation Analysis for fMRI Data

color range: >2 SD

data 1: video sequence data 2: fMRI signal while watching

Kernel Principle Component Analysis (Kernel-PCA)

Reminder: given samples $x_{i} \in \mathbb{R}^{d}$, PCA finds the directions of maximal covariance. Assume $\sum_{i} x_{i}=\mathbf{0}$ (e.g. by first subtracting the mean).

- The PCA directions u_{1}, \ldots, u_{n} are the eigenvectors of the covariance matrix

$$
C=\frac{1}{m} \sum_{i=1}^{m} x_{i} x_{i}^{\top}
$$

sorted by their eigenvalues.

- We can express x_{i} in PCA-space by $P\left(x_{i}\right)=\sum_{j=1}^{n}\left\langle x_{i}, u_{j}\right\rangle u_{j}$.
- Lower-dim. coordinate mapping: $x_{i} \mapsto\left(\begin{array}{c}\left\langle x_{i}, u_{1}\right\rangle \\ \left\langle x_{i}, u_{2}\right\rangle \\ \ldots \\ \left\langle x_{i}, u_{m}\right\rangle\end{array}\right) \in \mathbb{R}^{n}$

Kernel-PCA

Given samples $x_{i} \in \mathcal{X}$, kernel $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ with an implicit feature $\operatorname{map} \phi: \mathcal{X} \rightarrow \mathcal{H}$. Do PCA in the (implicit) feature space \mathcal{H}.

The kernel-PCA directions
u_{1}, \ldots, u_{n} are the eigenvectors of the covariance operator

$$
C=\frac{1}{m} \sum_{i=1}^{m} \phi\left(x_{i}\right) \phi\left(x_{i}\right)^{\top}
$$

sorted by their eigenvalue.

- Lower-dim. coordinate mapping: $x_{i} \mapsto\left(\begin{array}{c}\left\langle\phi\left(x_{i}\right), u_{1}\right\rangle \\ \left\langle\phi\left(x_{i}\right), u_{2}\right\rangle \\ \ldots \\ \left\langle\phi\left(x_{i}\right), u_{n}\right\rangle\end{array}\right) \in \mathbb{R}^{n}$

Kernel-PCA

Given samples $x_{i} \in \mathcal{X}$, kernel $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ with an implicit feature $\operatorname{map} \phi: \mathcal{X} \rightarrow \mathcal{H}$. Do PCA in the (implicit) feature space \mathcal{H}.

- Equivalently, we can use the eigenvectors u_{j}^{\prime} and eigenvalues λ_{j} of $K \in \mathbb{R}^{m \times m}$, with $K_{i j}=\left\langle\phi\left(x_{i}\right), \phi\left(x_{j}\right)\right\rangle=k\left(x_{i}, x_{j}\right)$

- Coordinate mapping: $x_{i} \mapsto\left(\sqrt{\lambda_{1}} u_{1}^{\prime i}, \ldots, \sqrt{\lambda_{K}} u_{n}^{\prime i}\right)$.

Kernel-PCA

Example: Canonical Correlation Analysis for fMRI Data

1st principal component in space induced by ϕ

Application - Image Superresolution

- Collect high-res face images
- Use KerneIPCA with Gaussian kernel to learn non-linear projections
- For new low-res image:
- scale to target high resolution
- project to closest point in face subspace

[Kim, Jung, Kim, "Face recognition using kernel principal component analysis", Signal Processing Letters, 2002.]

Random Projections

Recently, random matrices have been used for dimensionality reduction:

- Let $W \in \mathbb{R}^{d \times n}$ be a matrix with random entries (i.i.d. Gaussian)

Then one can show that $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$ with $\phi(x)=W x$ does not distort Euclidean distances too much.

Theorem

For fixed $x \in \mathbb{R}^{d}$ let $W \in \mathbb{R}^{n \times d}$ be a random matrix as above. Then, for every $\epsilon \in(0,3)$,

$$
\mathbb{P}\left[\left|\frac{\frac{1}{n}\|W x\|^{2}}{\|x\|^{2}}-1\right|>\epsilon\right] \leq 2 e^{-\epsilon^{2} n / 6}
$$

Note: The dimension of the original data does not show up in the bound!

Multidimensional Scaling (MDS)

Given: data $X=\left\{x^{1}, \ldots, x^{m}\right\} \subset \mathbb{R}^{d}$
Task: find embedding $y^{1}, \ldots, y^{m} \subset \mathbb{R}^{n}$ that preserves pairwise distances $\Delta_{i j}=\left\|x^{i}-x^{j}\right\|$.

Solve, e.g., by gradient descent on

$$
\sum_{i, j}\left(\left\|y^{i}-y^{j}\right\|^{2}-\Delta_{i j}^{2}\right)^{2}
$$

Multiple extensions:

- non-linear embedding
- take into account geodesic distances (e.g. IsoMap)
- arbitrary distances instead of Euclidean

Multidimensional Scaling (MDS)

Multidimensional Scaling (MDS)

Unsupervised Learning Clustering

Clustering

Given: data

$$
X=\left\{x^{1}, \ldots, x^{m}\right\} \subset \mathbb{R}^{d}
$$

Clustering - Transductive

Task: partition the point in X into clusters S_{1}, \ldots, S_{K}.
Idea: elements within a cluster are similar to each other, elements in different clusters are dissimilar

Clustering - Inductive

Task: define a partitioning function $f: \mathbb{R}^{d} \rightarrow\{1, \ldots, K\}$ and set $S_{k}=\{x \in X: f(x)=k\}$.
(allows assigning a cluster label also to new points, $x \neq X$: "out-of-sample extension")

Clustering

Clustering is fundamentally problematic and subjective

Clustering

Clustering is fundamentally problematic and subjective

Clustering

Clustering is fundamentally problematic and subjective

Clustering - Linkage-based

General framework to create a hierarchical partitioning

- initialize: each point x_{i} is it's own cluster, $S_{i}=\{i\}$
- repeat
- take two most similar clusters and merge into a single new cluster
- until K clusters left

Open question: how to define similarity between clusters?

Clustering - Linkage-based

Given: similarity between individual points $d\left(x_{i}, x_{j}\right)$

Single linkage clustering

Smallest distance between any cluster elements

$$
d\left(S, S^{\prime}\right)=\min _{i \in S, j \in \mathbb{S}^{\prime}} d\left(x_{i}, x_{j}\right)
$$

Average linkage clustering
Average distance between all cluster elements

$$
d\left(S, S^{\prime}\right)=\frac{1}{|S|\left|S^{\prime}\right|} \sum_{i \in S, j \in \mathbb{S}^{\prime}} d\left(x_{i}, x_{j}\right)
$$

Max linkage clustering

Largest distance between any cluster elements

$$
d\left(S, S^{\prime}\right)=\max _{i \in S, j \in \mathbb{S}^{\prime}} d\left(x_{i}, x_{j}\right)
$$

Example: Single linkage clustering

Theorem

The edges of a single linkage clustering forms a minimal spanning tree.

Clustering - centroid-based clustering

Let $c_{1}, \ldots, c_{K} \in \mathbb{R}^{d}$ be K cluster centroids. Then a distance-based clustering function, $c: \mathcal{X} \rightarrow\{1, \ldots, K\}$, is given by the assignment

$$
f(x)=\underset{k=1, \ldots, K}{\operatorname{argmin}}\left\|x-c_{i}\right\| \quad \text { (arbitrary tie break) }
$$

(similar to K-means with training set $\left\{\left(c_{1}, 1\right), \ldots,\left(c_{K}, K\right)\right\}$)

Clustering - centroid-based clustering

K-means objective

Find $c_{1}, \ldots, c_{K} \in \mathbb{R}^{d}$ by minimizing the total Euclidean error

$$
\sum_{i=1}^{m}\left\|x_{i}-c_{f\left(x_{i}\right)}\right\|^{2}
$$

Clustering - centroid-based clustering

K-means objective

Find $c_{1}, \ldots, c_{K} \in \mathbb{R}^{d}$ by minimizing the total Euclidean error

$$
\sum_{i=1}^{m}\left\|x_{i}-c_{f\left(x_{i}\right)}\right\|^{2}
$$

Lloyd's algorithm

- Initialize c_{1}, \ldots, c_{K} (random subset of X, or smarter)
- repeat
- set $S_{k}=\left\{i: f\left(x_{i}\right)=k\right\} \quad$ (current assignment)
- $c_{k}=\frac{1}{\left|S_{k}\right|} \sum_{i \in S_{k}} x_{i} \quad$ (mean of points in cluster)
- until no more changes to S_{k}

Demo: http://shabal.in/visuals/kmeans/6.html

Clustering - centroid-based clustering

Alternatives:

- k-mediods: like k-means, but centroids must be datapoints update step chooses mediod of cluster instead of mean
- k-medians: like k-means, but minimize $\sum_{i=1}^{m}\left\|x_{i}-c_{f\left(x_{i}\right)}\right\|$ update step chooses median of each coordinate with each cluster

Clustering - graph-based clustering

For x_{1}, \ldots, x_{m} form a graph $G=(V, E)$ with vertex set $V=\{1, \ldots, m\}$ and edge set E. Each partitioning of the graph defines a clustering of the original dataset.

Choice of edge set
ϵ-nearest neighbor graph

$$
E=\left\{(i, j) \subset V \times V:\left\|x_{i}-x_{j}\right\|<\epsilon\right\}
$$

k-nearest neighbor graph

$$
E=\left\{(i, j) \subset V \times V: x_{i} \text { is a } k \text {-nearest neighbor of } x_{j}\right\}
$$

Weighted graph

Fully connected, but define edge weights $w_{i j}=\exp \left(-\lambda\left\|x_{i}-x_{j}\right\|^{2}\right)$.

Example: Graph-based Clustering

Example: Graph-based Clustering

Example: Graph-based Clustering

Min Cut: biased towards small clusters

Example: Graph-based Clustering

Normalized Cut: balanced weight of cut edges and volume of clusters

Spectral Clustering

Approximate solution to Normalized Cut

Spectral Clustering

- Input: weight matrix $W \in \mathbb{R}^{m \times m}$
- compute graph Laplacian $L=W-D$, for $D=\operatorname{diag}\left(d_{1}, \ldots, d_{m}\right)$ with $d_{i}=\sum_{j} w_{i j}$.
- let $v \in \mathbb{R}^{m}$ be the eigenvector of L corresponding to the second smallest eigenvalue (the smallest is 0 , since L is singular)
- assign x_{i} to cluster 1 if $v_{i} \geq 0$ and to cluster 2 otherwise.

To obtain more than 2 clusters apply recursively, each time splitting the largest remaining cluster.

Clustering Axioms [Kleinberg, "An Impossibility Theorem for Clustering", NIPS 2002]

Scale-Invariance

For any distance d and any $\alpha>0, f(d)=f(\alpha \cdot d)$

Richness

Range (f) is the set of all partitions of $\{1, \ldots, m\}$

Consistency

Let d and d^{\prime} be two distance functions. If $f(d)=\Gamma$, and d^{\prime} is a Γ-transform of d, then $f\left(d^{\prime}\right)=\Gamma$.

Definition: d^{\prime} is a Γ-transform of d, iff for any i, j in the same cluster $d^{\prime}(i, j) \leq d(i, j)$ and for i, j in different clusters, $d^{\prime}(i, j) \geq d(i, j)$.

Scale-Invariance

For any distance d and any $\alpha>0, f(d)=f(\alpha \cdot d)$

Richness

Range (f) is the set of all partitions of $\{1, \ldots, m\}$

Consistency

Let d and d^{\prime} be two distance functions. If $f(d)=\Gamma$, and d^{\prime} is a Γ-transform of d, then $f\left(d^{\prime}\right)=\Gamma$.

Definition: d^{\prime} is a Γ-transform of d, iff for any i, j in the same cluster $d^{\prime}(i, j) \leq d(i, j)$ and for i, j in different clusters, $d^{\prime}(i, j) \geq d(i, j)$.

Theorem: "Impossibility of Clustering'". For each $m \geq 2$, there is no clustering function f that satisfies all three axioms at the same time.

Scale-Invariance

For any distance d and any $\alpha>0, f(d)=f(\alpha \cdot d)$

Richness

Range (f) is the set of all partitions of $\{1, \ldots, m\}$

Consistency

Let d and d^{\prime} be two distance functions. If $f(d)=\Gamma$, and d^{\prime} is a Γ-transform of d, then $f\left(d^{\prime}\right)=\Gamma$.

Definition: d^{\prime} is a Γ-transform of d, iff for any i, j in the same cluster $d^{\prime}(i, j) \leq d(i, j)$ and for i, j in different clusters, $d^{\prime}(i, j) \geq d(i, j)$.

Theorem: "Impossibility of Clustering'". For each $m \geq 2$, there is no clustering function f that satisfies all three axioms at the same time.
(but not all hope lost: "Consistency" is debatable...)

Final project

Part 1

- Go to https://kaggle.com/join/ist_sml2016/ and participate in the challenge: "Final project for Statistical Machine Learning Course 2016 at IST Austria"

\#	$\Delta 3$ d	Team Name	Score (3)	Entries	Last Submission UTC (Best - Last Submission)
1	-	AlexanderKolesnikov	0.97367	6	Tue, 01 Jul 2014 08:11:23 (-12.2h)
2	-	Jan Humplik	0.97263	6	Tue, 01 Jul 2014 13:56:24 (-2.7h)
3	new	Michal Rolínek	0.91640	2	Mon, 30 Jun 2014 10:45:30 (-1.3h)
4	11	Georg Nebehay	0.86330	9	Tue, 01 Jul 2014 15:07:58
5	new	michael.meidlinger	0.75163	3	Tue, 01 Jul 2014 12:05:58
6	$\downarrow 2$	Christoph Lampert	0.48705	1	Wed, 18 Jun 2014 15:52:14

passing criterion: beat the baselines (linear SVM and LogReg)

Part 2

- send Alex a short (one to two pages) report that explains what exactly you did to achieve these results, including data preprocessing, classifier, software used, model selection, etc.

Deadline: Thursday, 5th May midnight MEST

