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1 Bayes Classifier

In the lecture we saw that the Bayes classifier is

c∗(x) := argmaxy∈Y p(y|x). (1)

a) Which of these decision functions is equivalent to c∗?

• c1(x) := argmaxy p(x)

• c2(x) := argmaxy p(y)

• c3(x) := argmaxy p(x, y)

• c4(x) := argmaxy p(x|y)

For Y = {−1,+1}, we can express the Bayes classifier as c∗(x) = sign[log p(+1|x)
p(−1|x) ]

b) Which of the following expressions are equivalent to c∗?

• c5(x) := sign[ log p(x,+1)
log p(x,−1) ]

• c6(x) := sign[log p(+1|x) + log p(−1|x)]

• c7(x) := sign[log p(+1|x)− log p(−1|x)]

• c8(x) := sign[log p(x,+1)− log p(x,−1)]

• c9(x) := sign[p(+1|x)− p(−1|x)]

• c10(x) := sign[p(x,+1)
p(x,−1) − 1]

• c11(x) := sign[ log p(+1|x)
log p(−1|x) − 1]

• c12(x) := sign[log p(x|+1)
p(x|−1) + log p(+1)

p(−1) ]

2 Gaussian Discriminant Analysis

Gaussian Discriminant Analysis (GDA) is an easy-to-compute method for generative probabilistic classification.
For a training set D = {(x1, y1), . . . , (xn, yn)} ⊂ Rd × {1, . . . ,M}, set

µ :=
1

n

n∑
i=1

xi, Σ :=
1

n

n∑
i=1

(xi − µ)(xi − µ)>, µy :=
1

|{i : yi = y}|
∑
{i:yi=y}

xi, for y ∈ Y , (2)

and define

p(x|y) =
1√

2π det Σ
exp(−1

2
(x− µy)

>Σ−1 (x− µy)) (3)

a) Show for binary classification (M = 2): GDA leads to a linear decision rule, regardless of what p(y) is.
b) GDA is popular when there are many classes but only few examples for each class. Can you imagine why?
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3 Practical Experiments III

• Pick one more training methods from the previous sheet and implement it.

• Implement Gaussian Discriminant Analysis as in exercise 2.

• What error rates do both methods achieve on the datasets from the previous sheet?

4 Practical Experiments IV

• Create an ”XOR”-dataset in R2 (as in the figure on the right) that has:

– 50 points of class 1 uniformly randomly located in [0, 1]× [0, 1]

– another 50 points of class 1 uniformly randomly located in [−1, 0]× [−1, 0]

– 50 points of class −1 uniformly randomly located in [−1, 0]× [0, 1]

– another 50 points of class −1 uniformly randomly located in [0, 1]× [−1, 0]
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• Split the dataset randomly into 2 parts: 50% for training, 50% as test set.

• Implement a Gaussian Mixture Model (GMM) with k components in Rd. For training, use the EM-
algorithm as introduced in Lecture 2.

• For each y ∈ {±1}, fit one GMM with k = 2 to the corresponding points of the XOR-datasets.

• Evaluate the classifier that is induced by the GMM. What is its error rate on the test data?

5 Optional: Uniform-Weight Gaussian Mixture Model

Imagine you want to learn a GMM, but all k components should have the same mixture weights, π = ( 1
k
, . . . , 1

k
).

What happens if you try to find the maximum likelihood solution by simply taking the derivative of the
likelihood? What happens to the EM algorithm? Can you come up with a better algorithm?

6 Refresher: Convex Duality

Refresh your knowledge on convexity, Lagrangian multipliers and convex duality.
You don’t have to hand in anything, but it’ll be a useful preparation for the next lecture and exercise sheet.
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