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1 Bayes Classifier
In the lecture we saw that the Bayes classifier is

c(x) = argmax,cy p(y|z). (1)
a) Which of these decision functions is equivalent to ¢*?

e ci(7) := argmax, p() e c3(v) := argmax, p(v,y)

® cy(7) := argmax, p(y) e cy(r) := argmax, p(v|y)

For ) = {—1,+1}, we can express the Bayes classifier as ¢*(z) = sign[log ggﬂ:g]

b) Which of the following expressions are equivalent to ¢*?

o c5(x) = sign[[ZEE1) o co(r) := sign[p(+1|x) — p(—1|z)]

e cg(x) := sign[log p(+1|x) + log p(—1|z)] e co(z) = Sign[igij—f}; —1]

o cr(z) := sign[log p(+1|z) — log p(—1|2)] o ci(w) == sign[ZEEEE — 1]

o cs(x) := signflog p(x, +1) — log p(x, ~1)] o cio(z) = sign[log B + log )]

2 Gaussian Discriminant Analysis

Gaussian Discriminant Analysis (GDA) is an easy-to-compute method for generative probabilistic classification.
For a training set D = {(z,y1),..., (z",y")} CR% x {1,..., M}, set
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a) Show for binary classification (M = 2): GDA leads to a linear decision rule, regardless of what p(y) is.
b) GDA is popular when there are many classes but only few examples for each class. Can you imagine why?



3 Practical Experiments III
e Pick one more training methods from the previous sheet and implement it.

e Implement Gaussian Discriminant Analysis as in exercise 2.

e What error rates do both methods achieve on the datasets from the previous sheet?

4 Practical Experiments IV

e Create an ”XOR”-dataset in R? (as in the figure on the right) that has:

— 50 points of class 1 uniformly randomly located in [0, 1] x [0, 1] --=
— another 50 points of class 1 uniformly randomly located in [—1,0] x [—1,0] A

— 50 points of class —1 uniformly randomly located in [—1,0] x [0, 1] -

— another 50 points of class —1 uniformly randomly located in [0, 1] x [—1,0] = . .
e Split the dataset randomly into 2 parts: 50% for training, 50% as test set.

e Implement a Gaussian Mizture Model (GMM) with k components in RY. For training, use the EM-
algorithm as introduced in Lecture 2.

e For each y € {£1}, fit one GMM with k& = 2 to the corresponding points of the XOR-datasets.

e Evaluate the classifier that is induced by the GMM. What is its error rate on the test data?

5 Optional: Uniform-Weight Gaussian Mixture Model

Imagine you want to learn a GMM, but all £ components should have the same mixture weights, 7 = (%, ey %)
What happens if you try to find the maximum likelihood solution by simply taking the derivative of the
likelihood? What happens to the EM algorithm? Can you come up with a better algorithm?

6 Refresher: Convex Duality

Refresh your knowledge on convezity, Lagrangian multipliers and convexr duality.
You don’t have to hand in anything, but it’ll be a useful preparation for the next lecture and exercise sheet.



