Statistical Machine Learning

https://cvml.ist.ac.at/courses/SML_W18

Christoph Lampert

IENTY N AUSTRIA

Institute of Science and Technology

Spring Semester 2018,/2019
Lecture 3

1/41

https://cvml.ist.ac.at/courses/SML_W18

Overview (tentative)

Date no. | Topic
Oct 08 | Mon | 1 | A Hands-On Introduction
Oct 10 | Wed | — | self-study (Christoph traveling)
Oct 15 | Mon | 2 | Bayesian Decision Theory
Generative Probabilistic Models
Oct 17 | Wed | 3 | Discriminative Probabilistic Models
Maximum Margin Classifiers
Oct 22 | Mon | 4 | Generalized Linear Classifiers, Optimization
Oct 24 | Wed | 5 | Evaluating Predictors; Model Selection
Oct 29 | Mon | — | self-study (Christoph traveling)
Oct 31 | Wed | 6 | Overfitting/Underfitting, Regularization
Nov 05 | Mon | 7 | Learning Theory I: classical/Rademacher bounds
Nov 07 | Wed | 8 | Learning Theory Il: miscellaneous
Nov 12 | Mon | 9 | Probabilistic Graphical Models |
Nov 14 | Wed | 10 | Probabilistic Graphical Models Il
Nov 19 | Mon | 11 | Probabilistic Graphical Models Il
Nov 21 | Wed | 12 | Probabilistic Graphical Models IV
until Nov 25 final project 2/41

Learning from Data

In the real world, p(z,y) is unknown, but we have a training set D.
There's at least 3 approaches:

Given a training set D, we call it

a generative probabilistic approach:
if we use D to build a model p(x,y) of p(z,y), and then define

c(z) == argmax p(z,y) or c¢(z):=argmin E {((y,y).
yeY yeYy y~p(z,y)
a discriminative probabilistic approach:
if we use D to build a model p(y|z) of p(y|x) and define

c(z) == argmax p(y|z) or co(z):=argmin E ((y,y).
yeY yey y~p(ylz)
a decision theoretic approach: if we use D to directly seach for a

classifier ¢ in a hypothesis class H.
3/41

Discriminative Probabilistic Models

Observation

Task: spam classification, X = {all possible emails},) = {spam, ham}.
What's, e.g., p(x|ham)?

For every possible email, a value how likely it is to see that email,
including:

all possible languages,

all possbile topics,

an arbitrary length,

all possible spelling mistakes, etc.

This is much more general (and much harder) than just deciding if an
email is spam or not!

"When solving a problem, do not solve a more
general problem as an intermediate step."
(Vladimir Vapnik, 1998)

4/41

Instead of p(z,y) = p(z|y)p(y), we can also use p(z,y) = p(y|z)p(x).
Since argmax, p(z,y) = argmax, p(y|z), we don't need to model

p(z), only p(y|z).

‘ Let’s use D to estimate p(y|z). ‘

5 /41

Instead of p(z,y) = p(z|y)p(y), we can also use p(z,y) = p(y|z)p(x).
Since argmax, p(z,y) = argmax, p(y|z), we don't need to model

p(z), only p(y|z).

‘ Let’s use D to estimate p(y|z). ‘

Visual intuition:
class conditional densities

||'.l|_1.|."J}
ﬂy\ N = likelihood plx[y)

x| adPla) . ;
6 BYP(B)]_Dln’F denmty.
likelihood*prior: p(x|ylply)
plalx) \f T p(hx) class posteriors
A ply=px|yIply)pix)

X

5 /41

Instead of p(z,y) = p(z|y)p(y), we can also use p(z,y) = p(y|z)p(z).
Since argmax, p(z,y) = argmax, p(y|r), we don’t need to model

p(x), only p(y|z).

‘Let’s use D to estimate p(y|x).‘

Example (Spam Classification)

Is p(y|z) really easier than, e.g., p(z|y)?
p("vlagra"|spam) is some positive value (not every spam is viagra)

p(spam| "vlagra") is almost surely 1.

For p(y|x) we treat x as given, we don't need to know its probability.

5 /41

Nonparametric Discriminative Model

Idea: split X' into regions, for each region store an estimate p(y|z).

X

p(1]x)=0.9
p(2]x)=0.0
p(3[x)=0.1

p(1|x)=0.7

p(2|x)=0.2

p(3|x)=0.1
p(1]x)=0.1
p(2]x)=0.8
p(3]x)=0.1

p(1]x)=0.01 p(2|x)=0.98
p(3]x)=0.01

6 /41

Nonparametric Discriminative Model

Idea: split X" into regions, for each region store an estimate p(y|z).

For example, using a decision tree:
training: build a tree
prediction: for new example x, find its leaf
output p(ylx) = 2%, where

» n is the number of examples in the leaf,
> n, is the number of example of label y in the leaf.

6 /41

Nonparametric Discriminative Model

Idea: split X" into regions, for each region store an estimate p(y|z).

For example, using a decision tree:
training: build a tree
prediction: for new example x, find its leaf
output p(ylx) = 2%, where

» n is the number of examples in the leaf,
> n, is the number of example of label y in the leaf.

Note: prediction rule

(w) = argmax p(y|z)
Y
is predicts the most frequent label in each leaf (same as in first lecture).

6 /41

Parametric Discriminative Model: Logistic Regression

Setting. We assume X C R? and Y = {—1,+1}.

Definition (Logistic Regression (LogReg) Model)

Modeling

1
1+ exp(—y(w,x))’

Pyle; w) =

with parameter vector w € R? is called a logistic regression model.

7 /41

Parametric Discriminative Model: Logistic Regression

Setting. We assume X C R? and Y = {—1,+1}.

Definition (Logistic Regression (LogReg) Model)

Modeling

1
1+ exp(—y(w,x))’

Pyle; w) =

with parameter vector w € R? is called a logistic regression model.

Lemma

P(y|z; w) is a well defined probability density w.r.t. y for any w € R?.

Proof. elementary.

7 /41

How to set the weight vector w (based on D)

Logistic Regression Training

Given a training set D = {(z!,9'),..., (2", y™)}, logistic regression
training sets the free parameter vector as

n
wpr = argmin Y _log (14 exp(—y'(w, z")))
weRd ;4

Lemma (Conditional Likelihood Maximization)

wrr from Logistic Regression training maximizes the conditional data
likelihood w.r.t. the LogReg model,

n

wrr = argmax p(yl, ... 9"zt ... 2", w)

weR?

8 /41

Maximizing

p(DY DX,

n

=1

(y']z",w)

is equivalent to minimizing its negative logarithm

—log p(DY|D¥,

w)

—log

prlx w) Zlogpy!w w)

=l =1
1
T ¥ exp(—yi(w,2%))’

llog 1 — log(1 + exp(—y(w,2"))],

og(1 + exp(—y*(w, z*)).

9/41

Alternative Explanation

Definition (Kullback-Leibler (KL) divergence)

Let p and ¢ be two probability distributions (for discrete Z) or
probabilitiy densities with respect to a measure d (for continuous Z).
The Kullbach-Leibler (KL)-divergence between p and ¢ is defined as

Lipla) = ot o)l ; or Kol = /Z p<z>1og§8 dA(2).

(with convention 0log0 = 0, and alog § = oo for a > 0).

10/ 41

Alternative Explanation

Definition (Kullback-Leibler (KL) divergence)

Let p and ¢ be two probability distributions (for discrete Z) or
probabilitiy densities with respect to a measure d (for continuous Z).
The Kullbach-Leibler (KL)-divergence between p and ¢ is defined as

z) _ p(2)
L) = 3 ot Yog 103, or KL(pHQ)_Z /Z p(=)log 275 ax(2),

(with convention 0log0 = 0, and alog § = oo for a > 0).

KL is a similarity measure between probability distributions. It fulfills
0<KL(pllg) <o, and KL(pllg) =0 & p=gq.
However, KL is not a metric.

it is in general not symmetric, K L(q ||p) # KL(p|q),
it does not fulfill the triangle inequality.

10/ 41

Alternative Explanation of Logistic Regression Training

Definition (Expected Kullback-Leibler (KL) divergence)

Let p(z,y) be a probability distribution over (z,y) € X x) and let
p(y|x) be an approximation of p(y|x).

We measure the approximation quality by the expected KL-divergence
between p and ¢ over all z € X:

KLexp(p [lg) = xjg(x){ KL(p(:|2)llg(-|x)) }

The parameter wy,r obtained by logistic regression training approximately
minimizes the K L divergence between p(y|x;w) and p(y|x).

11 /41

Proof.

We show how maximizing the conditional likelihood relates to KLexp:
KLep(plp) = E 3" plyla)log 2471
a~p() £, pylz, w)

= E lo) — E log 9 T, w
artan) B = By OB)

indep. of w

We can’t maximize E,) p(z.y) l0g P(y|z, w) directly, because p(z,y) is
unknown. But we can maximimize its empirical estimate based on D:

(z,y)~p(z,y) (zi,y*)eD

log of conditional data likelihood

The approximation will get better the more data we have. O

12 /41

Solving Logistic Regression numerically — Optimization |

Theorem

Logistic Regression training,

wrr = argmin L(w) for L(w) = log (1 + exp(—y"(w,z"))),
weR =il

is a C*°-smooth, unconstrained, convex optimization problem.

Proof.
1. it's an optimization problem,
2. it's unconstrained,
3. it's smooth (the objective function is C*° differentiable),
4

. remains to show: the objective function is a convex function.
Since L is smooth, it's enough to show that its Hessian matrix
(the matrix of 2nd partial derivatives) is everywhere positive definite.

13 /41

We compute first the gradient and then the Hessian of

= i log(1 + exp(—y" (w, z")).
i=1

Vi L ZVIog + exp(—y'(w, z%)).
i=1

use the chain rule, Vf(g(w)) = %(g(w))Vg(w), and dl(ﬁ(t) = %

Z 1+ exp(—y'(w, 2")]
B 1 + exp(—y* (w, 27)

_ = exp(—y*(w,z")) i w. 2
= 2 T oxp(yi{una) ¥ Y (02

=p(—y'|z’,w)

i

use the chain rule again, %exp(t) = exp(t), and V,(w, z?) =z

= Z —yt|zt, w)] yiat

14 /41

HyL(w) =VV'L(w)=— zn:[Vﬁ(—yi\xi,w)] yiat
=1
1
1+ exp(y*(w, z%))
V(1 + exp(y'(w,z"))]
[1 + exp(y*(w, z))]?

use quotient rule, Vﬁ = —%, and chain rule,

VH(—y'|z', w) =V

_ exp(y* (w, ")) . 2
= Tt e,z Y

= —(p(—y'|z")p(y'[2", w)y's’

insert into above expression for H,,L(w)

n
H=3 p(—y'ls)p(y'a", w) g'a'l
=1 =0 sym.pos.def.

A positively weighted linear combination of pos.def. matrices is pos.def., 4,

Example plot: LogReg objective for three examples in R>

000'Y

1.0
16 /41

Numeric Optimization

Convex optimization is a well understood field. We can use, e.g.,
gradient descent will converge to the globally optimal solution!

Steepest Descent Minimization with Line Search

input e > 0 tolerance (for stopping criterion)

1w+ 0

2: repeat

3 v —Vyu L(w) {descent direction}
4. 1< argmin, ., L(w +) {1D line search}
5 w4~ w+nu

6: until ||| < e

output w € R? learned weight vector

Faster conference from methods that use second-order information, e.g.,
conjugate gradients or (L-)BFGS — convex optimization lecture

17 /41

Binary classification with a LogReg Models

A discriminative probability model, p(y|x), is enough to make decisions:

c(x) = argmaxp(y|lr) or c(r)=argmin [E ((y,y).
yeY yey y~p(ylz)

For Logistic Regression, this is particularly simple:

The LogReg classification rule for 0/1-loss is

c(x) = sign (w, x).

For a loss function ¢ = (CCL b) the rule is

d

B

co(x) = sign| (w,) + log 7

In particular, the decision boundaries is linear (or affine).

p(]z;w)

Proof. Elementary, since log D) = (w, x)

18 /41

Multiclass Logistic Regression

For Y ={1,..., M}, we can do two things:

Parametrize p(y|z; W) using M —1 vectors, wy,...,wy—1 € R?, as

eXp(<wy,x>)

pylx, w) = fory=1,...,M — 1,
T+ 57 exp((uy, 7))
(M, w) !
p(M |z, w) = — .
L+ 3230 exp((wy, z))
Parametrize p(y|z;) using M vectors, w1, ..., wy € RY, as

Sl o) = exp({wy, 7))
pylz, w) Mlexp(<wj75€>)

fory=1,..., M,

Second is more popular, since it's easier to implement and analyze.

Decision boundaries are still piecewise linear, c(z) = argmax, (wy,).

19 /41

Summary: Discriminative Models

Discriminative models treats the input data, z, as fixed and only model
the distribution of the output labels p(y|z).
Discriminative models, in particular LogReg, are popular, because

they often need less training data than generative models,

they provide an estimate of the uncertainty of a decision p(c(z)|x),

training them is often efficient, e.g. big companies train LogReg
models routinely from billions of examples.

But: they also have drawbacks
often prr(y|z) 4 p(y|z), even for n — oo,

they usually are good for prediction, but they do not reflect the
actual mechanism.

Note: there are much more complex discriminative models than LogReg,
e.g. Conditional Random Fields (maybe later).

20 /41

Even easier than estimating p(y|z) (or p(x,y)) should be to just estimate
the decision boundary between classes.

p(y=0]|x)

21 /41

Maximum Margin Classifiers

Let’s use D to estimate a classifier ¢ : X —) directly.

22 /41

Maximum Margin Classifiers

‘ Let’s use D to estimate a classifier ¢ : X —) directly.

For a start, we fix
D= {(x17y1)7"',(xn,yn)},
Y ={+1,-1},

we look for classifiers with linear decision boundary.

Several of the classifiers we saw had linear decision boundaries:

Perceptron
Generative classifiers for Gaussian class-conditional densities with

shared covariance matrix

Logistic Regression

What's the best linear classifier?

22 /41

Linear classifiers

Definition
Let

F={f:R*S Rwith f(z) = b+ a1z + -+ agrqg = b+ (w, z) }
be the set of linear (affine) function from R? — R.
A classifier g : X —) is called linear, if it can be written as
g(x) = sign f(z)
for some f € F.

We write G for the set of all linear classifiers.

23 /41

A linear classifier, g(x) = sign{w, z), with b =0

24 /41

A linear classifier g(x) = sign((w, z) + b), with b > 0

20l A

10 -

A
" ’
e
¢'¢’
00 b >
)'

25 /41

Feature augmentation

The bias term is good for intuition, but annoying in analysis:

Useful trick: feature augmentation

Adding a constant feature allows us to avoid models with explicit bias
term:

instead of z = (z!,...,2%) € R, use # = (2!,... 29, 1) € R4*!

for any @ € R, think @ = (w,b) with w € R% and b € R

Linear function in R4t1:

d+1 d
f(@) = (w, &) szxz > Wi + Wap1&ar1 = (w,z) +b
i=1
’ Linear classifier with bias in R? = linear classifier with no bias in R4*+1

Augmenting with other (larger) values than 1 can make sense, see later...
26 /41

Linear classifiers

Definition (Ad hoc)

We call a classifier, g, correct (for a training set D), if it predicts the
correct labels for all training examples:

g(zh) =y fori=1,...,n.

Example (Perceptron)

if the Perceptron converges, the result is an correct classifier.

any classifier with zero training error is correct.

27 /41

Linear classifiers

Definition (Ad hoc)

We call a classifier, g, correct (for a training set D), if it predicts the
correct labels for all training examples:

g(zh) =y fori=1,...,n.

Example (Perceptron)

if the Perceptron converges, the result is an correct classifier.

any classifier with zero training error is correct.

Definition (Linear Separability)

A training set D is called linearly separable, if it allows a correct linear
classifier (i.e. the classes can be separated by a hyperplane).

27 /41

A linearly separable dataset and a correct classifier

2.0/ A
1.0}
o o
¢
. o*
*
—1.0 0.0 1.0 2.0 3.0

28 /41

A linearly separable dataset and a correct classifier

28 /41

A linearly separable dataset and a correct classifier

2.0 A

1.0}

0.0t

—1.0 3.0

28 /41

An incorrect classifier

i A
2.0 .
0?0 o
n O N
i O
1.0 A
& o
*
*
*
0.0} >
—1.0 0.0 1.0 2.0 3.0

29 /41

Linear Classifiers

Definition (Ad hoc)

The robustness of a classifier g (with respect to D) is the largest
amount, p, by which we can perturb the training samples without
changing the predictions of g.

g(azi + €) :g(xi), foralli=1,...,n.
for any € € R? with || < p.
Example

constant classifier, e.g. ¢(z) = 1: very robust (p = c0),
(but it is not correct, in the sense of the previous definition)

robustness of the Perceptron: can be arbitrarily small
(see Exercise...)

30 /41

Robustness, p, of a linear classifier

2.0 A

WA
1.0}

&
¢
. o*
*
0.0} >
—1.0 0.0 1.0 2.0 3.0

31 /41

Definition (Margin)

Let f(z) = (w,x) + b define a correct linear classifier.
Then the smallest (Euclidean) distance of any training example from the
decision hyperplane is called the margin of f (with respect to D).

Lemma

We can compute the margin of a linear classifier f = (w,z) + b as

p= mln i>+b‘.

i=1 !wH

Proof.
High school maths: distance between a points and a hyperplane in
Hessian normal form.

32 /41

Margin, p, of a linear classifier

2.0 A

1.0}

*
L4
*
0.0 ..
. .
.
.

—1.0 3.0

33 /41

The robustness of a linear classifier function g(x) = sign f(x) with
f(z) = (w, x) is identical to the margin of f.

34 /41

Theorem

The robustness of a linear classifier function g(x) = sign f(x) with

f(z) = (w, x) is identical to the margin of f.

Proof by Picture

QL
@
‘_.0
.
PR 3 _
1.0 2.0

3.0

20l A
\ 0
1.0}
o
¢
B of
TS
0.0} >
—10 0.0 1.0 2.0 3.0

34 /41

Proof (blackboard). Foranyi=1,...,n and any € € R?
f@' +e) = (w2’ +¢) = (w,2") + (w,) = f(a") + (w,e),
so it follows (Cauchy-Schwarz inequality) that
f@) = lwlllel < fl@+e < fa')+|wll]el.

Checking the cases € = j:d'%hw, we see that these inequalities are sharp.

To ensure g(x* + €) = g(a') for all training samples, f(z°) and f(z* + ¢)

have the same sign for all ¢, i.e. |f(z%)] > ||w]|||e|| fori =1,...,n.

This inequality holds for all samples, so in particular it holds for the one
of minimal score, and min; |f(z")| = min; [(w, 2")| = p.
O

35 /41

Maximum-Margin Classifier

Let D be a linearly separable training set. Then the most robust,
correct linear classifier (without bias term) is given by
g(x) = sign{w*, x) where w* are the solution to

1
min f||w\|2
weRd 2

subject to ' ‘
y'((w,z*)) >1, fori=1,...,n.

The classifier defined above is call Maximum (Hard) Margin
Classifier, or Hard-Margin Support Vector Machine (SVM)

It is unique (follows from strictly convex optimization problem).

36 /41

Proof.
1. All w that fulfill the inequalities yield correct classifiers.

2. Since D is linearly separable, there exists some v with

sign(v, ') = y;, ie yi(v,2') =7 >0.
for v = min; yi<v,xi>. So ¥ = v /7, fulfills the inequalities and we
see that the constraint set is at least not empty.

Proof.

1. All w that fulfill the inequalities yield correct classifiers.

2. Since D is linearly separable, there exists some v with

sign(v, ') = y;, ie yi(v,2') =7 >0.

for v = min, y;(v,2"). So © = v/~, fulfills the inequalities and we
see that the constraint set is at least not empty.

3. Now we check (withi=1,...,n):
1 . .
min —||w|? sb.t. y'(w,z%) > 1
weRd 2

1
< max -—-

sb.t. y'(w,z') > 1
wekd [|lw]]

/
. W .
max p sbt. y{—,2") >1
{w’:|w'|=1},p€R < p)

max sb.t. yi{w, x) >
{wiw o} per © yw,ah) 2 p

max p sbt. [(w',z")| > p and sign(w’,z’) =y
{w”:|w'||=1},p€R

37 /41

Proof.

1. All w that fulfill the inequalities yield correct classifiers.

2. Since D is linearly separable, there exists some v with

sign(v, ') = y;, ie yi(v,2') =7 >0.

for v = min, y;(v,2"). So © = v/~, fulfills the inequalities and we
see that the constraint set is at least not empty.

3. Now we check (withi=1,...,n):
1 . .
min —||w|? sb.t. y'(w,z%) > 1
weRd 2

1
< max -—-

sb.t. y'(w,z') > 1
wekd [|lw]]

/
. W .
max p sbt. y{—,2") >1
{w’:|w'|=1},p€R < p)

max sb.t. yi{w, x) >
{wiw o} per © yw,ah) 2 p

max p sbt. [(w',z")| > p and sign(w’,z’) =y
{w":|w'||=1},p€R

and correct 37/41

Non-Separable Training Sets

Observation (Not all training sets are linearly separable.)

38 /41

Definition (Maximum Soft-Margin Classifier)

Let D be a training set, not necessarily linearly separable. Let C' > 0.
Then the classifier g(z) = sign(w*, z) + b) where (w*, b*) are the
solution to

. - C 7
min] +CY ¢

d n
weR® £€R i1
subject to

g ((w, 2’y +b) >1—¢, fori=1,... n.
€>0, fori=1,...,n.

is called Maximum (Soft-)Margin Classifier or Linear Support
Vector Machine.

39 /41

Maximum Soft-Margin Classifier

The maximum soft-margin classifier exists and is unique for any C' > 0.

Proof. optimization problem is strictly convex

Remark

The constant C' > 0 is called regularization parameter.

It balances the wishes for robustness and for correctness
C — 0: mistakes don't matter much, emphasis on short w

C — o0: as few errors as possible, might not be robust

We'll see more about this in the next lecture.

40 /41

Sometimes, a soft margin is better even for linearly separable datasets!

A ool A
2.0 2.0 T
o S5
1.0 1.0} fi"
K A
(3 B
TS TS
0.0 > 0.0[. >
10 0.0 1.0 2.0 3.0 —1.0 0.0 1.0 2.0 3.0

Left: small margin, no errors)

Right: large margin, but 1 error

41 /41

