
Statistical Machine Learning
https://cvml.ist.ac.at/courses/SML_W18

Christoph Lampert

Spring Semester 2018/2019
Lecture 3

1 / 41

https://cvml.ist.ac.at/courses/SML_W18

Overview (tentative)

Date no. Topic
Oct 08 Mon 1 A Hands-On Introduction
Oct 10 Wed – self-study (Christoph traveling)
Oct 15 Mon 2 Bayesian Decision Theory

Generative Probabilistic Models
Oct 17 Wed 3 Discriminative Probabilistic Models

Maximum Margin Classifiers
Oct 22 Mon 4 Generalized Linear Classifiers, Optimization
Oct 24 Wed 5 Evaluating Predictors; Model Selection
Oct 29 Mon – self-study (Christoph traveling)
Oct 31 Wed 6 Overfitting/Underfitting, Regularization
Nov 05 Mon 7 Learning Theory I: classical/Rademacher bounds
Nov 07 Wed 8 Learning Theory II: miscellaneous
Nov 12 Mon 9 Probabilistic Graphical Models I
Nov 14 Wed 10 Probabilistic Graphical Models II
Nov 19 Mon 11 Probabilistic Graphical Models III
Nov 21 Wed 12 Probabilistic Graphical Models IV
until Nov 25 final project 2 / 41

Learning from Data

In the real world, p(x, y) is unknown, but we have a training set D.
There’s at least 3 approaches:
Definition
Given a training set D, we call it
• a generative probabilistic approach:

if we use D to build a model p̂(x, y) of p(x, y), and then define

c(x) := argmax
y∈Y

p̂(x, y) or c`(x) := argmin
y∈Y

E
ȳ∼p̂(x,ȳ)

`(ȳ, y).

• a discriminative probabilistic approach:
if we use D to build a model p̂(y|x) of p(y|x) and define

c(x) := argmax
y∈Y

p̂(y|x) or c`(x) := argmin
y∈Y

E
ȳ∼p̂(ȳ|x)

`(ȳ, y).

• a decision theoretic approach: if we use D to directly seach for a
classifier c in a hypothesis class H.

3 / 41

Discriminative Probabilistic Models

Observation
Task: spam classification, X = {all possible emails},Y = {spam, ham}.
What’s, e.g., p(x|ham)?
For every possible email, a value how likely it is to see that email,
including:
• all possible languages,
• all possbile topics,
• an arbitrary length,
• all possible spelling mistakes, etc.

This is much more general (and much harder) than just deciding if an
email is spam or not!

"When solving a problem, do not solve a more
general problem as an intermediate step."

(Vladimir Vapnik, 1998)

4 / 41

Observation
Instead of p(x, y) = p(x|y)p(y), we can also use p(x, y) = p(y|x)p(x).
Since argmaxy p(x, y) = argmaxy p(y|x), we don’t need to model
p(x), only p(y|x).

Let’s use D to estimate p(y|x).

Visual intuition:

5 / 41

Observation
Instead of p(x, y) = p(x|y)p(y), we can also use p(x, y) = p(y|x)p(x).
Since argmaxy p(x, y) = argmaxy p(y|x), we don’t need to model
p(x), only p(y|x).

Let’s use D to estimate p(y|x).

Visual intuition:

5 / 41

Observation
Instead of p(x, y) = p(x|y)p(y), we can also use p(x, y) = p(y|x)p(x).
Since argmaxy p(x, y) = argmaxy p(y|x), we don’t need to model
p(x), only p(y|x).

Let’s use D to estimate p(y|x).

Example (Spam Classification)

Is p(y|x) really easier than, e.g., p(x|y)?
• p("v1agra"|spam) is some positive value (not every spam is viagra)
• p(spam|"v1agra") is almost surely 1.

For p(y|x) we treat x as given, we don’t need to know its probability.

5 / 41

Nonparametric Discriminative Model

Idea: split X into regions, for each region store an estimate p̂(y|x).

X
p(1|x)=0.9
p(2|x)=0.0
p(3|x)=0.1

p(1|x)=0.7
p(2|x)=0.2
p(3|x)=0.1

p(1|x)=0.1
p(2|x)=0.8
p(3|x)=0.1

p(1|x)=0.01 p(2|x)=0.98

p(3|x)=0.01

Note: prediction rule
c(x) = argmax

y
p̂(y|x)

is predicts the most frequent label in each leaf (same as in first lecture).

6 / 41

Nonparametric Discriminative Model

Idea: split X into regions, for each region store an estimate p̂(y|x).

For example, using a decision tree:
• training: build a tree
• prediction: for new example x, find its leaf
• output p̂(y|x) = ny

n , where
I n is the number of examples in the leaf,
I ny is the number of example of label y in the leaf.

Note: prediction rule

c(x) = argmax
y

p̂(y|x)

is predicts the most frequent label in each leaf (same as in first lecture).

6 / 41

Nonparametric Discriminative Model

Idea: split X into regions, for each region store an estimate p̂(y|x).

For example, using a decision tree:
• training: build a tree
• prediction: for new example x, find its leaf
• output p̂(y|x) = ny

n , where
I n is the number of examples in the leaf,
I ny is the number of example of label y in the leaf.

Note: prediction rule

c(x) = argmax
y

p̂(y|x)

is predicts the most frequent label in each leaf (same as in first lecture).

6 / 41

Parametric Discriminative Model: Logistic Regression

Setting. We assume X ⊆ Rd and Y = {−1,+1}.

Definition (Logistic Regression (LogReg) Model)

Modeling

p̂(y|x;w) = 1
1 + exp(−y〈w, x〉) ,

with parameter vector w ∈ Rd is called a logistic regression model.

Lemma
p̂(y|x;w) is a well defined probability density w.r.t. y for any w ∈ Rd.

Proof. elementary.

7 / 41

Parametric Discriminative Model: Logistic Regression

Setting. We assume X ⊆ Rd and Y = {−1,+1}.

Definition (Logistic Regression (LogReg) Model)

Modeling

p̂(y|x;w) = 1
1 + exp(−y〈w, x〉) ,

with parameter vector w ∈ Rd is called a logistic regression model.

Lemma
p̂(y|x;w) is a well defined probability density w.r.t. y for any w ∈ Rd.

Proof. elementary.

7 / 41

How to set the weight vector w (based on D)

Logistic Regression Training
Given a training set D = {(x1, y1), . . . , (xn, yn)}, logistic regression
training sets the free parameter vector as

wLR = argmin
w∈Rd

n∑
i=1

log
(
1 + exp(−yi〈w, xi〉)

)

Lemma (Conditional Likelihood Maximization)

wLR from Logistic Regression training maximizes the conditional data
likelihood w.r.t. the LogReg model,

wLR = argmax
w∈Rd

p̂(y1, . . . , yn|x1, . . . , xn, w)

8 / 41

Proof.
Maximizing

p̂(DY |DX , w) i.i.d.=
n∏
i=1

p̂(yi|xi, w)

is equivalent to minimizing its negative logarithm

− log p̂(DY |DX , w) = − log
n∏
i=1

p̂(yi|xi, w) = −
n∑
i=1

log p̂(yi|xi, w)

= −
n∑
i=1

log 1
1 + exp(−yi〈w, xi〉) ,

= −
n∑
i=1

[log 1− log(1 + exp(−yi〈w, xi〉)],

=
n∑
i=1

log(1 + exp(−yi〈w, xi〉).

9 / 41

Alternative Explanation

Definition (Kullback-Leibler (KL) divergence)

Let p and q be two probability distributions (for discrete Z) or
probabilitiy densities with respect to a measure dλ (for continuous Z).
The Kullbach-Leibler (KL)-divergence between p and q is defined as

KL(p ‖q) =
∑
z∈Z

p(z) log p(z)
q(z) , or KL(p ‖q) =

∫
z∈Z

p(z) log p(z)
q(z) dλ(z),

(with convention 0 log 0 = 0, and a log a
0 =∞ for a > 0).

KL is a similarity measure between probability distributions. It fulfills

0 ≤ KL(p ‖q) ≤ ∞, and KL(p ‖q) = 0 ⇔ p = q.

However, KL is not a metric.
• it is in general not symmetric, KL(q ‖p) 6= KL(p ‖q),
• it does not fulfill the triangle inequality.

10 / 41

Alternative Explanation

Definition (Kullback-Leibler (KL) divergence)

Let p and q be two probability distributions (for discrete Z) or
probabilitiy densities with respect to a measure dλ (for continuous Z).
The Kullbach-Leibler (KL)-divergence between p and q is defined as

KL(p ‖q) =
∑
z∈Z

p(z) log p(z)
q(z) , or KL(p ‖q) =

∫
z∈Z

p(z) log p(z)
q(z) dλ(z),

(with convention 0 log 0 = 0, and a log a
0 =∞ for a > 0).

KL is a similarity measure between probability distributions. It fulfills

0 ≤ KL(p ‖q) ≤ ∞, and KL(p ‖q) = 0 ⇔ p = q.

However, KL is not a metric.
• it is in general not symmetric, KL(q ‖p) 6= KL(p ‖q),
• it does not fulfill the triangle inequality.

10 / 41

Alternative Explanation of Logistic Regression Training

Definition (Expected Kullback-Leibler (KL) divergence)

Let p(x, y) be a probability distribution over (x, y) ∈ X × Y and let
p̂(y|x) be an approximation of p(y|x).
We measure the approximation quality by the expected KL-divergence
between p and q over all x ∈ X :

KLexp(p ‖q) = E
x∼p(x)

{ KL(p(·|x)‖q(·|x)) }

Theorem
The parameter wLR obtained by logistic regression training approximately
minimizes the KL divergence between p̂(y|x;w) and p(y|x).

11 / 41

Proof.
We show how maximizing the conditional likelihood relates to KLexp:

KLexp(p‖p̂) = E
x∼p(x)

∑
y∈Y

p(y|x) log p(y|x)
p̂(y|x,w)

= E
(x,y)∼p(x,y)

log p(y|x)︸ ︷︷ ︸
indep. of w

− E
(x,y)∼p(x,y)

log p̂(y|x,w)

We can’t maximize E(x,y)∼p(x,y) log p̂(y|x,w) directly, because p(x, y) is
unknown. But we can maximimize its empirical estimate based on D:

E
(x,y)∼p(x,y)

log p̂(y|x,w) ≈
∑

(xi,yi)∈D
log p̂(yi|xi, w)

︸ ︷︷ ︸
log of conditional data likelihood

.

The approximation will get better the more data we have.

12 / 41

Solving Logistic Regression numerically – Optimization I

Theorem
Logistic Regression training,

wLR = argmin
w∈Rd

L(w) for L(w) =
n∑
i=1

log
(
1 + exp(−yi〈w, xi〉)

)
,

is a C∞-smooth, unconstrained, convex optimization problem.

Proof.
1. it’s an optimization problem,
2. it’s unconstrained,
3. it’s smooth (the objective function is C∞ differentiable),
4. remains to show: the objective function is a convex function.

Since L is smooth, it’s enough to show that its Hessian matrix
(the matrix of 2nd partial derivatives) is everywhere positive definite.

13 / 41

We compute first the gradient and then the Hessian of

L(w) =
n∑
i=1

log(1 + exp(−yi〈w, xi〉).

∇w L(w) =
n∑
i=1
∇ log(1 + exp(−yi〈w, xi〉).

use the chain rule, ∇f(g(w)) = df
dt (g(w))∇g(w), and d log(t)

dt = 1
t

=
n∑
i=1

∇[1 + exp(−yi〈w, xi〉]
1 + exp(−yi〈w, xi〉

=
n∑
i=1

exp(−yi〈w, xi〉)
1 + exp(−yi〈w, xi〉)︸ ︷︷ ︸

=p̂(−yi|xi,w)

∇(−yi〈w, xi〉)

use the chain rule again, d
dt exp(t) = exp(t), and ∇w〈w, xi〉 = xi

= −
n∑
i=1

[p̂(−yi|xi, w)] yixi

14 / 41

HwL(w) = ∇∇>L(w) = −
n∑
i=1

[∇p̂(−yi|xi, w)] yixi

∇p̂(−yi|xi, w) = ∇ 1
1 + exp(yi〈w, xi〉)

= −∇[1 + exp(yi〈w, xi〉)]
[1 + exp(yi〈w, xi〉)]2

use quotient rule, ∇ 1
f(w) = −∇f(w)

f2(w) , and chain rule,

= − exp(yi〈w, xi〉)
[1 + exp(yi〈w, xi〉)]2∇y

i〈w, xi〉

= −(p̂(−yi|xi))p̂(yi|xi, w)yixi

insert into above expression for HwL(w)

H =
n∑
i=1

p̂(−yi|xi)p̂(yi|xi, w)︸ ︷︷ ︸
>0

xixi>︸ ︷︷ ︸
sym.pos.def.

A positively weighted linear combination of pos.def. matrices is pos.def.15 / 41

Example plot: LogReg objective for three examples in R2

1.0 0.5 0.0 0.5 1.0
3

2

1

0

1

2

3

1.600

1
.8

0
0

2
.0

0
0

2
.5

0
0

3
.0

0
0

4.000

4
.0

0
0

6.000
8.000

16 / 41

Numeric Optimization

Convex optimization is a well understood field. We can use, e.g.,
gradient descent will converge to the globally optimal solution!

Steepest Descent Minimization with Line Search

input ε > 0 tolerance (for stopping criterion)
1: w ← 0
2: repeat
3: v ← −∇w L(w) {descent direction}
4: η ← argminη>0 L(w + ηv) {1D line search}
5: w ← w + ηv
6: until ‖v‖ < ε
output w ∈ Rd learned weight vector

Faster conference from methods that use second-order information, e.g.,
conjugate gradients or (L-)BFGS → convex optimization lecture

17 / 41

Binary classification with a LogReg Models

A discriminative probability model, p̂(y|x), is enough to make decisions:

c(x) = argmax
y∈Y

p̂(y|x) or c(x) = argmin
y∈Y

E
ȳ∼p̂(y|x)

`(ȳ, y).

For Logistic Regression, this is particularly simple:
Lemma
The LogReg classification rule for 0/1-loss is

c(x) = sign 〈w, x〉.

For a loss function ` =
(
a b
c d

)
the rule is

c`(x) = sign[〈w, x〉+ log c− d
b− a

],

In particular, the decision boundaries is linear (or affine).

Proof. Elementary, since log p̂(+1|x;w)
p(−1|x;w) = 〈w, x〉

18 / 41

Multiclass Logistic Regression

For Y = {1, . . . ,M}, we can do two things:

• Parametrize p̂(y|x; ~w) using M−1 vectors, w1, . . . , wM−1 ∈ Rd, as

p̂(y|x,w) = exp(〈wy, x〉)
1 +

∑M−1
j=1 exp(〈wj , x〉)

for y = 1, . . . ,M − 1,

p̂(M |x,w) = 1
1 +

∑M−1
j=1 exp(〈wj , x〉)

.

• Parametrize p̂(y|x; ~w) using M vectors, w1, . . . , wM ∈ Rd, as

p̂(y|x,w) = exp(〈wy, x〉)∑M
j=1 exp(〈wj , x〉)

for y = 1, . . . ,M,

Second is more popular, since it’s easier to implement and analyze.

Decision boundaries are still piecewise linear, c(x) = argmaxy〈wy, x〉.
19 / 41

Summary: Discriminative Models

Discriminative models treats the input data, x, as fixed and only model
the distribution of the output labels p(y|x).

Discriminative models, in particular LogReg, are popular, because
• they often need less training data than generative models,
• they provide an estimate of the uncertainty of a decision p(c(x)|x),
• training them is often efficient, e.g. big companies train LogReg
models routinely from billions of examples.

But: they also have drawbacks
• often p̂LR(y|x) 6→ p(y|x), even for n→∞,
• they usually are good for prediction, but they do not reflect the
actual mechanism.

Note: there are much more complex discriminative models than LogReg,
e.g. Conditional Random Fields (maybe later).

20 / 41

Observation
Even easier than estimating p(y|x) (or p(x, y)) should be to just estimate
the decision boundary between classes.

p(y=1|x) p(y=0|x)

p(y=1|x) p(y=0|x)

21 / 41

Maximum Margin Classifiers

Let’s use D to estimate a classifier c : X → Y directly.

For a start, we fix
• D = {(x1, y1), . . . , (xn, yn)},
• Y = {+1,−1},
• we look for classifiers with linear decision boundary.

Several of the classifiers we saw had linear decision boundaries:
• Perceptron
• Generative classifiers for Gaussian class-conditional densities with
shared covariance matrix
• Logistic Regression

What’s the best linear classifier?

22 / 41

Maximum Margin Classifiers

Let’s use D to estimate a classifier c : X → Y directly.

For a start, we fix
• D = {(x1, y1), . . . , (xn, yn)},
• Y = {+1,−1},
• we look for classifiers with linear decision boundary.

Several of the classifiers we saw had linear decision boundaries:
• Perceptron
• Generative classifiers for Gaussian class-conditional densities with
shared covariance matrix
• Logistic Regression

What’s the best linear classifier?

22 / 41

Linear classifiers

Definition
Let

F = { f : Rd → R with f(x) = b+ a1x1 + · · ·+ adxd = b+ 〈w, x〉 }

be the set of linear (affine) function from Rd → R.

A classifier g : X → Y is called linear, if it can be written as

g(x) = sign f(x)

for some f ∈ F .

We write G for the set of all linear classifiers.

23 / 41

A linear classifier, g(x) = sign〈w, x〉, with b = 0

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

w

24 / 41

A linear classifier g(x) = sign(〈w, x〉+ b), with b > 0

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

b

25 / 41

Feature augmentation

The bias term is good for intuition, but annoying in analysis:

Useful trick: feature augmentation
Adding a constant feature allows us to avoid models with explicit bias
term:

• instead of x = (x1, . . . , xd) ∈ Rd, use x̃ = (x1, . . . , xd, 1) ∈ Rd+1

• for any w̃ ∈ Rd+1, think w̃ = (w, b) with w ∈ Rd and b ∈ R

Linear function in Rd+1:

f(x̃) = 〈w̃, x̃〉 =
d+1∑
i=1

w̃ix̃i =
d∑
i=1

w̃ix̃i + w̃d+1x̃d+1 = 〈w, x〉+ b

Linear classifier with bias in Rd ≡ linear classifier with no bias in Rd+1

Augmenting with other (larger) values than 1 can make sense, see later...
26 / 41

Linear classifiers

Definition (Ad hoc)

We call a classifier, g, correct (for a training set D), if it predicts the
correct labels for all training examples:

g(xi) = yi for i = 1, . . . , n.

Example (Perceptron)

• if the Perceptron converges, the result is an correct classifier.
• any classifier with zero training error is correct.

Definition (Linear Separability)

A training set D is called linearly separable, if it allows a correct linear
classifier (i.e. the classes can be separated by a hyperplane).

27 / 41

Linear classifiers

Definition (Ad hoc)

We call a classifier, g, correct (for a training set D), if it predicts the
correct labels for all training examples:

g(xi) = yi for i = 1, . . . , n.

Example (Perceptron)

• if the Perceptron converges, the result is an correct classifier.
• any classifier with zero training error is correct.

Definition (Linear Separability)

A training set D is called linearly separable, if it allows a correct linear
classifier (i.e. the classes can be separated by a hyperplane).

27 / 41

A linearly separable dataset and a correct classifier

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

28 / 41

A linearly separable dataset and a correct classifier

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

w

28 / 41

A linearly separable dataset and a correct classifier

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

28 / 41

An incorrect classifier

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

29 / 41

Linear Classifiers

Definition (Ad hoc)

The robustness of a classifier g (with respect to D) is the largest
amount, ρ, by which we can perturb the training samples without
changing the predictions of g.

g(xi + ε) = g(xi), for all i = 1, . . . , n.

for any ε ∈ Rd with ‖ε‖ < ρ.

Example

• constant classifier, e.g. c(x) ≡ 1: very robust (ρ =∞),
(but it is not correct, in the sense of the previous definition)
• robustness of the Perceptron: can be arbitrarily small
(see Exercise...)

30 / 41

Robustness, ρ, of a linear classifier

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

ρ ρ

31 / 41

Definition (Margin)

Let f(x) = 〈w, x〉+ b define a correct linear classifier.
Then the smallest (Euclidean) distance of any training example from the
decision hyperplane is called the margin of f (with respect to D).

Lemma
We can compute the margin of a linear classifier f = 〈w, x〉+ b as

ρ = min
i=1,...,n

∣∣∣〈 w‖w‖ , xi〉+ b
∣∣∣.

Proof.
High school maths: distance between a points and a hyperplane in
Hessian normal form.

32 / 41

Margin, ρ, of a linear classifier

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

margin

region
ρ

33 / 41

Theorem
The robustness of a linear classifier function g(x) = sign f(x) with
f(x) = 〈w, x〉 is identical to the margin of f .

Proof by Picture

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

margin

region
ρ

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

ρ ρ

34 / 41

Theorem
The robustness of a linear classifier function g(x) = sign f(x) with
f(x) = 〈w, x〉 is identical to the margin of f .

Proof by Picture

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

margin

region
ρ

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

ρ ρ

34 / 41

Proof (blackboard). For any i = 1, . . . , n and any ε ∈ Rd

f(xi + ε) = 〈w, xi + ε〉 = 〈w, xi〉+ 〈w, ε〉 = f(xi) + 〈w, ε〉,

so it follows (Cauchy-Schwarz inequality) that

f(xi)− ‖w‖‖ε‖ ≤ f(xi + ε) ≤ f(xi) + ‖w‖‖ε‖.

Checking the cases ε = ± ‖ε‖‖w‖w, we see that these inequalities are sharp.

To ensure g(xi + ε) = g(xi) for all training samples, f(xi) and f(xi + ε)
have the same sign for all ε, i.e. |f(xi)| ≥ ‖w‖‖ε‖ for i = 1, . . . , n.

This inequality holds for all samples, so in particular it holds for the one
of minimal score, and mini |f(xi)| = mini |〈w, xi〉| = ρ.

2

35 / 41

Maximum-Margin Classifier

Theorem
Let D be a linearly separable training set. Then the most robust,
correct linear classifier (without bias term) is given by
g(x) = sign〈w∗, x〉 where w∗ are the solution to

min
w∈Rd

1
2‖w‖

2

subject to
yi(〈w, xi〉) ≥ 1, for i = 1, . . . , n.

Remark

• The classifier defined above is call Maximum (Hard) Margin
Classifier, or Hard-Margin Support Vector Machine (SVM)
• It is unique (follows from strictly convex optimization problem).

36 / 41

Proof.
1. All w that fulfill the inequalities yield correct classifiers.
2. Since D is linearly separable, there exists some v with

sign〈v, xi〉 = yi, i.e. yi〈v, xi〉 ≥ γ > 0.
for γ = mini yi〈v, xi〉. So ṽ = v/γ, fulfills the inequalities and we
see that the constraint set is at least not empty.

3. Now we check (with i = 1, . . . , n):

min
w∈Rd

1
2‖w‖

2 sb.t. yi〈w, xi〉 ≥ 1

⇔ max
w∈Rd

1
‖w‖

sb.t. yi〈w, xi〉 ≥ 1

⇔ max
{w′:|w′‖=1},ρ∈R

ρ sb.t. yi〈w
′

ρ
, xi〉 ≥ 1

⇔ max
{w′:|w′‖=1},ρ∈R

ρ sb.t. yi〈w′, xi〉 ≥ ρ

⇔ max
{w′:|w′‖=1},ρ∈R

ρ sb.t. |〈w′, xi〉| ≥ ρ

︸ ︷︷ ︸
maximal robustness

and sign〈w′, xi〉 = yi

︸ ︷︷ ︸
and correct

37 / 41

Proof.
1. All w that fulfill the inequalities yield correct classifiers.
2. Since D is linearly separable, there exists some v with

sign〈v, xi〉 = yi, i.e. yi〈v, xi〉 ≥ γ > 0.
for γ = mini yi〈v, xi〉. So ṽ = v/γ, fulfills the inequalities and we
see that the constraint set is at least not empty.

3. Now we check (with i = 1, . . . , n):

min
w∈Rd

1
2‖w‖

2 sb.t. yi〈w, xi〉 ≥ 1

⇔ max
w∈Rd

1
‖w‖

sb.t. yi〈w, xi〉 ≥ 1

⇔ max
{w′:|w′‖=1},ρ∈R

ρ sb.t. yi〈w
′

ρ
, xi〉 ≥ 1

⇔ max
{w′:|w′‖=1},ρ∈R

ρ sb.t. yi〈w′, xi〉 ≥ ρ

⇔ max
{w′:|w′‖=1},ρ∈R

ρ sb.t. |〈w′, xi〉| ≥ ρ

︸ ︷︷ ︸
maximal robustness

and sign〈w′, xi〉 = yi

︸ ︷︷ ︸
and correct

37 / 41

Proof.
1. All w that fulfill the inequalities yield correct classifiers.
2. Since D is linearly separable, there exists some v with

sign〈v, xi〉 = yi, i.e. yi〈v, xi〉 ≥ γ > 0.
for γ = mini yi〈v, xi〉. So ṽ = v/γ, fulfills the inequalities and we
see that the constraint set is at least not empty.

3. Now we check (with i = 1, . . . , n):

min
w∈Rd

1
2‖w‖

2 sb.t. yi〈w, xi〉 ≥ 1

⇔ max
w∈Rd

1
‖w‖

sb.t. yi〈w, xi〉 ≥ 1

⇔ max
{w′:|w′‖=1},ρ∈R

ρ sb.t. yi〈w
′

ρ
, xi〉 ≥ 1

⇔ max
{w′:|w′‖=1},ρ∈R

ρ sb.t. yi〈w′, xi〉 ≥ ρ

⇔ max
{w′:|w′‖=1},ρ∈R

ρ sb.t. |〈w′, xi〉| ≥ ρ︸ ︷︷ ︸
maximal robustness

and sign〈w′, xi〉 = yi︸ ︷︷ ︸
and correct 37 / 41

Non-Separable Training Sets

Observation (Not all training sets are linearly separable.)

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

ρ
margin

ξ i
margin vio

lation

xi

38 / 41

Definition (Maximum Soft-Margin Classifier)

Let D be a training set, not necessarily linearly separable. Let C > 0.
Then the classifier g(x) = sign〈w∗, x〉+ b) where (w∗, b∗) are the
solution to

min
w∈Rd,ξ∈Rn

1
2‖w‖

2 + C
n∑
i=1

ξi

subject to

yi(〈w, xi〉+ b) ≥ 1− ξi, for i = 1, . . . , n.
ξi ≥ 0, for i = 1, . . . , n.

is called Maximum (Soft-)Margin Classifier or Linear Support
Vector Machine.

39 / 41

Maximum Soft-Margin Classifier

Theorem
The maximum soft-margin classifier exists and is unique for any C > 0.

Proof. optimization problem is strictly convex

Remark
The constant C > 0 is called regularization parameter.

It balances the wishes for robustness and for correctness
• C → 0: mistakes don’t matter much, emphasis on short w
• C →∞: as few errors as possible, might not be robust

We’ll see more about this in the next lecture.

40 / 41

Remark
Sometimes, a soft margin is better even for linearly separable datasets!

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

ρ
margin

ξ i

Left: small margin, no errors) Right: large margin, but 1 error

41 / 41

