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Overview (tentative)

Date no. | Topic
Oct 08 | Mon | 1 | A Hands-On Introduction
Oct 10 | Wed | — | self-study (Christoph traveling)
Oct 15 | Mon | 2 | Bayesian Decision Theory
Generative Probabilistic Models
Oct 17 | Wed | 3 | Discriminative Probabilistic Models
Maximum Margin Classifiers
Oct 22 | Mon | 4 | Generalized Linear Classifiers, Optimization
Oct 24 | Wed | 5 | Evaluating Predictors; Model Selection
Oct 29 | Mon | — | self-study (Christoph traveling)
Oct 31 | Wed | 6 | Overfitting/Underfitting, Regularization
Nov 05 | Mon | 7 | Learning Theory I: classical/Rademacher bounds
Nov 07 | Wed | 8 | Learning Theory Il: miscellaneous
Nov 12 | Mon | 9 | Probabilistic Graphical Models |
Nov 14 | Wed | 10 | Probabilistic Graphical Models Il
Nov 19 | Mon | 11 | Probabilistic Graphical Models Il
Nov 21 | Wed | 12 | Probabilistic Graphical Models IV
until Nov 25 final project 2/40



Learning from Data

In the real world, p(x,y) is unknown, but we have a training set D.

Given a training set D, we call it

a generative probabilistic approach:
if we use D to build a model p(x,y) of p(z,y), and then define

f(z) :=argmin E {(y,y).
yey gwﬁ(:c,zj)

a discriminative probabilistic approach:
if we use D to build a model p(y|z) of p(y|x) and define

f(z) :=argmin E {(y,y).
yey  I~p(ylw)

a decision theoretic approach: if we use D to directly seach for a
classifier f in a hypothesis class H C {h : X — V}.
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Empirical Risk Minimization

Given a training set D = { (z!,y'),..., (", y™) }, we call it empirical
risk minimization, if we find a classifier by minimizing the empirical risk:

fimargmin®(h) for R(H) =13 ey, £a?)

heH n i=1

where H C {h: X — Y} is called the hypothesis set.
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Empirical Risk Minimization

Given a training set D = { (z!,y1),..., (2", y") }, we call it empirical
risk minimization, if we find a classifier by minimizing the empirical risk:

f:= argg;in?@(h) for R(f) = ilzzlf(?f’f(ﬂfz))

where H C {h: X — Y} is called the hypothesis set.

Examples:
Least-Squared Regression: min,, > ;((w,z?) — y')?
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f:= argg;in?@(h) for R(f) = ilzzlf(?f’f(ﬂfz))
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Examples:
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Empirical Risk Minimization

Given a training set D = { (z!,y1),..., (2", y") }, we call it empirical
risk minimization, if we find a classifier by minimizing the empirical risk:

n

f:= argg;in?@(h) for R(f) = ilzzlf(?f’f(ﬂfz))

where H C {h: X — Y} is called the hypothesis set.
Examples:
Least-Squared Regression: min,, > ;((w,z?) — y')?

Logistic Regression:  min,, Y;log(1 4 e ¥ (W)
SVM: min, C3Y,max{0,1—y"(w,z%)} +|wl|?’
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Empirical Risk Minimization

Given a training set D = { (z!,y1),..., (2", y") }, we call it empirical
risk minimization, if we find a classifier by minimizing the empirical risk:

n

fo=argminR(h) for R(f)= =S Ly f(&))

heH n i=1

where H C {h: X — Y} is called the hypothesis set.

Examples:

Least-Squared Regression:  min,, > ;((w,z’) — y')?

Logistic Regression:  min,, ;log(1 + e ¥ (W)

SVM: min, CY,max{0,1—y"(w,z%)} +[w|”
We know that for any fixed h, R(h) is an unbiased estimate of R(h).
Does that mean that R(f) is an unbiased estimate of R(f)?

No, unfortunately not! 4/40



Empirical Risk Minimization

1) first choose f : X — ), then observe D = {(z!,y!),..., (2", y™)}:

n

R(f) = 1 Z«?(yi, f(x%)) unbiased, consistent estimator of R(f)

n i=1

Z' = (", f(x')) are independent random variables

2) first observe D = {(z!,y'), ..., (2™, y™)}, then choose f based on D:

n

RO =230y ERO) =

i
Zt .= U(y', f(x')) are not independent, no law of large numbers.

So why would minimizing one be useful for the other?
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Relation between training loss and generalization loss

Example: 1D curve fitting

10 T T T T
gl| — truesignal
. e e e training points
4
2
0
-2
-4
0 2 a 6 8 10

training points
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Relation between training loss and generalization loss

Example: 1D curve fitting

10 — degree 2 fit, R =8.44
— true signal R =14.64
eee training points

» o

0 2 4 6 8 10
best learned polynomial of degree 2: large R, large R

6 /40



Relation between training loss and generalization loss

Example: 1D curve fitting

10 — degree 7 fit, R=0.02
— true signal R=0.39
eee training points

» o

0 2 4 6 8 10
best learned polynomial of degree 7: small R, small R
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Relation between training loss and generalization loss

Example: 1D curve fitting

10 — degree 12 fit, R=0.00
— true signal R =102.49
eee training points

» o

0 2 4 6 8 10
best learned polynomial of degree 12: small R, large R
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We found a model fg« by minimizing the training error R.
Q: Will its generalization error, R, be small?

A: Unfortunately, that is not guaranteed.

Underfitting /Overfitting

— degree 2 fit, R=8.44 10 — degree 12 fit, R =0.00

— true signal R =14.64 — true signal R =102.49

e e training points Blaes training points
6
4
2
0
-2
-4

2 a4 6 8 10 0 2 4 6 8 10
Underfitting Overfitting
(to some extend) detectable from R not detectable from R !
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Where does overfitting come from?

Choosing a predictor based on R vs. R

1.0
o e R(0)

0.8} J

0.4} o .

0.2} e i

generalization error R for 7 different predictors
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Where does overfitting come from?

Choosing a predictors based on R vs. R

1.0
—e TR(0;)

0.8} J

0.4} 1

0.2} 1

0.0

,_.4
N
w
IN
(6]
o
b

generalization error R for 7 different predictors

8 /40



Where does overfitting come from?

Choosing a predictors based on R vs. R

1.0

—e® TR(Y;)

o—a 7@ 0;
08l 5,(0:) ||

0.4} 1

0.2} 1

0.0

,_.4
N
w
IN
(6]
o
b

training error R for a training set, S

8 /40



Where does overfitting come from?

Choosing hypothesis based on R vs. R

1.0
—e® TR(Y;)
—o 7@ 0;
val 2,0 |
*r—o Rsz(ei)
—a ﬁ&i@)
oo v R (6 ]
ek 7%55(01)
0.4} .
0.2 g
00 L L L L L L L

training errors R for 5 possible training sets
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Where does overfitting come from?

Choosing hypothesis based on R vs. R

1.0
—e® TR(Y;)
—o 7@ 0;
val 2s,(01) |
*r—o Rsz(ei)
oo v R (0) |]
o 7%55(01)
0.4} g
0.2 g
00 ! ! ! ! ! ! !
1 2 3 4 5 6 7
0;

model with smallest training error can have high generalization error
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Preventing Overfitting



Reminder: Overfitting

o/ — degree 12 fit, R—0.00 X Choosing based on R vs. R
. -—a R(0)
sl — true signal R =102.49 o Ry (60)
ee. training points o e 250 [
6 —a R (0)
. 06 v Rg0)|1
. )
2 0.4,
o
02
-2
_a 0
i P O
0 2 4 6 8 10 o,
. - N
overfitting R vs. R

How can we prevent overfitting when learning a model?

10/ 40



Preventing overfitting
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Preventing overfitting 1) larger training set

1.0

0.8

0.6

0.4

0.2

0.0

Choosing hypothesis based on R vs. R

larger training set — smaller variance of R
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Preventing overfitting 1) larger training set

1.0 Choosing hypothesis based on R vs. R

0.8}

0.6}

0.4

0.2}

0.0

1 2 3 4 5 6 7

lower probability that R differs strongly from R
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Preventing overfitting 1) larger training set

1.0

0.8

0.6

0.4

0.2

0.0

Choosing hypothesis based on R vs. R

1

6

7

lower probability that R differs strongly from R — overfitting less likely
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Preventing overfitting 2) reduce the number of hypotheses

1.0

0.8

0.6

0.4

0.2

0.0

Choosing hypothesis based on R vs. R
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Preventing overfitting 2) reduce the number of hypotheses

1.0

0.8

0.6

0.4

0.2

0.0

Choosing hypothesis based on R vs. R

TIlloy

fewer models — lower probability of a model with small R but high R



Preventing overfitting 2) reduce the number of hypotheses

1.0

0.8

0.6

0.4

0.2

0.0

Choosing hypothesis based on R vs. R

TIlloy

fewer models — lower probability of a model with small R but high R



But: danger of underfitting
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But: danger of underfitting

1.0 Choosing hypothesis based on R vs. R

—e R(0;)

0.4} 1

0.2} 1

0.0

ury
N
wl

0;
to few models select to from — danger that no model with low R is left!
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But: danger of underfitting
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But: danger of underfitting

Choosing hypothesis based on R vs. R

1.0
—e® TR(Y;)
—o 7@ 0;
val 2,0 |
*r—o Rsz(ei)
—a ﬁ&i@)
or v Ry (6) ]
’ ek 7%55(01)
0.4} .
0.2} 1
0.0L— ‘
1 2
0;
Underfitting!
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But: danger of underfitting

Choosing hypothesis based on R vs. R
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Overfitting happens when ...

there are too many models to choose from
(not strictly true: there's usually infinitely many models anyway)

the models we search over are too "flexible", so they fit not only the
signal but also the noise

(not strictly true: the models themselves are not "flexible" at all)
the models have too many free parameters

(not strictly true: even models with very few parameters can overfit)

How to avoid overfitting? Use a model class that is
"as simple as possible", but

still contains a model with low R
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Regularization

15 /40



Regularization

Models with big difference between training error and generalization error
are typically extreme cases:

a large number of model parameters

large values of the model parameters

for polynomials: high degree , etc.

104 — degree 7 fit, R=0.02 | 10 — degree 14 fit, R =0.00
o training points o training points

0 2 4 6 8 10 2 4 6 8 10

coeffs: 6; € [—2.4,4.6] coeffs: 6; € [—1312.5,1136.6]
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Regularization

Models with big difference between training error and generalization error
are typically extreme cases:

a large number of model parameters

large values of the model parameters

for polynomials: high degree , etc.

10 — degree 7 fit, R=0.02 | 10 — degree 14 fit, R =0.00
* e training points * e training points

coeffs: 6; € [—2.4,4.6] coeffs: 6; € [—1312.5,1136.6]
Regularization: avoid overfitting by preventing extremes to occur
explicit regularization (changing the objective function)
implicit regularization (modifying the optimization procedure)
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Explicit regularization

Add a regularization term (=regularizer) to the empirical risk that gives
large values to extreme parameter choices.

Regularized risk minimization

Take a training set, S = {(z!,y'),..., (2", y™)}, find 6* by solving,

——
regularizer

mein Jx(0) with  J\(0) = iﬁ(yi,fg(:ﬂi)) + AQ(6)
i=1

empirical risk

eg with 0@O)=[05=Y 6 o  90)=0l =Y 16
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Explicit regularization

Add a regularization term (=regularizer) to the empirical risk that gives
large values to extreme parameter choices.

Regularized risk minimization

Take a training set, S = {(z!,y'),..., (2", y™)}, find 6* by solving,

——
regularizer

mein Jx(0) with  J\(0) = iﬁ(yi,f(;(:ﬂi)) + AQ(6)
i=1

empirical risk
eg with 0@O)=[05=Y 6 o  90)=0l =Y 16

Optimization looks for model with small empirical risk, but also small
absolute values of the model parameters.

Regularization (hyper)parameter A\ > 0: trade-off between both.
A = 0: empirical risk minimization (risk of overfitting)
A — oo: all parameters 0 (risk of underfitting) 17 /40



Explicit regularization

Add a regularization term (=regularizer) to the empirical risk that gives
large values to extreme parameter choices.

Regularized risk minimization

Take a training set, S = {(z*,y%),..., (z",y™)}, find 6* by solving,

n
min J,(0) with Jx(0) =D Ly, fo(a")) + AQ(0)
5 i=1 HI’_’
regularizer

empirical risk
eg with Q0)=[013:=3 07 o QO = ol =, 1651

Examples:
Ridge Regression: min,, Al|jw|? + 3;((w, 2%) — y*)?
Logistic Regression:  min,,  Allw|2 + 3, log(1 + ¥ (w)
SVM:  min, |w|?+CY;max{0,1 - y*(w,z')}
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Regularization as Trading Off Bias and Variance

Training error, R, is a noise estimate of the generalization error, R

original risk R is unbiased, but variance can be huge
regularization introduces a bias, but reduces variance
for A — oo, the variance goes to 0, but the bias gets very big

Low Variance High Variance

Low Bias

High Bias
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Regularization as Trading Off Bias and Variance

Training error, R, is a noise estimate of the generalization error, R

original risk R is unbiased, but variance can be huge
regularization introduces a bias, but reduces variance
for A — oo, the variance goes to 0, but the bias gets very big

Low Variance High Variance

Low Bias

High Bias
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Example: regularized linear least-squared regression

minJy(w) for Jy(w) = (e’ — ) + Afwl?

=1
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Example: regularized linear least-squared regression

n
min Jy(w) for Jy(w) =3 (w'e —y')? + NJuw|?
i=1
Train/test error for classifier ¢(z) = sign(w, z) from minimizing Jy with
varying amounts of regularization:
0.6

T T T T T T T T T T T

— training error, R
0.5} 9

0.4}

0.3}

0.2}

0.1}

0.0 4

106 105 104 103 102 10! 100 10! 102 103 104 105 106

regularization strength \
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Example: regularized linear least-squared regression

n
min Jy(w) for Jy(w) =3 (w'e —y')? + NJuw|?
i=1
Train/test error for classifier ¢(z) = sign(w, z) from minimizing Jy with
varying amounts of regularization:
0.6

T T T T T T T T T T T

— training error, R
0.5} 9

— test error, R,y

0.4

0.3

0.2

0.1

0.0 4

106 105 104 103 102 10! 100 10! 102 103 104 105 106

regularization strength \
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Example: regularized linear least-squared regression

minJy(w) for Jy(w) =Y (w'z’ —y')? + AJjw|?

Train/test error for classifier ¢(z) = sign(w, z) from minimizing Jy with
varying amounts of regularization:
0.6

osll — training error,7€
0.4 - test error, 7€m Sweet
| spot
°-3% ’
- over under-
0
06_10% 10¢ 10) 102 107 100 10%, 147 1 - 6

regularization strength A



Implicit regularization

Numerical optimization is performed iteratively, e.g. gradient descent

Gradient descent optimization

initialize ()
fort=1,2,...

6 — gt—1) — vy J(0¢-1) (n: € R is some stepsize rule)
until convergence

Implicit regularization methods modify these steps, e.g.
early stopping
weight decay
data jittering
dropout

20 /40



Implicit regularization: early stopping

Gradient descent optimization with early stopping

initialize 0(*)
fort=1,2,...,T (T € N is number of steps)
6®) — gt—1) _ vy J(0¢D)
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Implicit regularization: early stopping

Gradient descent optimization with early stopping

initialize 0(*)
fort=1,2,...,T (T € N is number of steps)
6®) — gt—1) _ vy J(0¢D)

Early stopping: stop optimization before convergence

idea: if parameters are update only a small number of time, they
might not reach extreme values

T hyperparameter controls trade-off:

> large T': parameters approach risk minimizer — — risk of overfitting
» small T": parameters stay close to initialization — risk of underfitting

21 /40



Implicit regularization: weight decay

Gradient descent optimization with weight decay

initialize (©)
fort=1,2,...
6®) — gt—1) — vy J(0¢-1)
6®) — 6 for, e.g., v = 0.99

until convergence
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Implicit regularization: weight decay

Gradient descent optimization with weight decay

initialize (©)
fort=1,2,...
6®) — gt—1) — vy J(0¢-1)
9 — ~) for, e.g., v = 0.99

until convergence

Weight decay:
Multiply parameters with a constant smaller than 1 in each iteration
two 'forces’ in parameter update:
» AW g1 _ Vg (A1)
pull towards empirical risk minimizer =~ — risk of overfitting
» 01 «— ~0® pulls towards 0 — risk of underfitting
convergence: both effects cancel out — trade-off controlled by 7,

2

Note: essentially same effect as explicit regularization with Q = %HGHZW40



Implicit regularization: data jittering (="'virtual samples'")

Gradient descent optimization with data jittering

initialize 6(°)
fort=1,2,...
fori=1,... n:
#* < randomly perturbed version of
set J(6) = Y1y Uy, Jol@)
01 — 9t=1) — vy J(6¢-D)

until convergence
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Implicit regularization: data jittering (="'virtual samples'")

Gradient descent optimization with data jittering

initialize 6(°)
fort=1,2,...
fori=1,...,n:
#* < randomly perturbed version of
set J(68) = X0 (v, fol&)
61 — 9t=1) — vy J(6¢-D)

until convergence

Jittering: use randomly perturbed examples in each iteration

idea: a good model should be robust to small changes of the data
simulate (infinitely-)large training set — hopefully less overfitting
(also possible: just create large training set of jittered examples in the beginning)
problem: coming up with perturbations needs domain knowledge
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Implicit regularization: dropout

Gradient descent optimization with dropout

initialize §(*)

fort=1,2,...
0 + 0=V with a random fraction p of values set to 0, e.g. p = %
6®) — 9=V — n,VyJ(6)

until convergence
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Implicit regularization: dropout

Gradient descent optimization with dropout

initialize ()

fort=1,2,...
0 + 0=V with a random fraction p of values set to 0, e.g. p = %
6®) — 9t=1) — ,VyJ(6)

until convergence

Dropout: every time we evaluate the model, a random subset of its
parameters are set to zero.
aims for model with low empirical risk even if parameters are missing
idea: no single parameter entry can become 'too important’
similar to jittering, but without need for domain knowledge about z's
overfitting vs. underfitting tradeoff controlled by p

24 /40



Regularization

Often, more than one regularization techniques are combined, e.g.

Explicit regularization: e.g. "elastic net"
Q0) = al|f]17: + (1 — a)|10]| 1

Explicit/implicit regularization: e.g. large-scale support vector machines
Q(0) = ||9H%2 early stopping, potentially jittering

Implicit regularization: e.g. deep networks

early stopping, weight decay, dropout, potentially jittering

25 /40



Summary

Regularization can prevent overfitting

Intuition: avoid "extreme" models, e.g. very large parameter values

Explicit Regularization: modify object function

Implicit Regularization: change optimization procedure

Regularization introduces additional (hyper)parameters

How much of a regularization method to apply is a free parameter, often
called regularization constant. The optimal values are problem specific.

26 /40



The Holy Grail of Statistical Machine Learning

Understanding the test error

from the training error

Image: http://typemoon.wikia.com/




The Holy Grail of Statistical Machine Learning

Understanding the test erro

from the training error

Generalization Bound
For every f € H it holds:

1 o
E Uy f@) < Yl f@) + something
z,y n =
—_— ¢
generalization loss

training loss

Image: http://typemoon.wikia.com/



Typical structure of a generalization bound

Fixed learning setting:
input data X, output space ),
data distribution p over X x ) (with some properties),
hypothesis set H C {f : X — YV},
loss function, £: Y x Y — Ry (with some properties),
For any § > 0, the following statement holds with probablity at least

1 — & over the (random) training set D,, = {(z',y'),..., (z",y")} iid. D
For all f € H:
1 n
E £y, - + somethin
(z,y) . f n; g

"something" typically increases for § — 0 and decreases for n — oc.

Observation: if inequality holds, it holds uniformly for all f.
— by minimizing the right hand side, we can find the "most promising" f
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Reminder: (soft-margin) support vector machine (SVM):

LA 1
min 5l 2057 max{0.1 - . 1)
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Reminder: (soft-margin) support vector machine (SVM):

LA 1
min 5l 2057 max{0.1 - . 1)

Example: SVM radius/margin bound

Let /(z,y; w) := max{0,1 — y(w, x)} be the hinge loss. Let p be a
distribution on R? x ) such that Pr{||z|| < R} =1 and let

H = {w: ] < BY. )

Then, with prob. at least 1 — § over D,, = p the following inequality
holds for all w € H:

1 m
(z,y)~p m i

2BR  [log }
+— :
NZD 2m

Properties:
uniform in w, i.e. holds even for minimizer of r.h.s. — almost SVM
B is a upper bound on |Jw|| — small ||w]|| are most promising
dimensionality of & does not show up, no curse of dimensionality!
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Excurse: Concentration of Measure ||
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Hoeffding’s Lemma and Inequality

Lemma (Hoeffding’s Lemma)

Let Z be a random variable that takes values in [a,b] and E[Z] = 0.
Then, for every A > 0,

2 (p_ )2
B[] < 5

Proof: Exercise...
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Lemma (Hoeffding’s Inequality)

Let Z1,... LZm be i.i.d. random variablesithat take values in the interval
[a,b]. Let Z = L 37| Z; and denote E[Z] = pi. Then, for any e > 0,

e B-a?,

Pl(;izi—u) > €

and

<e "0-a?,

P[(ﬂ—;gzi) > e

and

2

< 2 "E-a?

J[ESEEVES
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Hoeffding’s Inequality — Proof

Define new RVs: X; = Z; — E[Z;], X = % > Xi

e E[X;] = 0; E[X] = 0; each X, takes values in [a — E[Z;], b — E[Z;]]
Use 1) monotonicity of exp and 2) Markov's inequality to check

_ i, 2) _
PIX > 2 P > < e R[]

From 3) the independence of the X; we have

E[GAX] _ E[ﬁ e)\Xi/m] i)ﬁE[ele/m]

i=1 i=1
Use 4) Hoeffding's Lemma for every i:

1) A-a)?

In combination:
_ e A2 (b—a)?
PX >¢ < e e sm
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Hoeffding’s Inequality — Proof cont.

Previous step:
_ e A2 (b—a)?
PIX >¢ < e e sm

So far, A was arbitrary. Now we set A = (1)4_%

_ _ _4me €+( 4me )2(17*“)2 _ 2m52
P[X > ¢ < e -2 ‘-2 8n —¢ -0

This proves the first statement.

If we repeat the same steps again for —X instead of X, we get

2me2

PX < —¢] < e (-a?

This proves the second statement.

Use the union bound: P[AV B] < P[A] + P[B], to combine both
directions:

_ 2me2

P|X|>¢ = PI(X>e) V(X <—€)] < 2 02,
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How large should my test set be?
1 m 2me?
—> Zi—p
m “

=1

>e] <2 -7,
Setup: fixed classifier g : X — Y

i

test set D = {(z,5") ..., (2™, 5™} " p(z,y),
random variables Z; = [g(2%) # y'] € {0,1}, = b—a=1

E[Z] = E{[9(z") # y']} = n (test error of g)

Setup: m = 3 log(3)/e?.

For fixed confidence 6 = 0.1 = ¢ = /log(20)/(2m) ~ 1.22\/%
1 & 1

Pll—)> Z;— <1.224/—

w5 =125

To be 90%-certain that the error is within 0.05, use m > 600.

>0.9
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Setup: fixed classifier g : X — Y

i

test set D = {(z,5") ..., (2™, 5™} " p(z,y),
random variables Z; = [g(2%) # y'] € {0,1}, = b—a=1

E[Z] = E{[9(z") # y']} = n (test error of g)

Setup: m = 3 log(3)/e?.

For fixed confidence 6 = 0.1 = ¢ = /log(20)/(2m) ~ 1.22\/%
1 & 1

Pll—)> Z;— <1.224/—

w5 =125

To be 90%-certain that the error is within 0.05, use m > 600.
To be 99%-certain that the error is within 0.05, use m > 1060.
To be 90%-certain that the error is within 0.005, use m > 59914.

>0.9
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Difference: Chebyshev’s vs. Hoeffding’s Inequality

With R = LS 7, and R = E[L S7, Z,]:

Chebyshev's: Var[Z;] < C

p[m—R\N/C} <s  P[R-RI>] gi
om 2m

interval decreases like \F confidence grows like 1 — E

Hoeffding's: Z; takes values in [a, b]:

2me2

. b— a)2log 2
IP’[\R—R]> (Cglogﬁlga, P[|R~R|>e| <2¢ 07,

interval decreases like \/» confidence grows like 1 —e™™
Both are typical PAC (probably approximately correct) statements:

“With prob. 1 — §, the estimated R is an e-close approximation of R."
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Back to Machine Learning
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Classical Generalization Bounds

Finite Hypothesis Set

Setup:
Uy, y) =y # 9l (0-1 loss)
finite number of possible classifiers % = {f1,..., fr} C Y%

For any § > 0, the following statement holds with probability at least
1 — § over the training set D = {(z,y!)..., (", y")} b p(z,y):

For all f € H:

log |#H| + log1/6
2n

R(f) < R(f) + \/

Proof: blackboard...
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Classical Generalization Bounds

Proof.
1) For any fixed f € H, we get from Hoeffding's inequality:

2

P[R(f) — R(f) > €] < e 2",
=:Cy

2) By a union bound, P[V ey Cf] < 3 sy P[Cy], we obtain
PEf € H:R(f) > R(f) +e] < [Hle™.

3) Right hand side should be 4, solve for €:

log (%)
2n

€ =

4) Put together, using that
PVfeH:R(f)<R(f)+e]l=1-PEf e H:R(f)>R(f) + €]

39 /40



Examples: Finite hypothesis classes

Model selection:

Clients offer me trained classifiers: 1) decision tree, 2) LogReg or an
3) SVM? Which of the three should | buy?

Finite precision:
For X C R?, the hypothesis set # = {f(z) = sign{w, z)} is infinite.

But: on a computer with w restricted to 32-bit floats: |H| = 2324

log |H| =~ 22d

Implementation:

H = { all algorithms implementable in 1 MB C-code } is finite.

Logarithmic dependence on || makes even large (finite) hypothesis sets
(kind of ) practical.
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