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Overview (tentative)

Date no. Topic
Oct 05 Mon 1 A Hands-On Introduction
Oct 07 Wed 2 Bayesian Decision Theory, Generative Probabilistic Models
Oct 12 Mon 3 Discriminative Probabilistic Models
Oct 14 Wed 4 Maximum Margin Classifiers, Generalized Linear Models
Oct 19 Mon 5 Estimators; Overfitting/Underfitting, Regularization, Model Selection
Oct 21 Wed 6 Bias/Fairness, Domain Adaptation
Oct 26 Mon - no lecture (public holiday)
Oct 28 Wed 7 Learning Theory I
Nov 02 Mon 8 Learning Theory II
Nov 04 Wed 9 Deep Learning I
Nov 09 Mon 10 Deep Learning II
Nov 11 Wed 11 Unsupervised Learning
Nov 16 Mon 12 project presentations
Nov 18 Wed 13 buffer
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Refresher from Previous Lecture

The goal of (supervised) machine learning is
• use a training set D = {(x1, y1), . . . , (xn, yn)} ⊂ X × Y
• to find a prediction function f : X → Y (="learning")
• that works well on future data.

Many learning techniques have been developed, such as
• decision trees
• (k-)nearest neighbor
• Perceptron
• Boosting ← today
• Artificial Neural Networks ← today

Some phenomena are universal:
• models with too small complexity underfit the data

I high training error, high test error
• models with too high complexity overfit the data

I low training error, high test error
model complexity
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Boosting [Schapire. 1990]

Given: training examples D = {(x1, y1), . . . , (xn, yn)} ⊂ X × Y with Y = {±1}.

Problem:
• it’s hard to guess a strong (=good) classifier.
• it’s easy to guess weak (=slightly better than random) classifiers.

Question [Kearns, Valiant. 1988/89]:
• Given enough weak classifiers, can one always construct a strong one?

Answer [Schapire. 1990]:
• Yes, by Boosting!
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Boosting – Weak Classifiers

For example: if our features are
property possible values

eye color blue/brown/green
handsome yes/no
height short/tall

sex male (M)/female (F)
soccer fan yes/no

define (weak) classifiers:

h1(x) =
{

+1 if eye color = brown
−1 otherwise.

h2(x) =
{

+1 if eye color = blue
−1 otherwise.

h3(x) =
{

+1 if eye color = green
−1 otherwise.

h4(x) =
{
−1 if eye color = brown
+1 otherwise.

, . . .

h5(x) =
{

+1 if handsome = yes
−1 otherwise.

h6(x) =
{
−1 if handsome = yes
+1 otherwise.

, . . .

Set of all possible combinations: H = {h1, . . . , hJ}.
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AdaBoost – Training

input training set D, set of weak classifiers H, number of iterations T .

d1 = d2 = · · · = dn = 1/n (weight for each example)
for t=1,. . . ,T do
for h ∈ H do et(h) =

n∑
i=1

di Jh(xi) 6= yiK (weighted training error)

ht = argminh∈H et(h) ("best" of the weak classifiers)

αt = 1
2 log(1−et(ht)

et(ht) ) (classifier importance, αt = 0 if et(ht) = 1
2)

for i = 1, . . . , n do d̃i ← di ×
{
eαt if ht(xi) 6= yi,
e−αt otherwise.

for i = 1, . . . , n do di ← d̃i/
∑
i d̃i

end for

output classifier: f(x) = sign
T∑
t=1

αtht(x)
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AdaBoost – Example

Task: X = R2, weak classifiers look at each dimension separately

very rednot so red

so
lid
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t
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AdaBoost – Example

Iteration t = 1, d1, . . . , dn = ( 1
11 ,

1
11 ,

1
11 ,

1
11 ,

1
11 ,

1
11 ,

1
11 ,

1
11 ,

1
11 ,

1
11 ,

1
11 ,

1
11)
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AdaBoost – Example

Iteration t = 1, best weak classifier, e1(h1) = 1
11 , α1 = 1.15
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AdaBoost – Example

Iteration t = 2, d1, . . . , dn ≈ ( 1
20 ,

1
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AdaBoost – Example

Iteration t = 2, best weak classifier, e2(h2) = 1
20 , α2 = 1.47
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AdaBoost – Example

Iteration t = 2, best weak classifier, e2(h2) = 1
20 , α2 = 1.47
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AdaBoost – Example

Iteration t = 3
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AdaBoost – Example

Iteration t = 3
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AdaBoost – Example

Iteration t = 4
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AdaBoost – Example

Iteration t = 5
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AdaBoost – Example

Final classifier: f(x) = sign
(

1.15h1(x) + 1.5h2(x) + · · ·+ 0.9h5(x)
)
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Artificial Neural Network [since the 1950s]

Artificial Neural Networks are predictive models inspired by (early) Neuroscience.

Main idea:
• stack layers of simple elements ("neurons")
• one layer’s outputs are next layer’s input.

Network parametrizes a function:
• each neuron Ni computes a linear/affine function

ai = 〈wi, xinput〉+ bi "activation"
followed by a componentwise non-linear transformation, σ : R→ R,

oi = σ(ai) e.g. σ(t) = max{0, t}

Since approx. 2012, re-popularized under the name of Deep Learning → lectures 7 and 8.
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Understanding Machine Learning Methods

15 / 36



Decision Theory (for Supervised Learning Problems)

Goal:
• Understand existing algorithms
• Develop new algorithms with specific (optimal?) properties

For this, we’ll rely on mathematics. Forget about implementation, finite data etc... (for now)

Notation
We treat all quantities of interest as random variables:
• input: random variable, X, taking values x ∈ X

(we think of X as continuous, but use discrete notation for simplicity)

• output: random variable, Y , taking values y ∈ Y.
• joint probability distribution p(X = x, Y = y) = p(Y = y|X = x)p(X = x)

I p(X = x): how likely is it that any x ∈ X will occur?
I p(Y = y|X = x): what’s the probability that y ∈ Y is the correct answer for x ∈ X ?

• we write p(x, y) for of p(X = x, Y = y), p(y|x) instead of p(Y = y|X = x), etc.
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Classification

First first look at classification, Y = {1, . . . ,M}, or Y = {−1,+1}.

Question: What’s the best classifier for a fully known problem?

Definition (Generalization error)

Let c : X → Y be a decision rule. The generalization error, R, of c is the probability of c
making a wrong prediction, i.e.

R(c) := Pr
(x,y)∼p(x,y)

{c(x) 6= y}.

Definition (Bayes Classifier, Bayes Risk)

The smallest achievable generalization error,

RBayes = min
c:X→Y

R(c)

is called Bayes error. A classifier, c∗, that achieves the base error is called Bayes classifier.
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Lemma
For any x ∈ X with p(x) > 0, a Bayes classifier has the decision rule

ĉ(x) ∈ argmax
y∈Y

p(y|x) or (equivalently) ĉ(x) ∈ argmax
y∈Y

p(x, y) (∗)

Proof. First: both rules are equivalent, because
argmaxy p(x, y) = argmaxy p(y|x)p(x) = argmaxy p(y|x).

• 1) We rewrite the risk in terms of per-point contributions. For any c : X → Y
R(c) = Pr

(x,y)∼p(x,y)
{c(x) 6= y}

= E
(x,y)∼p

Jc(x) 6= yK

= E
x∼p(x)

E
y∼p(y|x)

Jc(x) 6= yK

=
∑
x∈X

p(x) E
y∼p(y|x)

Jc(x) 6= yK︸ ︷︷ ︸
=:Rx(c) 18 / 36
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• 2) For any x ∈ X :
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y∼p(y|x)
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≥p(y|x)for all y ∈ Y

≤ 1− p(Y = c∗(x)|x)
= E
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Jc∗(x) 6= yK = Rx(c∗)
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Lemma
For any x ∈ X with p(x) > 0, a Bayes classifier has the decision rule

ĉ(x) ∈ argmax
y∈Y

p(y|x) or (equivalently) ĉ(x) ∈ argmax
y∈Y

p(x, y) (∗)

• 1) R(c) =
∑
x∈X

p(x)Rx(c)

• 2) for every x ∈ X : Rx(ĉ) ≤ Rx(c∗)
• 3) for every x ∈ A: Rx(ĉ) < Rx(c∗) = RBayes

• 4) Consequently, if there’s at least one point in x ∈ A with p(x) > 0, then

R(ĉ) < R(c∗)

But that inequality is impossible by the definition of RBayes. Therefore, no such point
exists.

In summary: in all points x with p(x) > 0, the Bayes classifier fulfills (∗).
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In binary classification we can write c∗ in closed form:

Lemma
For Y = {−1,+1}, the Bayes classifier is given by

c∗(x) = sign
[
log p(x,+1)

p(x,−1)
]
,

as well as

c∗(x) = sign
[
log p(+1|x)

p(−1|x)
]
.

Proof: Exercise.
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Should we use c∗ to decide for every problem?

• c∗ is optimal when trying to minimize the number of wrong decision.
• That’s often a good strategy, but not always.

Reminder
To evaluate a learning task, we use a loss function ` : Y × Y → R.
`(y, ȳ) is the loss incurred when predicting ȳ if the correct answer is y.

Example: Doctor’s dilemma
A patient has a cough but no fever. Should you make her a COVID19 suspect?

x: symptoms. y ∈ {yes, no}: COVID19
• `(yes, yes) = 0 (you did your job well)
• `(no, no) = 0 (you did your job well)
• `(yes, no) = 50 (the patent goes home and might infect many others)
• `(no, yes) = 1 (the patient has to take an unpleasant unnecessary test)

Common: one outcome is rare, but has bad consequences if mispredicted
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Instead of minimizing the error probability, minimize the expected loss!

Definition
The classifier of minimal expected `-risk is given by

c∗` (x) := argminy∈Y E
ȳ∼p(ȳ|x)

`( ȳ, y ).

Lemma

For Y = {−1,+1}, and `(y, ȳ) given by the table
y \ ȳ −1 +1
−1 a b
+1 c d

,

the risk w.r.t. ` is minimized by the decision rule

c∗` (x) = sign[ log p(x,+1)
p(x,−1) + log c− d

b− a
],

or equivalently c∗` (x) = sign[ log p(+1|x)
p(−1|x) + log c− d

b− a
].

Proof: Exercise...
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Observation
The generalization error is the risk for 0/1-loss, i.e. `(y, y′) = Jy 6= y′K.

Question: What’s the best classifier for a fully known problem?

Question answered. We have identified the optimal classifiers!
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Learning from Data

In the real world, p(x, y) is unknown, but we have a training set D. What to do?

Definition
Given a training set D, we call it
• a generative probabilistic approach:

if we use D to build a model p̂(x, y) of p(x, y), and then define

c(x) := argmax
y∈Y

p̂(x, y) or c`(x) := argmin
y∈Y

E
ȳ∼p̂(x,ȳ)

`( ȳ, y ).

• a discriminative probabilistic approach:
if we use D to build a model p̂(y|x) of p(y|x) and define

c(x) := argmax
y∈Y

p̂(y|x) or c`(x) := argmin
y∈Y

E
ȳ∼p̂(ȳ|x)

`( ȳ, y ).

• a decision theoretic approach: if we use D to directly seach for a classifier c.
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Generative Probabilistic Models

Setting
We are given
• a training set of examples D = {(x1, y1), . . . , (xn, yn)},
(note: technically rather a multi-set, elements can occur more than once)

Assumption:
• D are independent and identically distributed (i.i.d.) samples from the unknown
probability distribution p(x, y).

Shorthand notation,
• DX := {x1, . . . , xn}, input part of D ,
• DY := {y1, . . . , yn}, output part of D,
• Dy := {(xi, yi) ∈ D : yi = y}, all examples of label y.
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Generative Probabilistic Models

Let’s use D to form an estimate of p(x, y).

Definition
There’s (at least) three approaches:

• parametric estimate:
I fix a model class p̂(x, y; θ),
I estimate parameters θ̂ such that p̂(x, y; θ̂) ≈ p(x, y).
I the size of θ is independent of how large D is

• non-parametric estimate:
I estimate any p̂(x, y) ≈ p(x, y)
I the number of parameters/complexity of p̂(x, y) can grow with |D|

• hybrids of the two
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Generative Probabilistic Models: Multinomial

If X and Y are finite, we can represent any p(x, y) as a table of values.

To simplify notation, we look at generic z ∈ Z (think: z = (x, y)):

Definition (Empirical estimate)

Let z1, . . . , zn be samples from p(z), then we call

p̂n(z) := 1
n

n∑
i=1

Jzi = zK

the empirical estimate of p(z) from n samples.

Example: flipping a coin, Z = {heads, tails}
• observed outcomes (n = 6): heads, heads, heads, tails, heads, tails
• p̂6(heads) = 1

6(1 + 1 + 1 + 0 + 1 + 0) = 2
3

• p̂6(tails) = 1
6(0 + 0 + 0 + 1 + 0 + 1) = 1

3
28 / 36



Generative Probabilistic Models: Multinomial

Theorem (Convergence of the empirical estimate)

Let z1, z2, . . . be i.i.d. samples from p(z). For every possible value z ∈ Z

Pr
{

lim
n→∞

p̂n(z) = p(z)
}

= 1.

Proof.
Every textbook on statistics: law of large numbers (strong version).
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The curse of dimensionality

Setting:
Let Z = Z1 × · · · × Zd, i.e. data decomposes into d non-trivial "features",
"attributes", or "dimensions". Let mj := |Zj | ≥ 2 for j = 1, . . . , d.

Lemma
The number of samples needed to estimate p̂(z) grows exponentially in d (unless we made
additional assumptions).

Proof.
p̂(z) has |Z| =

∏d
j=1mj ≥ 2d entries. Without further assumptions, each entry can be set

arbitrarily, independently, except for the one constraint that they must sum to 1. Each
sample influences only one bin, so we need at least 2d − 1 samples (in practice, many times
that, of course).
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Example (Dating agency table)
TRAINING eyes height handsome sex soccer date?

Apu blue tall yes male no yes
Bernice brown short yes female no no

...
...

...
...

...
...

...
Itchy brown short no male yes yes

Can we estimate p(x, y) here?
• |X × Y| = (3× 2× 2× 2× 2)× 2 = 96, → p(x, y) has 95 free parameters
• We have 9 samples.
• Most possible combinations we have never seen!

Bayes classifier from p̂(x, y): c(x) := argmaxy∈Y p̂(x, y)
• p̂(Apu, yes) = 1

9 , p̂(Apu, no) = 0, → c(Apu) = yes,
• p̂(Jimbo, yes) = 0, p̂(Jimbo, no) = 0, → c(Jimbo) = ???,

No clue about previously unseen patterns → very little generalization ability
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Naive Bayes Model

Definition
Let X = X1 × · · · × Xd. The Naive Bayes (NB) estimate of p(x, y) is

p̂NB(x, y) := p̂(y)
d∏
j=1

p̂j(xj |y),

where
• p̂(y) is an estimate of p(y),
• p̂j(xj |y) are estimates of p(xj |y) for every j = 1, . . . , d.

Lemma
The number of free parameters in pNB(x, y) grows linearly with d (instead of exponentially).

Proof.
pNB(x, y) has |Y|[1 +

∑d
j=1(mj − 1)]− 1 degrees of freedom.
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Naive Bayes Classifier

Definition
The Naive Bayes classifier is given by

c(x) := argmax
y∈Y

p̂NB(x, y)

A Naive Bayes classifier needs much fewer examples for ’training’ than one based on a full
probability table.

Remark
Even for n→∞, we likely won’t have p̂NB(x, y) 6→ p(x, y)!

So, most likely, the NB model is wrong as a density estimate.
But that doesn’t mean it doesn’t work for making decisions!
In fact, NB is very successful, e.g. in Spam filtering (text classification).

"All models are wrong, but some are useful." (George E. P. Box, 1979)
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Parametric models for finite domains
Both models we saw so far are parametric:

For finite z ∈ Z, p(z) is multinomial distribution:
• |Z| parameters: θz for z ∈ Z with p(Z = z) = θz
• parameters fulfill

I θz ≥ 0
I
∑

z θz = 1

Similar for Naive Bayes model:
• p̂(y) is multinomial for y ∈ Y, parameter θy ∈ R|Y|,

I p̂(y) = θy with θy ≥ 0,
∑

y∈Y θy = 1,

• p̂(xj |y) is multinomial for xj ∈ Xj , parameters θjxj

I p̂(xj |y) = θy
xj

with θy
xj
≥ 0,

∑
xj∈Xj

θy
xj

= 1, for all y ∈ Y

We set parameters as θz = 1
n

n∑
i=1

Jzi = zK? Why?
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Let p̂(z; θ) be a parametric model with parameter θ ∈ Θ.
Let D = {z1, . . . , zn} be i.i.d. samples from p(z).

Definition (Parameter estimation)

There’s (at least) two main approaches to set θ:

Maximum Likelihood (ML) Estimation:
Which parameter value makes it most likely that we observed D?

θML = argmax
θ∈Θ

p̂(z1, . . . , zn; θ) = argmax
θ∈Θ

∏
i

p̂(zi; θ)

Maximum-A-Posteriori (MAP) Parameter Estimation:
Treat θ as a random variable itself. What’s its most likely value given D?

θMAP = argmax
θ∈Θ

p(θ | z1, . . . , zn)

= argmax
θ∈Θ

p(θ)p(z1, . . . , zn| θ) = argmax
θ∈Θ

p(θ)
∏
i

p̂(zi; θ)

where p(θ) is a prior distribution over the possible parameter values.
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Parameter Estimation in Practice

Remark
In practice, one almost always uses the log-likelihood, which gives the same θ
(because log is a monotonous function):

θML = argmax
θ∈Θ

log
n∏
i=1

p̂(xi; θ) = argmax
θ∈Θ

n∑
i=1

log p̂(xi; θ)

and

θMAP = argmax
θ∈Θ

log
[
p̂(θ)

∏
i

p̂(zi; θ)
]

= argmax
θ∈Θ

log p̂(θ) +
∑
i

log p̂(zi; θ)

Example in exercises: z ∈ {0, 1}, p̂(z = 1; θ) = θ, p̂(z = 0; θ) = 1− θ.
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