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Overview (tentative)

Date no. Topic
Oct 05 Mon 1 A Hands-On Introduction
Oct 07 Wed 2 Bayesian Decision Theory, Generative Probabilistic Models
Oct 12 Mon 3 Discriminative Probabilistic Models
Oct 14 Wed 4 Maximum Margin Classifiers, Generalized Linear Models
Oct 19 Mon 5 Estimators; Overfitting/Underfitting, Regularization, Model Selection
Oct 21 Wed 6 Bias/Fairness, Domain Adaptation
Oct 26 Mon - no lecture (public holiday)
Oct 28 Wed 7 Learning Theory I
Nov 02 Mon 8 Learning Theory II
Nov 04 Wed 9 Deep Learning I
Nov 09 Mon 10 Deep Learning II
Nov 11 Wed 11 Unsupervised Learning
Nov 16 Mon 12 project presentations
Nov 18 Wed 13 buffer
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Evaluating Predictors
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So, you’ve trained a predictor, f : X → Y. How good is it really?

• The loss on the training set, R̂(f) = 1
n

n∑
i=1

`(yi, f(xi)) tells us little

about the quality of a learned predictor. Reporting it would be misleading as best.

• Really, we care about the expected loss (=generalization loss),

R(f) = E
(x,y)∼p(x,y)

`(y, f(x)).

Unfornately, we cannot compute it, because p(x, y) is unknown.

• In practice, we use a a test set, Dtst = { (x̄1, ȳ1), . . . , (x̄m, ȳm) },
i.e. examples that were not used for training, and compute the test loss

R̂tst(f) = 1
m

m∑
i=1

`(ȳi, f(x̄i))

Why is that a good idea? Let’s look at R̂tst(f) as an estimator of R(f).
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Excurse: Estimators
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Estimators
An estimator is a rule for calculating an estimate, Ê(S), of a quantity E based on observed
data, S. If S is random, then Ê(S) is also random.

Properties of estimators: bias
Let Ê be an estimator of E. We can compute the expected value of the estimate, ES [Ê(S)],
and define:

bias(Ê) = ES [Ê(S)]− E

Properties of estimators: unbiasedness
If Ê is an estimator of E, we call it unbiased, if

bias(Ê) = 0 (i.e. E
S

[Ê(S)] = E)

If Ê is unbiased, we can think of it as a noisy version of E.
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Example: Estimating the mean of a Gaussian
Examples: let S = {z1, z2, . . . , zn} be independent samples from N (x;µ, σ2). We look at
different estimators for µ:

• Ê(S) = 1 has bias 1− µ. bias(Ê) = ES Ê(S)− µ = 1− µ

• Ê(S) = 1
n

∑n
i=1 z

i is unbiased.

ES [Ê(S)] = ES [ 1
n

∑
i z
i] = 1

n

∑
i ES [zi] = 1

n

∑
i µ = µ

• Ê(S) = z1 is unbiased: ES [Ê(S)] = ES [z1] = µ

• Ê(S) = 1
n + 1

n

∑n
i=1 z

i has bias 1
n
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Example: Stochastic Gradient Descent
Reminder: we wanted to optimize a function that is a sum of (many) terms:

f(θ) =
n∑
j=1

fj(θ)

Instead of
v := ∇f(θ)

we use
v̂ := n∇fi(θ) with i

uniformly∼ {1, . . . , n}

Claim: v̂ is an unbiased estimator for v.

E
i
[v̂] =

n∑
i=1

p(i)v̂[i] =
n∑
i=1

1
n
n∇fi(θ) =

n∑
i=1
∇fi(θ) = ∇f(θ)
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If we get a single, Ê(S), how far is it going to be from its expected value, ES [Ê(S)] ?

Properties of estimators: variance

Var(Ê) = E
S

[(
Ê(S)− E

S
[Ê(S)]

)2]
If Var(Ê) is large, then the estimate for different S differ a lot.

Examples:
Let S = {z1, z2, . . . , zn} be independent samples from N (x;µ, σ2).
We look at different estimators for µ:

• Ê(S) = 1 has variance 0.
• Ê(S) = 1

n

∑n
i=1 zi has variance σ2

n (exercise)
• Ê(S) = z1 has variance σ2

• Ê(S) = 1
n−1

∑n
i=1 zi has variance ? (exercise)

9 / 54



Bias-Variance Trade-Off

It’s good to have small or no bias, and it’s good to have small variance.
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If you can’t have both at the same time, look for a reasonable trade-off.
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Consistency

What if we get more and more data, Sn = {z1, . . . , zn} for n→∞?

Properties of estimators: consistency
An estimator Ê is called consistent, if

Ê(Sn)→ E for n→∞.

Convergence is "in probability", i.e. it means,

lim
n→∞

Pr{ |Ê(Sn)− E| > ε } = 0.

Any estimator Ê with bias(Ê) n→∞→ 0 and Var(Ê) n→∞→ 0 is consistent.

Proof... follows from later observations
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Back to machine learning
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Test set loss as an estimator of the risk

Is the test set loss
R̂tst(f) = 1

n

n∑
i=1

`( yi, f(xi))

a good estimator of
R(f) = E

(x,y)∼p(x,y)
`( y, f(x) )

Yes, if we use the right data:

Test error as an unbiased estimator
Let ` be a bounded loss function, i.e. `(y, ȳ) ∈ [0,M ] for some M > 0. If the test set data
Dtst = { (x1, y1), . . . , (xm, ym) } is sampled i.i.d. from the distribution p(x, y), and f was
chosen independently of them, then R̂tst(f) is an unbiased and consistent estimator of R(f):

Otherwise? Things might go wrong (exercise).
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Proof: unbiasedness
• D is a set of random variables, (X1, Y 1), . . . , (Xm, Y m) ∈ X × Y.
• All (X1, Y 1), . . . , (Xm, Y m) are independent with distribution p.
• For fixed functions f, `, chosen independently of D

`(Y 1, f(X1)), . . . , `(Y m, f(Xm))

are independent (real-valued) random variables

E
Di.i.d.∼ p

R̂tst(f) = E
(X1,Y 1),...,(Xm,Y m)∼p

1
m

m∑
i=1

`(Y i, f(Xi) )

= 1
m

m∑
i=1

E
(X1,Y 1),...,(Xm,Y m)∼p

`(Y i, f(Xi) )

= 1
m

m∑
i=1

E
(Xi,Y i)∼p

`(Y i, f(Xi) )

= 1
m

m∑
i=1

E
(X,Y )∼p

`(Y, f(X) ) = 1
m

m∑
i=1
R(f) = R(f) 2
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Learning from Data

In the real world, p(x, y) is unknown, but we have a training set D.

Definition
Given a training set D, we call it
• a generative probabilistic approach:

if we use D to build a model p̂(x, y) of p(x, y), and then define

f(x) := argmin
y∈Y

E
ȳ∼p̂(x,ȳ)

`( ȳ, y ).

• a discriminative probabilistic approach:
if we use D to build a model p̂(y|x) of p(y|x) and define

f(x) := argmin
y∈Y

E
ȳ∼p̂(ȳ|x)

`( ȳ, y ).

• a decision theoretic approach: if we use D to directly seach for a classifier f .

15 / 54



Definition (Empirical Risk Minimization)

Given a training set D = { (x1, y1), . . . , (xn, yn) }, we call it empirical risk minimization
(ERM), if we find a classifier by minimizing the empirical risk:

f := argmin
h∈H

R̂(h) for R̂(f) = 1
n

n∑
i=1

`( yi, f(xi))

where H ⊂ {h : X → Y} is called the hypothesis set.

Unfortunately, ERM is often NP-hard, including for 0/1-loss [Marcotte, Savard. 1992]

→ for all practically relevant problem sizes, we don’t solve it exactly but find an approximate
solution by minimizing a surrogate loss function instead. e.g.
• hinge loss: L(y, t) = max{1− yt, 0} → support vector machine
• binary logistic loss: L(y, t) = log(1 + exp(−yt)) → logistic regression
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Empirical Risk Minimization

What we want:
1) first choose f : X → Y, then observe D = {(x1, y1), . . . , (xn, yn)}:

R̂(f) = 1
n

n∑
i=1

`( yi, f(xi)) unbiased, consistent estimator of R(f)

What we do:
2) first observe D = {(x1, y1), . . . , (xn, yn)}, then choose f based on D:

R̂(f) = 1
n

n∑
i=1

`( yi, f(xi)) not an unbiased estimator of R(f)

I `i := `( yi, f(xi)) are not independent RVs, law of large numbers does not apply

Why would it make sense to do 2), if what we want is 1)?
17 / 54



The relation between training and generalization loss
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Relation between training loss and generalization loss
Example: 1D curve fitting
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training points
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Relation between training loss and generalization loss
Example: 1D curve fitting
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Relation between training loss and generalization loss
Example: 1D curve fitting
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We found a model fθ∗ by minimizing the training error R̂.
Q: Will its generalization error, R, be small?
A: Unfortunately, that is not guaranteed.

Underfitting/Overfitting
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10 degree 12 fit, R̂= 0. 00

true signal R= 102. 49

training points

Underfitting Overfitting
(to some extend) detectable from R̂ not detectable from R̂ !
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Where does overfitting come from?

1 2 3 4 5 6 7

θi

0.0
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0.4

0.6

0.8

1.0
Choosing a predictor based on R̂ vs. R

R(θi)

generalization error R for 7 different predictors (x-axis)
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Where does overfitting come from?

1 2 3 4 5 6 7

θi

0.0

0.2

0.4

0.6

0.8

1.0
Choosing hypothesis based on R̂ vs. R

R(θi)

R̂S1
(θi)

R̂S2
(θi)

R̂S3
(θi)

R̂S4
(θi)

R̂S5
(θi)

training errors R̂ for 5 possible training sets (S1, . . . , X5)
21 / 54



Where does overfitting come from?

1 2 3 4 5 6 7

θi

0.0

0.2

0.4

0.6

0.8

1.0
Choosing hypothesis based on R̂ vs. R

R(θi)

R̂S1
(θi)

R̂S2
(θi)

R̂S3
(θi)

R̂S4
(θi)

R̂S5
(θi)

model with smallest training error might have high generalization error → overfitting
21 / 54



Preventing Overfitting
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Reminder: Overfitting
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overfitting R̂ vs. R

How can we prevent overfitting when learning a model?
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Preventing overfitting

1) larger training set

larger training set → smaller variance of R̂
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Preventing overfitting 1) larger training set
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Preventing overfitting 2) reduce the number of hypotheses
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But: danger of underfitting
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to few models select to from → danger that no model with low R is left!
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Overfitting happens when . . .

• there are too many models to choose from
(not strictly true: there’s usually infinitely many models anyway)

• the models we search over are too "flexible", so they fit not only the signal but also noise
(not strictly true: the models themselves are not "flexible" at all)

• the models have too many free parameters
(not strictly true: even models with very few parameters can overfit)

How to avoid overfitting?
• 1) Use a model class that

I is "as simple as possible", but still contains a model with low R̂

• 2) Use a training algorithm that
I implicitly has a preference for "simple" rather than complex models,
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Regularization
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Regularization

Models with big difference between R̂ and R are often extreme cases:
• a large number of model parameters
• large values of the model parameters
• for polynomials: high degree , etc.
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training points
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10 degree 14 fit, R̂= 0. 00

training points

coeffs: θi ∈ [−2.4, 4.6] coeffs: θi ∈ [−1312.5, 1136.6]

Regularization: avoid overfitting by preventing extremes to occur
• explicit regularization (changing the objective function)
• implicit regularization (modifying the optimization procedure)
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Explicit regularization

Add a regularization term (=regularizer) to the empirical risk that gives large values to
extreme parameter choices. The minimization will be discouraged away from such choices.

Regularized risk minimization
Take a training set, S = {(x1, y1), . . . , (xn, yn)}, find θ∗ by solving,

min
θ

Jλ(θ) with Jλ(θ) =
n∑
i=1

`(yi, fθ(xi))︸ ︷︷ ︸
empirical risk

+ λΩ(θ)︸ ︷︷ ︸
regularizer

e.g. with Ω(θ) = ‖θ‖2L2 =
∑

j
θ2
j or Ω(θ) = ‖θ‖L1 =

∑
j
|θj |

Optimization looks for model with small empirical risk, but also small absolute values of the
model parameters.
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Regularization (hyper)parameter λ ≥ 0: trade-off between both.
• λ = 0: (unregularized) empirical risk minimization → risk of overfitting
• λ→∞: all parameters 0 → risk of underfitting
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∑

j
θ2
j or Ω(θ) = ‖θ‖L1 =

∑
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Examples:
• Ridge Regression: minw λ‖w‖2 +

∑
i(〈w, xi〉 − yi)2

• Logistic Regression: minw λ‖w‖2 +
∑
i log(1 + e−y

i〈w,xi〉)
• SVM: minw 1

2‖w‖
2 + C

∑
i max{0, 1− yi〈w, xi〉} ← C=̂ 1

2λ
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Regularization as Trading Off Bias and Variance

Training error, R̂, is a noise estimate of the generalization error, R
• original risk R̂ is unbiased, but variance can be huge
• regularization introduces a bias, but reduces variance
• for λ→∞, the variance goes to 0, but the bias gets very big

Image: adapted from http://scott.fortmann-roe.com/docs/BiasVariance.html
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Example: regularized least-squares classifier

min
w

Jλ(w) for Jλ(w) =
n∑
i=1

(w>xi − yi)2 + λ‖w‖2

Train/test error for classifier c(x) = sign〈w, x〉 with w obtained by minimizing Jλ with
varying amounts of regularization:

10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103 104 105 106

regularization strength λ

0.0

0.1

0.2

0.3

0.4

0.5

0.6
training error, R̂

eye dataset: 737 examples for training, 736 examples for evaluation
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Implicit regularization

Numerical optimization is performed iteratively, e.g. gradient descent

Gradient descent optimization

• initialize θ(0)

• for t = 1, 2, . . .
• θ(t) ← θ(t−1) − ηt∇θJ(θ(t−1)) (ηt ∈ R is some stepsize rule)
• until convergence

Implicit regularization methods modify these steps, e.g.
• early stopping
• weight decay
• data augmentation/jittering
• dropout

33 / 54



Implicit regularization: early stopping

Gradient descent optimization with early stopping

• initialize θ(0)

• for t = 1, 2, . . . , T (T ∈ N is number of steps)
• θ(t) ← θ(t−1) − ηt∇θJ(θ(t−1))

Early stopping: stop optimization before convergence
• idea: if parameters are update only a small number of time, they might not reach
extreme values

• T hyperparameter controls trade-off:
I large T : parameters approach risk minimizer → risk of overfitting
I small T : parameters stay close to initialization → risk of underfitting
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Implicit regularization: weight decay

Gradient descent optimization with weight decay

• initialize θ(0)

• for t = 1, 2, . . .
• θ(t) ← θ(t−1) − ηt∇θJ(θ(t−1))
• θ(t) ← γθ(t) for, e.g., γ = 0.99
• until convergence

Weight decay:
Multiply parameters with a constant smaller than 1 in each iteration
• two ’forces’ in parameter update:

I θ(t)←θ(t−1) − ηt∇θJ(θ(t−1))
pull towards empirical risk minimizer → risk of overfitting

I θ(t) ← γθ(t) pulls towards 0 → risk of underfitting
• convergence: both effects cancel out → trade-off controlled by ηt, γ

Note: essentially same effect as explicit regularization with Ω = γ
2‖θ‖

2
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Implicit regularization: data augmentation (="jittering", "virtual samples")

Gradient descent optimization with data augmentation

• initialize θ(0)

• for t = 1, 2, . . .
• for i = 1, . . . , n:
• x̃i ← randomly perturbed version of xi

• set J̃(θ) =
∑n
i=1 `( yi, fθ(x̃i))

• θ(t) ← θ(t−1) − ηt∇θJ̃(θ(t−1))
• until convergence

Data augmentation: use randomly perturbed examples in each iteration
• idea: a good model should be robust to small changes of the data
• simulate (infinitely-)large training set → hopefully less overfitting

(also possible: just create large training set of jittered examples in the beginning)
• problem: coming up with reasonable perturbations needs domain knowledge
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Implicit regularization: dropout

Gradient descent optimization with dropout

• initialize θ(0)

• for t = 1, 2, . . .
• θ̃ ← θ(t−1) with a random fraction p of values set to 0, e.g. p = 1

2

• θ(t) ← θ(t−1) − ηt∇θJ(θ̃)
• until convergence

Dropout: every time we evaluate the model, a random subset of its parameters are set to
zero.
• aims for model with low empirical risk even if parameters are missing
• idea: no single parameter entry can become ’too important’
• similar to data augmentation, but without need for domain knowledge about x’s
• overfitting vs. underfitting tradeoff controlled by p
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Regularization

Often, more than one regularization techniques are combined, e.g.

Explicit regularization: e.g. "elastic net"
• Ω(θ) = α‖θ‖2L2 + (1− α)‖θ‖L1

Explicit/implicit regularization: e.g. large-scale support vector machines
• Ω(θ) = ‖θ‖2L2 , early stopping, data augmentation

Implicit regularization: e.g. deep networks
• early stopping, weight decay, dropout, potentially data augmentation
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Summary

Regularization can prevent overfitting
Intuition: avoid "extreme" models, e.g. very large parameter values

Explicit Regularization: modify object function

Implicit Regularization: change optimization procedure

Regularization introduces additional (hyper)parameters

How much of a regularization method to apply is a free parameter, often called regularization
constant. The optimal values are problem-specific.
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Choosing between models/methods/parameters
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Predictor Training (idealized)

input training data Dtrn
input learning procedure A
g ← A[D] (apply A with D as training set)

output resulting predictor g : X → Y

Predictor Evaluation

input trained predictor g : X → Y
input test data Dtst
apply g to Dtst and measure performance R̂tst(g)

output performance estimate R̂tst(g)

Remark: In commercial applications, this is realistic:
• given some training set one builds a single system,
• one deploys it to the customers,
• the customers use it on their own data, and complain if disappointed

In research, one typically has no customer, but only a fixed amount of data to work with.
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If given only one dataset, D, one simulates the train/test protocol.

Classifier Training and Evaluation

input data D
input learning method A
split D = Dtrn ∪̇ Dtst disjointly
set aside Dtst to a safe place // do not look at it
g ← A[Dtrn] // learn a predictor from Dtrn
apply g to Dtst and measure performance R̂tst(g)

output performance estimate R̂tst(g)

Remark. Dtst should be as small as possible, to keep Dtrn as big as possible, but large
enough to be convincing.
• small datasets: 50%/50%, larger datasets: 80%/20%, or 90%/10%

Warning: Dtst is "use once": it must not be used for any decisions in building the predictor,
only to evaluate it at the very end.
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Classifier Training and Evaluation

input data D
input learning method A
split D = Dtrn ∪̇ Dtst disjointly
set aside Dtst to a safe place // do not look at it
g ← A[Dtrn] // learn a predictor from Dtrn
apply g to Dtst and measure performance Rtst

output performance estimate Rtst

In practice we often want more: not just train a classifier and evaluate it, but
• select the best algorithm out of multiple ones,
• select the best (hyper)parameters for a training algorithm.

We simulate the classifier evaluation step during the training procedure. This needs (at least)
one additional data split:
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Training and Selecting between Multiple Models

input data D
input set of method A = {A1, . . . , AK}
split D = Dtrnval ∪̇ Dtst disjointly
set aside Dtst to a safe place (do not look at it)

split Dtrnval = Dtrn ∪̇ Dval disjointly
for all models Ai ∈ A do
gi ← Ai[Dtrn]
apply gi to Dval and measure performance Eval(Ai)

end for
pick best performing Ai
(optional) gi ← Ai[Dtrnval] // retrain best method on larger dataset
apply gi to Dtst and measure performance Rtst

output performance estimate Rtst

How to split? For example 1
3 : 1

3 : 1
3 or 70% : 10% : 20%.
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Discussion.
• Each algorithm is trained on Dtrn and evaluated on disjoint Dval !

• You select a predictor based on Rval (its performance on Dval), only afterwards Dtst is
used. !

• Dtst is used to evaluate the final predictor and nothing else. !

Problems.
• small Dval is bad: Rval could be bad estimate of gA’s true performance, and we might
pick a suboptimal method.

• large Dval is bad: Dtrn is much smaller than Dtrnval, so the classifier learned on Dtrn
might be much worse than necessary.

• retraining the best model on Dtrnval might overcome that, but it comes at a risk: just
because a model worked well when trained on Dtrn, this does not mean it’ll also work
well when trained on Dtrnval.
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Leave-one-out Evaluation (for a single model/algorithm)

input algorithm A
input loss function `
input data D (trnval part only: test part set aside earlier)
for all (xi, yi) ∈ D do
g¬i ← A[ D \ {(xi, yi)} ] // Dtrn is D with i-th example removed
ri ← `(yi, g¬i(xi)) // Dval = {(xi, yi)}, disjoint to Dtrn

end for
output Rloo = 1

n

∑n
i=1 r

i (average leave-one-out risk)

Properties.
• Each ri is a unbiased (but high variance) estimate of the risk R(g¬i)
• D \ {(xi, yi)} is almost the same as D, so we can hope that each g¬i ≈ g = A[D].
• Therefore, Rloo can be expected a good estimate of R(g)

Problem:
• slow, trains n times on n− 1 examples instead of once on n
• Rloo is not the qualify of any individual, but an average over many
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Compromise: use fixed number of small Dval

K-fold Cross Validation (CV)

input algorithm A, loss function `, data D (trnval part)
split D =

⋃̇K
k=1Dk into K equal sized disjoint parts

for k = 1, . . . ,K do
g¬k ← A[D \ Dk ]
rk ← 1

|Dk|
∑

(x,y)∈Dk
`(yi, g¬k(x))

end for
output RK-CV = 1

K

∑n
k=1 r

k (K-fold cross-validation risk)

Observation.
• for K = |D| same as leave-one-out error.
• approximately k times increase in runtime.
• most common: k = 10 or k = 5.

Problem: training sets overlap, so the error estimates are correlated.
Exception: K = 2
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5× 2 Cross Validation (5× 2-CV)

input algorithm A, loss function `, data D (trnval part)
for k = 1, . . . , 5 do
Split D = D1 ∪̇ D2
g1 ← A[D1],
rk1 ← evaluate g1 on D2
g2 ← A[D2],
rk2 ← evaluate g2 on D1
rk ← 1

2(r1
k + r2

k)
end for

output R5×2 = 1
5
∑5
k=1 r

k

Observation.
• 5× 2-CV is really the average of 5 runs of 2-fold CV
• very easy to implement: shuffle the data and split into halfs
• within each run the training sets are disjoint and the classifiers g1 and g2 are independent

Problem: training sets are smaller than in 5- or 10-fold CV.
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Other methods of evaluation
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Classification with Imbalanced Classes

If classes are imbalanced accuracy might not tell us much:
• p(y = −1) = 0.99, p(y = +1) = 0.01 → "always no" is 99% correct
• there might not be any better non-constant classifier

Three "solutions":
1. balancing the dataset

I use only subset of the majority class to balance data (5:1, or 1:1)
2. reweighting

I multiple loss in optimization with class-dependent constant Cyi ,

1
|D+|

n∑
(xi,yi)∈D+

`( yi, f(xi) ) + 1
|D−|

n∑
(xi,yi)∈D−

`( yi, f(xi) ) + Ω(f)

3. treat as a retrieval problem instead of classification
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Classifiers for Information Retrieval Tasks

Some classification tasks are really rather retrieval tasks, e.g.
• database lookup: is an entry x relevant (y = 1) or not (y = −1)?

A typical property:
• prediction is performed on a fixed database
• we have access to all elements of the test set at the same time (not one by one)
• positives (y = 1) are important, negative (y = −1) are a nuisanse
• we don’t need all decisions, getting a few correct positives are enough

Procedure:
• for a classifier g(x) = sign f(x) with f(x) : X → R (e.g., f(x) = 〈w, x〉), interpret
f(x) ∈ R as its confidence.

• To produce K positives we return the test samples of highest confidence.

• Alternatively, decide by gθ(x) = sign( f(x)− θ ), for suitably chosen cutoff threshold θ.
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Evaluating Retrieval Systems

Retrieval quality is often measure in terms of precision and recall:

Definition (Precision, Recall, F-Score)

For Y = {±1}, let g : X → Y a decision function and D = {(x1, y1), . . . , (xn, yn)} ⊂ X × Y
be a database.

Then we define

precision(g) = number of test samples with g(xj) = 1 and yj = 1
number of test samples with g(xj) = 1

recall(g) = number of test samples with g(xj) = 1 and yj = 1
number of test samples with yj = 1

F1-score(g) = 2 precision(g) · recall(g)
precision(g) + recall(g)
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Evaluating Retrieval Systems

For different cutoff thresholds, θ, we obtain different precision and recall values.
They are summarized by a precision-recall curve:

p
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recall

• If pressured, summarize into one number: average precision.
• Curve/value depends on class ratio: higher values for more positives
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A similar role in different context:
Receiver Operating Characteristic (ROC) Curve

true-positive-rate TPR(g) = number of samples with g(xj) = 1 and yj = 1
number of samples with yj = 1

false-positive-rate FPR(g) = number of samples with g(xj) = 1 and yj = −1
number of samples with yj = −1

false positive rate
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Summarize into: area under ROC curve (AUC).
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AUC = 0.72

Summarize into: area under ROC curve (AUC).
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Random classifier: AUC = 0.5, regardless of class proportions.
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