Statistical Machine Learning

https://cvml.ist.ac.at/courses/SML_W20

Christoph Lampert

| ANJY N AUSTRIA

Institute of Science and Technology

Fall Semester 2020/2021
Lecture 5

1/54

https://cvml.ist.ac.at/courses/SML_W20

Date no. | Topic

Oct 05 | Mon | 1 | A Hands-On Introduction

Oct 07 | Wed | 2 | Bayesian Decision Theory, Generative Probabilistic Models
Oct 12 | Mon | 3 | Discriminative Probabilistic Models

Oct 14 | Wed | 4 | Maximum Margin Classifiers, Generalized Linear Models
Oct 19 | Mon | 5 | Estimators; Overfitting/Underfitting, Regularization, Model Selection
Oct 21 | Wed | 6 | Bias/Fairness, Domain Adaptation

Oct 26 | Mon | - | no lecture (public holiday)

Oct 28 | Wed | 7 | Learning Theory |

Nov 02 | Mon | 8 | Learning Theory Il

Nov 04 | Wed | 9 | Deep Learning |

Nov 09 | Mon | 10 | Deep Learning Il

Nov 11 | Wed | 11 | Unsupervised Learning

Nov 16 | Mon | 12 | project presentations

Nov 18 | Wed | 13 | buffer

2/54

Evaluating Predictors

3/54

So, you've trained a predictor, f : X —). How good is it really?

The loss on the training set, ZE (v*, f(x tells us little

about the quality of a learned predictor. Reportlng it would be misleading as best.

Really, we care about the expected loss (=generalization loss),

R()= E yf@)

Y)~pl\x,

Unfornately, we cannot compute it, because p(z,y) is unknown.

In practice, we use a a test set, Dist = { (:El,gl), @Y™
i.e. examples that were not used for training, and compute the test loss

Relf) = = Y405, £(2)
i=1

Why is that a good idea? Let’s look at Rest(f) as an estimator of R(f).

4/54

Excurse: Estimators

5/54

A

An estimator is a rule for calculating an estimate, E(S), of a quantity E based on observed
data, S. If S is random, then E(S) is also random.

Properties of estimators: bias

Let E be an estimator of E. We can compute the expected value of the estimate, Eg[E/(S)],
and define:

bias(E) = Es[E(S)] — E

Properties of estimators: unbiasedness

If £ is an estimator of FE, we call it unbiased, if

bias(E) =0 (i.e.]E[E(S)] = F)

If £ is unbiased, we can think of it as a noisy version of F.
6/54

Example: Estimating the mean of a Gaussian

Examples: let S = {z',22,..., 2"} be independent samples from N (z; i1, 0%). We look at
different estimators for u:

A

E(S) =1 has bias 1 — p. bias(E) =Eg E(S) —p=1— p

7/54

Example: Estimating the mean of a Gaussian

Examples: let S = {z',22,..., 2"} be independent samples from N (z; i1, 0%). We look at
different estimators for u:

A

E(S) =1 has bias 1 — p. bias(E) =Eg E(S) —p=1— p

E(S)= 13" 2 is unbiased.

n 1=

7/54

Example: Estimating the mean of a Gaussian

Examples: let S = {z',22,..., 2"} be independent samples from N (z; i1, 0%). We look at
different estimators for u:

E(S) =1 has bias 1 — p. bias(E) =Eg E(S) —p=1— p
E(S)= 13" 2 is unbiased.

n 1=

Es[E(S)] =Es[2 ¥, 2] = 2, Eslei] =2 u=n

7/54

Example: Estimating the mean of a Gaussian

Examples: let S = {z',22,..., 2"} be independent samples from N (z; i1, 0%). We look at
different estimators for u:

E(S) =1 has bias 1 — p. bias(E) =Eg E(S) —p=1— p
E(S) = L3 2% is unbiased.

Es[E(S)] =Es[2 ¥, 2] = 2, Eslei] =2 u=n

E(S) = 2! is unbiased: Eg[E(S)] = Eg[z'] = p

7/54

Example: Estimating the mean of a Gaussian

Examples: let S = {z',22,..., 2"} be independent samples from N (z; i1, 0%). We look at
different estimators for u:

E(S) =1 has bias 1 — p. bias(E) =Eg E(S) —p=1— p
E(S) = L3 2% is unbiased.

Es[E(S)] =Es[; X; 2l = 3 TiEsle] = 1 =
E(S) = 2! is unbiased: Eg[E(S)] = Eg[z'] = p

E(S) = 14 15 2% has bias 1

7/54

Example: Stochastic Gradient Descent

Reminder: we wanted to optimize a function that is a sum of (many) terms:

Instead of

we use
. uniformly
i o~ A

0:=nVfi(0) with 1,...,n}

Claim: 9 is an unbiased estimator for v.

8/54

Example: Stochastic Gradient Descent

Reminder: we wanted to optimize a function that is a sum of (many) terms:

Instead of

we use
. uniformly
i o~ A

0:=nVfi(0) with 1,...,n}

Claim: 9 is an unbiased estimator for v.

n n

E[o] = 32 p(i)olil = Y - nV£i(0) = 3. VAi(6) = V(6)
=1

! i—1 i—1

8/54

If we get a single, E(S) how far is it going to be from its expected value, ES[E(S)] ?

Properties of estimators: variance

A

Var(B) = E [(£(8) - ELE(S)))’]

If Var(E) is large, then the estimate for different S differ a lot.

Examples:
Let S = {z!,22,...,2"} be independent samples from N (x; i, 02).
We look at different estimators for p:

E(S) = 1 has variance 0.

E(S) = LS | % has variance %2 (exercise)
E(S) = 2 has variance o2

E(S) = —L_ S | z; has variance ? (exercise)

9/54

Bias-Variance Trade-Off

It's good to have small or no bias, and it's good to have small variance.

Low Variance High Variance

Low Bias

High Bias

Image: adapted from http://scott.fortmann-roe.com/docs/BiasVariance.html|

If you can't have both at the same time, look for a reasonable trade-off.
10/ 54

Consistency

What if we get more and more data, S,, = {z1,...,2,} for n — o0?

Properties of estimators: consistency

An estimator £ is called consistent, if

E(S,) = E for n — oo.

Convergence is "in probability", i.e. it means,

lim Pr{ |E(S,) —E|>e}=0.

Any estimator £ with bias(E) "=5° 0 and Var(E) "=5° 0 is consistent.

Proof... follows from later observations

11 /54

Back to machine learning

12 /54

Test set loss as an estimator of the risk

Is the test set loss .

ﬁtst(f) = %ZE(Yi, f(zi))

i=1
a good estimator of

R(f)= E Ly, [f(z))

(:c,y)Np(x,y)

13 /54

Test set loss as an estimator of the risk

Is the test set loss

,ﬁ'tst(f) = %ZE(Yi, f ()

a good estimator of

R(f)= E Ly, [f(z))

(a:,y)Np(ﬂc,y)

Yes, if we use the right data:

Test error as an unbiased estimator

Let ¢ be a bounded loss function, i.e. £(y,y) € [0, M] for some M > 0. If the test set data
Dt = { (z',y"), ..., (@™, y™) } is sampled i.i.d. from the distribution p(z,y), and f was
chosen independently of them, then R (f) is an unbiased and consistent estimator of R(f):

Otherwise? Things might go wrong (exercise).

13 /54

Proof: unbiasedness
D is a set of random variables, (X1, Y1), ... (X™ Y™) € X x).
All (X1, YY), ... (X™,Y™) are independent with distribution p.
For fixed functions f, ¢, chosen independently of D
YD), o (Y™ f(X™)

are independent (real-valued) random variables

E R =N Y F(XY
Dty el f) = (X1Y1),. (Xm Ym)ap M= Z
— WY FXE
Z p—— Xm Yy (Y" f(X"))

fz Y'AXT)

(x? YZ)Np

= Z KB UYX) =

14 /54

Learning from Data

In the real world, p(x,y) is unknown, but we have a training set D.

Given a training set D, we call it

a generative probabilistic approach:
if we use D to build a model p(x,y) of p(z,y), and then define

f(z) :=argmin E {(y,y).
yey gwﬁ(:c,gj)

a discriminative probabilistic approach:
if we use D to build a model p(y|z) of p(y|x) and define

f(z) :=argmin E {(y,y).
yey I~p(ylw)

a decision theoretic approach: if we use D to directly seach for a classifier f.

15 /54

Definition (Empirical Risk Minimization)

Given a training set D = { (z',y'),..., (z",y") }, we call it empirical risk minimization
(ERM), if we find a classifier by minimizing the empirical risk:

n

fo=argminR(h) for R(f) =3 Uy, f(z)

heH n i=1

where H C {h: X — Y} is called the hypothesis set.

Unfortunately, ERM is often NP-hard, including for 0/1-loss [Marcotte, Savard. 1992]

— for all practically relevant problem sizes, we don't solve it exactly but find an approximate
solution by minimizing a surrogate loss function instead. e.g.

hinge loss: L(y,t) = max{l — yt,0} — support vector machine
binary logistic loss: L(y,t) = log(1 + exp(—yt)) — logistic regression

16 /54

Empirical Risk Minimization

What we want:
1) first choose f : X —), then observe D = {(z!,9%),..., (2", y™)}:
o 1 . .
R(f)=— Zﬁ(y’, f(z")) unbiased, consistent estimator of R(f)
i
What we do:
2) first observe D = {(z!,y'),...,(z",y™)}, then choose f based on D:

n

R(f) = 1 Zﬁ(yi,f(xi)) not an unbiased estimator of R(f)

N4

» (;:={(y*, f(z%)) are not independent RVs, law of large numbers does not apply

Why would it make sense to do 2), if what we want is 1)?

17 /54

The relation between training and generalization loss

18 /54

Relation between training loss and generalization loss

Example: 1D curve fitting

10

true signal
training points

» [¢)] [ee]
T

4 6
training points

19 /54

Relation between training loss and generalization loss

Example: 1D curve fitting

(| e @ training points

— degree 2 fit, R=8.44

— true signal R=14.64

2 4 6
best learned polynomial of degree 2:

8
large R, large R

19 /54

Relation between training loss and generalization loss

Example: 1D curve fitting

10 — degree 7 fit, R=0.02
— true signal R=0.39
| e ®e training points

0 2 4 6 8 10
best learned polynomial of degree 7: small R, small R

19 /54

Relation between training loss and generalization loss

Example: 1D curve fitting

10 — degree 12 fit, R=0.00
— true signal R =102.49
(| e @ training points

0 2 4 6 8 10
best learned polynomial of degree 12: small R, large R

19 /54

We found a model fy« by minimizing the training error R.

Q: Will its generalization error, R, be small?

A: Unfortunately, that is not guaranteed.

Underfitting /Overfitting

10 — degree 2 fit, R=8.44
sl — trule .signaI‘R:14.64
ee o training points
6
a4l
2+
0
2L
-4l

10

—al

o N B O ©

— degree 12 fit, R=0.00
— true signal R =102.49
e e+ training points

0 2 4 6 8 10
Underfitting
(to some extend) detectable from R

2 4 6 8 10
Overfitting
not detectable from R !

20 /54

Where does overfitting come from?

Choosing a predictor based on R vs. R

1.0
® o R(0)

0.8} R

0.4} ® .

0.2+ o i

o'o L L L L L L L

generalization error R for 7 different predictors (z-axis)
21 /54

Where does overfitting come from?

Choosing a predictors based on R vs. R

1.0
—e 1Y)

0.8} R

0.6]

0.2 B

,_._
N
w
IS
w
o
|t

0.0

generalization error R for 7 different predictors (z-axis)
21 /54

Where does overfitting come from?

Choosing a predictors based on R vs. R

1.0 — T

0.8

0.4] 1

0.0

’_“
N}
w
I
(o]
o
<l

training error R for a training set, S
21 /54

Where does overfitting come from?

Choosing hypothesis based on R vs. R

1.0
—e R(Y)
e—o ’]é 0;
0.8} AS‘(]
*~—— Rsz(ei)
=—a 735‘5(91)
0.6} vy 7€S4)
o 7@5\,‘(9,‘,)
0.4} 1
0.2+ 4
o'o L L L L L L L
1 2 3 4 5 6 7
0,

training errors R for 5 possible training sets (51, ..., X5)
21 /54

Where does overfitting come from?

Choosing hypothesis based on R vs. R

1.0 T T
—e R(0;)
o Rg (0
0.8} Aé‘()
*r—o 7252(01-)
=—a Ry (0)
0.6 vy 7%5‘(01_) 4
wx R (0;)
0.4} 4
0.2+ J
0.0 1 1 1 1 1 1 1
1 2 3 4 5 6 7
0;

model with smallest training error might have high generalization error — overfitting
21 /54

Preventing Overfitting

Reminder: Overfitting

10| — degree 12 fit, R=0.00
— true signal R =102.49
eee training points

overfitting

1.0

0.8

0.6

0.4

0.2

0.0

Choosing hypothesis based on R vs. R

How can we prevent overfitting when learning a model?

23 /54

Preventing overfitting

24 /54

Preventing overfitting 1) larger training set

Choosing hypothesis based on R vs. R

1.0 T T
—e R(0;)
e ﬁ&(@)
0.8} R
~— R (91)
=—a Ry (0)
0.6 7%5‘ ;) 1
wx R (0;)
0.4} 1
0.2+ J
0.0 1 1 1 1 1 1 1
1 2 3 4 5 6 7
0;

larger training set — smaller variance of R
24 /54

Preventing overfitting 1) larger training set

Choosing hypothesis based on R vs. R

1.0 T T
—e R(0;)
o Rg (0
0.8} AS'()
*r—o 'R,gz (91)
=—a Ry (0)
0.6 vy 7%5‘ (01_) 1
wx R (0;)
0.4} E
0.2+ i
0.0

lower probability that R differs strongly from R

24 /54

Preventing overfitting 1) larger training set

Choosing hypothesis based on R vs. R

1.0 T T
—e R(0;)
o Rg (0
0.8} Aé‘()
*r—o 'R,gz (91)
=—a Ry (0)
0.6 vy 7@9‘ (01_) 4
wx R (0;)
0.4} 4
0.2+ i
0.0

lower probability that R differs strongly from R — overfitting less likely
24 /54

Preventing overfitting 2) reduce the number of hypotheses

1.0 Choosing hypothesis based on R vs. R

0.8

0.6

0.4}

0.2}

0.0

25 /54

Preventing overfitting 2) reduce the number of hypotheses

1.0

0.8

0.6

0.4}

0.2}

0.0

Choosing a predictors based on R vs. R

—e R(0;)

25 /54

Preventing overfitting 2) reduce the number of hypotheses

1.0

0.8

0.6

0.4}

0.2}

0.0

Choosing hypothesis based on R vs. R

—e R(0;)

25 /54

Preventing overfitting 2) reduce the number of hypotheses

Choosing hypothesis based on R vs. R

1.0 T
—e 7(0;)
e—o 7€s,(9i)
0.8} R
*r—o 7252(01-)
=8 R (6)
- w / v 7%51(07') |
xR (0)
0.4} g
*
0.2 J
0.0

0;

fewer models — lower probability of a model with small R but high R
25 /54

Preventing overfitting 2) reduce the number of hypotheses

Choosing hypothesis based on R vs. R

1.0 T
—e 7(0;)
e—o 7€s,(9i)
0.8} R
*r—o 7252(01-)
=8 R (6)
- w / v 7%51(07') |
xR (0)
0.4} g
*
0.2 J
0.0 .
1 2 3

0;

fewer models — lower probability of a model with small R but high R
25 /54

But: danger of underfitting

Choosing hypothesis based on R vs. R

1.0 —
—e R (0;)

0.6 g

0.4+ R

0.0

=
N
wl

26 /54

But: danger of underfitting

1.0 Choosing hypothesis based on R vs. R

—e R (0;)

0.8 i

0.4+ R

0.2+ i

0.0

=
N

0;

to few models select to from — danger that no model with low R is left!
26 / 54

But: danger of underfitting

Choosing hypothesis based on R vs. R

1.0

—e R(0;)

e—o ’]é 0;
0.8} AS‘()

*~—— Rsz (91)

=—a 7%53 (91)
08¢ v 7€‘S4 (01)

H o 7§'55 (01)

0.4} 1
0.2 E
0.0

ury
N

0;

all models have high train (and test) error — Underfitting!
26 /54

But: danger of underfitting

Choosing hypothesis based on R vs. R

1.0
—e R(0;)
e—o ’]é 0;
0.8} AS‘()
*~—— Rsz (91)
=—a 7%53 (91)
08¢ v 7€‘S4 (01)
o 7§'55 (01)
0.4} 1
0.2 E
0.0 :

ury
N

0;

all models have high train (and test) error — Underfitting!
26 /54

Overfitting happens when ...

there are too many models to choose from
(not strictly true: there's usually infinitely many models anyway)

the models we search over are too "flexible", so they fit not only the signal but also noise
(not strictly true: the models themselves are not "flexible" at all)

the models have too many free parameters
(not strictly true: even models with very few parameters can overfit)

How to avoid overfitting?
1) Use a model class that

> is "as simple as possible", but still contains a model with low R

2) Use a training algorithm that

» implicitly has a preference for "simple" rather than complex models,

27 /54

Regularization

28 /54

Regularization

Models with big difference between R and R are often extreme cases:
a large number of model parameters
large values of the model parameters
for polynomials: high degree , etc.

10| — degree 7 fit, R=0.02 ‘ ‘ 10| — degree 14 fit, R =0.00
sl ee e training points | ol e training points
6 6
at at
2t 2t
of 0

-4t

10
coeffs: 0; € [—2.4,4.6] coeffs 0; 1312 5,1136. 6

29 /54

Regularization

Models with big difference between R and R are often extreme cases:
a large number of model parameters
large values of the model parameters
for polynomials: high degree , etc.

10| — degree 7 fit, R=0.02 ‘ ‘ 10| — degree 14 fit, R =0.00
ol ee e training points sl e training points
6 6
at at
2t 2t
of 0

-4t

10
coeffs: 0; € [—2.4,4.6] coeffs 0; 1312 5,1136. 6

Regularization: avoid overfitting by preventing extremes to occur
explicit regularization (changing the objective function)

implicit regularization (modifying the optimization procedure)
29 /54

Explicit regularization

Add a regularization term (=regularizer) to the empirical risk that gives large values to
extreme parameter choices. The minimization will be discouraged away from such choices.

Regularized risk minimization

Take a training set, S = {(z!,y'),..., (z",y™)}, find 6* by solving,

——
regularizer

mein JA(0) with Jy(0) = ﬁ:ﬂ(yi,fg(xi)) + AQ(0)

empirical risk
e.g. with Q(0) = ||0]]2. = 292 or QO) =0l = Z 160,

Optimization looks for model with small empirical risk, but also small absolute values of the
model parameters.

30 /54

Explicit regularization

Add a regularization term (=regularizer) to the empirical risk that gives large values to
extreme parameter choices. The minimization will be discouraged away from such choices.

Regularized risk minimization

Take a training set, S = {(z!,y%),..., (z",y™)}, find 6* by solving,

min J5(0) with J\(0) =D 0y, fo(z") + AQ(0)
0 i=1 e
regularizer

empirical risk
eg with Q0)=[0l3.=Y 02 o 90) =6l =16
J

Regularization (hyper)parameter A\ > 0: trade-off between both.
A = 0: (unregularized) empirical risk minimization — risk of overfitting
A — oo: all parameters 0 — risk of underfitting

30 /54

Explicit regularization

Add a regularization term (=regularizer) to the empirical risk that gives large values to

extreme parameter choices. The minimization will be discouraged away from such choices.

Regularized risk minimization

Take a training set, S = {(z*,y'),..., (2", y™)}, find 6* by solving,

——
regularizer

mein JA(0) with Jy(0) = ﬁ:ﬂ(yi,fg(xi)) + AQ(0)

empirical risk
e.g. with Q(0) = ||0]]%. = 292 or QO) =0l = Z 16,

Examples:
Ridge Regression: min,, Allw|? +3,;((w, z) — yi)Q
Logistic Regression: min,, M|w|*>+3; IOg(l + e~ ¥ (wat))

SVM: min, glwl® +C3; max{0,1 - y'(w,z")} ~ o=k

30 /54

Regularization as Trading Off Bias and Variance

Training error, R, is a noise estimate of the generalization error, R
original risk R is unbiased, but variance can be huge
regularization introduces a bias, but reduces variance
for A — o0, the variance goes to 0, but the bias gets very big

Low Variance High Variance

@©
(Ofc

Image: adapted from http://scott.fortmann-roe.com/docs/BiasVariance.html

Low Bias

High Bias

31 /54

Regularization as Trading Off Bias and Variance

Training error, R, is a noise estimate of the generalization error, R
original risk R is unbiased, but variance can be huge
regularization introduces a bias, but reduces variance
for A — o0, the variance goes to 0, but the bias gets very big

Low Variance High Variance

Low Bias
.o

High Bias

Image: adapted from http://scott.fortmann-roe.com/docs/BiasVariance.html
31 /54

Regularization as Trading Off Bias and Variance

Training error, R, is a noise estimate of the generalization error, R
original risk R is unbiased, but variance can be huge
regularization introduces a bias, but reduces variance
for A — o0, the variance goes to 0, but the bias gets very big

Low Variance High Variance

Low Bias
.o

High Bias

Image: adapted from http://scott.fortmann-roe.com/docs/BiasVariance.html
31 /54

Regularization as Trading Off Bias and Variance

Training error, R, is a noise estimate of the generalization error, R
original risk R is unbiased, but variance can be huge
regularization introduces a bias, but reduces variance

for A — o0, the variance goes to 0, but the bias gets very big

Low Variance High Variance

Low Bias

High Bias

Image: adapted from http://scott.fortmann-roe.com/docs/BiasVariance.html
31 /54

Example: regularized least-squares classifier

min Ia(w) for Jy(w) = Z(wai — ") + Aw]?
i=1

32 /54

Example: regularized least-squares classifier

min Ia(w) for Jy(w) = Z(wai — ") + Aw]?
i=1

Train/test error for classifier ¢(z) = sign{w, x) with w obtained by minimizing J, with
varying amounts of regularization:

0.6

— trainin error,7€|
o3| g

0.4

0.3}

0.2+

0.1

0.0
106 105 104 103 102 101 10° 101 102 105 10¢ 105 106
regularization strength \

eye dataset: 737 examples for training, 736 examples for evaluation
32 /54

Example: regularized least-squares classifier

min Ia(w) for Jy(w) = Z(wai — ") + Aw]?
i=1

Train/test error for classifier ¢(z) = sign{w, x) with w obtained by minimizing J, with
varying amounts of regularization:
0.6

— training error, R

0.5+

— test error, R

0.4

0.3

0.2

0.1

0.0

106 105 104 103 102 101 10° 101 102 105 10¢ 105 106
regularization strength \

eye dataset: 737 examples for training, 736 examples for evaluation
32 /54

Example: regularized least-squares classifier

n

min Jy(w) for Jy(w) = D (w'a' —)+ Awlf?

=1

Train/test error for classifier ¢(z) = sign{w, x) with w obtained by minimizing J, with
varying amounts of regularization:

0.6 T
osl| — training error, R
|| = test error, R,y sweet
0.4}
spot
0.3k ’
under-
X L
B~ fitting
o
0% 105 104 10) 102 107 10° 10 T 1_10i —¥o—dos

regularization strength A

eye dataset: 737 examples for training, 736 examples for evaluation

32 /54

Implicit regularization

Numerical optimization is performed iteratively, e.g. gradient descent

Gradient descent optimization

initialize ()
fort=1,2,...
0®) — 9t=1) _ V. J(6¢-D) (n: € R is some stepsize rule)

until convergence

Implicit regularization methods modify these steps, e.g.
early stopping
weight decay
data augmentation /jittering

dropout

33 /54

Implicit regularization: early stopping

Gradient descent optimization with

initialize (¥
fort=1,2,...,T (T € N is number of steps)
6®) — 9t=1) — Vo J(6¢-D)

34 /54

Implicit regularization: early stopping

Gradient descent optimization with early stopping

initialize 6(°)
fort=1,2,...,T (T € N is number of steps)
6®) — 9t=1) — Vo J(6¢-D)

Early stopping: stop optimization before convergence
idea: if parameters are update only a small number of time, they might not reach
extreme values

T hyperparameter controls trade-off:

> large T': parameters approach risk minimizer ~— — risk of overfitting
» small T": parameters stay close to initialization — risk of underfitting

34 /54

Implicit regularization: weight decay

Gradient descent optimization with weight decay

initialize (¥
fort=1,2,...
9 — gt—1) _ vy J(00¢-1)
6 — ~o) for, e.g., v = 0.99

until convergence

35 /54

Implicit regularization: weight decay

Gradient descent optimization with weight decay

initialize §(*)
fort=1,2,...
9 — gt—1) _ vy J(00¢-1)
9 — ~o) for, e.g., v = 0.99

until convergence

Weight decay:
Multiply parameters with a constant smaller than 1 in each iteration
two 'forces’ in parameter update:
> 00 =D _ e (00¢1)
pull towards empirical risk minimizer =~ — risk of overfitting
» 01 — 401 pulls towards 0 — risk of underfitting
convergence: both effects cancel out — trade-off controlled by 7, ~y

Note: essentially same effect as explicit regularization with Q = %>
35 /54

Implicit regularization: data augmentation (="jittering", "virtual samples'')

Gradient descent optimization with data augmentation
initialize 6(*)
fort=1,2,...
fori=1,...,n:
#* < randomly perturbed version of
set J(6) = Sy (4, fol(@))
0 — 9(t=1) — V. J(6¢-D)

until convergence

36 /54

Implicit regularization: data augmentation (="jittering", "virtual samples'')

Gradient descent optimization with data augmentation

initialize 6(*)
fort=1,2,...
fori=1,..., n:
#' < randomly perturbed version of
set J(68) = X (v, fol&)
01 — 9t=1) — V. J(6¢-D)

until convergence

Data augmentation: use randomly perturbed examples in each iteration
idea: a good model should be robust to small changes of the data
simulate (infinitely-)large training set — hopefully less overfitting
(also possible: just create large training set of jittered examples in the beginning)

problem: coming up with reasonable perturbations needs domain knowledge
36 /54

Implicit regularization: dropout

Gradient descent optimization with dropout

initialize 6(©)

fort=1,2,...
0 < (=1 with a random fraction p of values set to 0, e.g. p = %
0« 60=1) — VI (6)

until convergence

37 /54

Implicit regularization: dropout

Gradient descent optimization with dropout

initialize 6(©)

fort=1,2,...
0 < 01~ with a random fraction p of values set to 0, e.g. p = :
0 6(=1) — VI ()

until convergence

Dropout: every time we evaluate the model, a random subset of its parameters are set to
Zero.

aims for model with low empirical risk even if parameters are missing
idea: no single parameter entry can become 'too important’
similar to data augmentation, but without need for domain knowledge about x's

overfitting vs. underfitting tradeoff controlled by p

37 /54

Regularization

Often, more than one regularization techniques are combined, e.g.

Explicit regularization: e.g. "elastic net"
Q0) = allolz: + (1 = a)|fll s

Explicit/implicit regularization: e.g. large-scale support vector machines

Q(0) = ||0]|3., early stopping, data augmentation

Implicit regularization: e.g. deep networks

early stopping, weight decay, dropout, potentially data augmentation

38 /54

Summary

Regularization can prevent overfitting

Intuition: avoid "extreme" models, e.g. very large parameter values

Explicit Regularization: modify object function

Implicit Regularization: change optimization procedure

Regularization introduces additional (hyper)parameters

How much of a regularization method to apply is a free parameter, often called regularization
constant. The optimal values are problem-specific.

39 /54

Choosing between models/methods/parameters

40 /54

Predictor Training (idealized)

input training data Dy,
input learning procedure A

g < A[D] (apply A with D as training set)
output resulting predictor g : X — Y

Predictor Evaluation

input trained predictor g : X — Y
input test data Dyt

apply g to Dis; and measure performance ﬁtst(g)
output performance estimate ﬁtst(g)

41 /54

Predictor Training (idealized)

input training data Dy,
input learning procedure A

g < A[D] (apply A with D as training set)
output resulting predictor g : X — Y

Predictor Evaluation

input trained predictor g : X — Y
input test data Dyt

apply g to Dis; and measure performance ﬁtst(g)
output performance estimate ﬁtst(g)

Remark: In commercial applications, this is realistic:
given some training set one builds a single system,
one deploys it to the customers,
the customers use it on their own data, and complain if disappointed

In research, one typically has no customer, but only a fixed amount of data to work with.41/54

If given only one dataset, D, one simulates the train/test protocol.

Classifier Training and Evaluation

input data D
input learning method A
split D = Dy U Dyt disjointly
set aside Dy to a safe place // do not look at it
g < A[Dyp] // learn a predictor from Dy,
apply g to Dist and measure performance ﬁtst(g)
output performance estimate ﬁtst(g)

42 /54

If given only one dataset, D, one simulates the train/test protocol.

Classifier Training and Evaluation

input data D
input learning method A
split D = Dy U Dyt disjointly
set aside Dy to a safe place // do not look at it
g < A[Dyp] // learn a predictor from Dy,
apply g to Dist and measure performance ﬁtst(g)
output performance estimate ﬁtst(g)

Remark. Di: should be as small as possible, to keep Dy, as big as possible, but large
enough to be convincing.

small datasets: 50%/50%, larger datasets: 80%,/20%, or 90%/10%

42 /54

If given only one dataset, D, one simulates the train/test protocol.

Classifier Training and Evaluation

input data D
input learning method A
split D = Dy U Dyt disjointly
set aside Dy to a safe place // do not look at it
g < A[Dyp] // learn a predictor from Dy,
apply g to Dist and measure performance ﬁtst(g)
output performance estimate ﬁtst(g)

Remark. Di: should be as small as possible, to keep Dy, as big as possible, but large
enough to be convincing.

small datasets: 50%/50%, larger datasets: 80%,/20%, or 90%/10%

Warning: Di; is "use once": it must not be used for any decisions in building the predictor,

only to evaluate it at the very end.
42 /54

Classifier Training and Evaluation

input data D
input learning method A
split D = Dy U Dyt disjointly
set aside Dis: to a safe place // do not look at it
g < A[Dim) // learn a predictor from Dy,
apply g to Dist and measure performance Ryt
output performance estimate Ry

In practice we often want more: not just train a classifier and evaluate it, but
select the best algorithm out of multiple ones,

select the best (hyper)parameters for a training algorithm.

We simulate the classifier evaluation step during the training procedure. This needs (at least)
one additional data split:

43 /54

Training and Selecting between Multiple Models

input data D
input set of method A ={A4,,..., Ax}
split D = Diynval U Dist disjointly
set aside Dyt to a safe place (do not look at it)

split Dirnval = Dirn U Dyg) disjointly
for all models 4; € A do
gi < Az [Dtrn]
apply g; to Dy, and measure performance E,(4;)
end for
pick best performing A;

(optional) g; < A;[Dynval] // retrain best method on larger dataset
apply g; to Dist and measure performance Rist
output performance estimate Ryst

How to split? For example : % or 70% : 10% : 20%.

Wl

1.
3!
44 /54

Discussion.
Each algorithm is trained on Dy, and evaluated on disjoint Dy, v

You select a predictor based on R, (its performance on D), only afterwards Dy is

used. v/

Dist is used to evaluate the final predictor and nothing else. v

45 /54

Discussion.

Each algorithm is trained on Dy, and evaluated on disjoint Dy, v

You select a predictor based on R, (its performance on D), only afterwards Dy is

used. v/

Dist is used to evaluate the final predictor and nothing else. v

Problems.
small D, is bad: Ry could be bad estimate of ga's true performance, and we might
pick a suboptimal method.

large D, is bad: Dy is much smaller than Dyypyal, so the classifier learned on Dy,
might be much worse than necessary.

retraining the best model on Dynya Might overcome that, but it comes at a risk: just
because a model worked well when trained on Dy, this does not mean it'll also work
well when trained on Dirpyal.

45 /54

Leave-one-out Evaluation (for a single model/algorithm)

input algorithm A
input loss function /¢
input data D (trnval part only: test part set aside earlier)
for all (z*,y') € D do
gt Al D\ {(2%,4)}] // Dun is D with i-th example removed
rt Ly, g7 (xh)) // Dyal = {(2%,9")}, disjoint to Dy
end for
output Ripo = 4

=5 7' (average leave-one-out risk)

Properties.
Each ¢ is a unbiased (but high variance) estimate of the risk R(g ™)
D\ {(z%,4%)} is almost the same as D, so we can hope that each g7 ~ g = A[D].
Therefore, Rjoo can be expected a good estimate of R(g)

Problem:
slow, trains n times on n — 1 examples instead of once on n

Rioo is not the qualify of any individual, but an average over many ,
46 / 54

Compromise: use fixed number of small Dy,

K-fold Cross Validation (CV)

input algorithm A, loss function ¢, data D (trnval part)
split D = Uszle into K equal sized disjoint parts
fork=1,...,K do
9" + A[D\ Dy]
ko |D71k| Z(z,y)eDk ﬁ(y'L, g_‘k(x))
end for
output Ri.cyv = + > 47" (K-fold cross-validation risk)

Observation.
for K = |D| same as leave-one-out error.
approximately k times increase in runtime.
most common: k= 10 or k = 5.

Problem: training sets overlap, so the error estimates are correlated.
Exception: K =2

47 /54

5 x 2 Cross Validation (5 x 2-CV)

input algorithm A, loss function ¢, data D (trnval part)
fork=1,...,5do
Splﬁ D 221)1L31)2
g1 < A[D],
r’f < evaluate g; on Dy
g2 < A[Ds],
7’5 < evaluate g2 on D,
e Tl +1})
end for
output Rs5x2 = %22:1 rk

Observation.
5 x 2-CV is really the average of 5 runs of 2-fold CV
very easy to implement: shuffle the data and split into halfs
within each run the training sets are disjoint and the classifiers g; and go are independent

Problem: training sets are smaller than in 5- or 10-fold CV.
48 /54

Other methods of evaluation

49 /54

Classification with Imbalanced Classes

If classes are imbalanced accuracy might not tell us much:
p(y=—-1)=0.99, p(y =+1) =0.01 — "always no" is 99% correct

there might not be any better non-constant classifier

Three "solutions":
1. balancing the dataset
» use only subset of the majority class to balance data (5:1, or 1:1)
2. reweighting
» multiple loss in optimization with class-dependent constant C,,
1 = 1 -
o Z EQyi, f () + D] Z ys, fxi)) +Q(f)

D
| +| (zi,y:)€EDy (zi,y:)€D—

3. treat as a retrieval problem instead of classification

50 /54

Classifiers for Information Retrieval Tasks

Some classification tasks are really rather retrieval tasks, e.g.
database lookup: is an entry x relevant (y = 1) or not (y = —1)7?

A typical property:
prediction is performed on a fixed database
we have access to all elements of the test set at the same time (not one by one)
positives (y = 1) are important, negative (y = —1) are a nuisanse
we don't need all decisions, getting a few correct positives are enough

51 /54

Classifiers for Information Retrieval Tasks

Some classification tasks are really rather retrieval tasks, e.g.
database lookup: is an entry x relevant (y = 1) or not (y = —1)7?

A typical property:
prediction is performed on a fixed database
we have access to all elements of the test set at the same time (not one by one)
positives (y = 1) are important, negative (y = —1) are a nuisanse

we don't need all decisions, getting a few correct positives are enough

Procedure:

for a classifier g(z) = sign f(x) with f(z) : X - R (e.g., f(z) = (w,x)), interpret
f(z) € R as its confidence.

To produce K positives we return the test samples of highest confidence.

Alternatively, decide by gg(z) = sign(f(z) —), for suitably chosen cutoff threshold 6.

51 /54

Evaluating Retrieval Systems

Retrieval quality is often measure in terms of precision and recall:

Definition (Precision, Recall, F-Score)

For) = {#1}, let g : X — Y a decision function and D = {(z!,y!),..., (2", y")} C X x Y
be a database.

Then we define

precision(g) = number of test samples with g(x7) =1 and iy’ = 1

number of test samples with g(x7) = 1

number of test samples with g(x7) =1 and iy’ = 1

recall(g) = :
(9) number of test samples with ¢/ = 1

Fl-score(g) = 2 precision(g) - recall(g)

precision(g) + recall(g)

52 /54

Evaluating Retrieval Systems

For different cutoff thresholds, 6, we obtain different precision and recall values.

They are summarized by a precision-recall curve:
1

0.8

0.6

0.4

precision

0.2

0 0.2 0.4 0.6 0.8
recall

=

53 /54

Evaluating Retrieval Systems

For different cutoff thresholds, 6, we obtain different precision and recall values.

They are summarized by a precision-recall curve:
1

0.8

0.6

0.4

precision

0.2

00 . 0.4 0.6
recall

If pressured, summarize into one number: average precision.

Curve/value depends on class ratio: higher values for more positives 53 /54

A similar role in different context:

Receiver Operating Characteristic (ROC) Curve

true-positive-rate

false-positive-rate

number of samples with g(x7) =1 and 3/ = 1

TPR(g) = .
(9) number of samples with 3 = 1
FPR(g) number of samples with g(xj.) =1 and Yy =—1
number of samples with) = —1
1,
3
O os
)
2
-'a’ 0.6
o
oY
U 04
>
b
0.2
0 0.2 0.4 0.6 0.8 1

false positive rate 5454

A similar role in different context:

Receiver Operating Characteristic (ROC) Curve

true-positive-rate

false-positive-rate

number of samples with g(x7) =1 and 3/ = 1

TPR(g) = -
(9) number of samples with 3 = 1

FPR(g) number of samples with g(x7) =1 and 3/ = —1
L number of samples with y/ = —1

true positive rate

0.2 0.4 0.6 0.8
false positive rate

54 /54

A similar role in different context:

Receiver Operating Characteristic (ROC) Curve

true-positive-rate

false-positive-rate

number of samples with g(x7) =1 and 3/ = 1

TPR(g) = =
number of samples with 3 = 1
number of samples with g(x7) =1 and 3/ = —1
FPR(g) = =
number of samples with) = —1
1 -’
)
+J R
O os /;'
o ke
Z ';(:;\7;,6\
+J 04
— 0.6 L0
oY
U 04 o
>
— e
+— P
02"
0 0.2 0.4 0.6 0.8 1

false positive rate 5454

