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Overview (tentative)

Date no. Topic
Oct 05 Mon 1 A Hands-On Introduction
Oct 07 Wed 2 Bayesian Decision Theory, Generative Probabilistic Models
Oct 12 Mon 3 Discriminative Probabilistic Models
Oct 14 Wed 4 Maximum Margin Classifiers, Generalized Linear Models
Oct 19 Mon 5 Estimators; Overfitting/Underfitting, Regularization, Model Selection
Oct 21 Wed 6 Bias/Fairness, Domain Adaptation
Oct 26 Mon - no lecture (public holiday)
Oct 28 Wed 7 Learning Theory I
Nov 02 Mon 8 Learning Theory II
Nov 04 Wed 9 Deep Learning I
Nov 09 Mon 10 Deep Learning II
Nov 11 Wed 11 Unsupervised Learning
Nov 16 Mon 12 project presentations
Nov 18 Wed 13 buffer
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Bias and Fairness
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Machine Learning has started to influence our everyday lives

Example from Austria: Public Employment Service (AMS)

In 2018 it was announced that starting in 2020, an algorithm will suggest which jobseekers
should get funding for additional training measures and which ones should not.

Features entering the decision are:
• age
• citizenship
• gender
• education
• care responsibilities

• health impairments
• past employment
• contacts with the AMS
• location of residence

In August 2020, the deployment of the system was stopped by the Austrian data protection
agency after public protests.
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Machine Learning has started to influence our everyday lives

Example from the USA: Recidivism Scoring
The commercial software tool COMPAS is used by U.S. courts to predict the probability that
a defendent in court will will commit a new crime at a later time.

Features used by the system are not public, but include replies to a 137-question survey that
asks for
• gender
• age
• marital status
• race
• charge degree
• criminal history

• family criminality
• drug usage
• housing situation
• education
• recreational activities
• personality traits

In 2016, ProPublica investigated the software and reported a strong racial bias again blacks.
The software manufactorer denies the claim, aiming that the analysis was done incorrectly.
https://en.wikipedia.org/wiki/COMPAS_(software) 6 / 55
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Original article by PropPublica: https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
Reply by NorthPointe https://www.documentcloud.org/documents/2998391-ProPublica-Commentary-Final-070616.html
Reply by PropPublica article: https://www.propublica.org/article/technical-response-to-northpointe
Discussion in the context of explainable/interpretable models (Cynthia Rudin): https://youtu.be/zsRKPxgHURQ?t=1391
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Bias and Fairness in Machine Learning

Bias is often used informally to describe an "imbalanced representation".

Data sources should not have a bias.

• in 2018, Google image search for "CEO" returned almost exclusively pictures of men
• face recognition datasets contain predominanlty white faces

?→ in 2015 Google’s image tagger labeled some pictures of black faces as "gorilla"
• Google translate tends to make all "doctors" male and all "nurses" female.
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Bias and Fairness in Machine Learning

Algorithmic fairness is a formal framework that studies how to create decision systems that
do not discriminate against certain "protected groups".

Machine Learning systems should be fair.
Imagene that some attributes of input data can be considered sensitive, e.g.
• gender, age, religion, income, ethnicity, sexual orientation, health information, . . .

A fair decision should not treat cases differently just because of sensitive attributes, e.g.
• individual fairness: if someone gets a salary increase or not not depend on their gender
• group fairness: women should receive the same salary as men

Individual fairness is hard, too hard for this lecture. We’ll only talk about group fairness.

Reference: S. Barocas, M. Hardt, A. Narayanan: "Fairness and machine learning", https://fairmlbook.org/

9 / 55

https://fairmlbook.org/


Group Fairness
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Example: Gradschool Recruiting

Current process at IST Austria:
1. candidates prepare their applications and upload them
2. references prepare their recommendation letters and upload them
3. volunteers (typically postdocs) pre-filter applications, removing ≈50% "hopeless cases"
4. faculty members read remaining applications and assign quality scores
5. faculty members discuss and decide whom they want to interview
6. faculty members interview invited candidates
7. faculty members score candidates as: definite offer, possible offer, reject
8. faculty members discuss each applicant and decide on offer or rejection
9. accepted candidates decide to accept or reject

Every single step is influenced by (explicit or subconcious) bias.

How can we ensure a (more) fair process?
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Example: Student Recruiting

Hope: an automatic classifier could be more objective and decide based only on relevant
facts, not based on human bias/prejudice.

Automatic Gradschool Admissions
Data:
• applications and admittance decisions from previous years

Classifier:
• train on data from some years, evaluate accuracy or ROC-curve on other years

Problem: dataset bias!
• if any group has been treated unfairly in the past (e.g. rejected too often), then the
classifier will learn to do that as well
• measured quality will be high, because the test data is as biased as the training data

Rest of the segment: how to define, measure and ultimately enforce fairness?
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(Group) Fairness in the Language of Probability

Notation: random variables
• X, taking values x ∈ X : input
• A, taking values a ∈ A: sensitive attributes of X
• Y , taking values y ∈ Y: target value, e.g. true label
• R, taking values r ∈ R: classifier output/score eg r = f(x) or r = sign f(x)

Example (Gradschool Recruiting)

How can we make sure that, e.g., female candidates are treated fairly?
• X = application documents: resume, research statement, reference letters, transcripts
• A = applicant’s gender (explicitly asked for in online form)
• Y = if the candidate will be a good graduate student
• R = if we make the candidate a job offer
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Fairness Through Unawareness

Idea: to ensure fair treatment, we should not ask for the sensitive attributes A, e.g. gender.
(typical requirement in many discrimination laws)

Observation: not going to fool an automatic classifier. There’s plenty of non-sensitive data
correlated with gender.
• first name
• photo
• career breaks due to maternity leave
• change of surname due to marriage
• names of supervised students
• memberships
• research areas
• pronouns in reference letters

If the predictor trained with A has a gender bias, so will probably the one trained without A.

No fairness through unawareness!
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Formal Fairness Criteria

If we want a predictor not to discriminate based on A, we have to explicitly enforce fairness!

Notions of Group Fairness
There are many formal fairness criteria in the literature, typically based on the joint
distribution of prediction R, the sensitive attribute A, and the true target variable Y .

We’re going to discuss two of them:
• Independence: R ⊥ A also know as "demographic parity"

• Separation: R ⊥ A|Y also know as "equalized odds"

Note: we can only influence R, so these are contraits how the predictor output should behave

Resources: Tutorial at NeurIPS 2017: https://nips.cc/Conferences/2017/Schedule?showEvent=8734
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Formal Fairness Criteria: Independence

Definition (Independence)

The response variable R fulfills independence with respect to the sensitive attribute A, if R is
statistically independent of A: R ⊥ A.

For binary responses, R ∈ {0, 1}: "accept" or "reject", this means, for all a, b ∈ A

Pr(R = 1|A = a) = Pr(R = 1|A = b) "acceptance probability"

Independence enforces that each group has the same acceptance probability.

Example:
• Male and female applicants have the probability of getting a job offer.
• Black applicants have the same chance of getting a loan as white people.
• Paper submissions from China have the same chance of getting accepted as submissions
from the USA.

Independence is also called demographic parity, statistical parity, (no) disparate impact.
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Achieving Fairness: Independence

How to enforce a classifier to be fair? At least three options:

• Pre-processing: extract features in which no information about A remains
+ broadly applicable: needs only the raw data, afterwards any classifier can be trained by

anyone
– classifier quality might suffer, more information than necessary is discarded
→ special case of second part of today’s lecture

• At training time: work the fairness constraint into the training step
+ most flexible/powerful, full control over what is learned and how
– not always applicable, full control over the learning process is needed

• Post-processing: adjust outputs of a learned classifier to fulfill fairness
+ applicable for black-box/pretrained classifiers, efficient
– classifier quality might suffer, more information than necessary can get lost
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Achieving Fairness: Independence

Example 1: training with independence constraints

Regularized Risk Minimization with Fairness Constraints:

min
θ
L(θ) with L(θ) =

n∑
i=1

`(y, f(xi))︸ ︷︷ ︸
training loss

+ Ω(θ)︸ ︷︷ ︸
regularizer

+ F (θ)︸ ︷︷ ︸
unfairness
penalizer

with a fairness penalizer that encourages equal average predictions among groups, e.g.

F (θ) =
∑
a,b∈A

( 1
|Da|

∑
(x,y)∈Da

f(x) − 1
|Db|

∑
(x,y)∈Db

f(x)
)2

where Da = {(x, y) ∈ D : xA = a} for any a ∈ A.

Note: we can do this on the level of decisions, f(x) ∈ {0, 1}, or confidences, f(x) ∈ R.
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Achieving Fairness: Independence

Example 2: independence by postprocessing
Group-specific threshold selection
Adjust the acceptance threshold for each group to achieve equal acceptance rate:

6 5 4 3 2 1 0 1 2
0

100
200
300
400
500
600
700
800

Group A

6 5 4 3 2 1 0 1 2
0

100
200
300
400
500
600
700
800

Group B

original confidence scores per group

Note: to know which threshold to apply, we need to know the sensitive attribute A!
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100
200
300
400
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600
700
800

A: threshold 0, accepted 826/10000 = 8.3%
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400
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A: threshold 0, accepted 826/10000 = 8.3%

6 5 4 3 2 1 0 1 2
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100
200
300
400
500
600
700
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B: threshold -0.41, accepted 412/5000 = 8.2%

lower threshold for group B achieves independence, but overall acceptance rate now too high
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Achieving Fairness: Independence

Example 2: independence by postprocessing
Group-specific threshold selection
Adjust the acceptance threshold for each group to achieve equal acceptance rate:

6 5 4 3 2 1 0 1 2
0

100
200
300
400
500
600
700
800

A: threshold 0.12, accepted 667/10000 = 6.7%

6 5 4 3 2 1 0 1 2
0

100
200
300
400
500
600
700
800

A: threshold -0.30, accepted 333/5000 = 6.7%

lower threshold for group B, higher threshold for group A

Note: to know which threshold to apply, we need to know the sensitive attribute A!
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Achieving Fairness: Independence

Group-specific score transformations

6 4 2 0 2
0

100
200
300
400
500
600
700 A: mean -1.50, std 1.10

B: mean -1.76, std 0.96

4 3 2 1 0 1 2 3
4

3

2

1

0

1

2

3
F 1

a Fb( )

6 4 2 0 2
0

100
200
300
400
500
600
700 A: mean -1.50, std 1.10

B: mean -1.50, std 1.10

Apply group-specific post-processing operation to scores, e.g.
• denote by Fg(·) the cumulative distribution function of scores for group A = g

• for all examples with A = b apply the score transformation

φb→a(·) := F−1
a (Fb(·))

• afterwards, both groups will have (approximately) the same score distribution
→ the same thresholds can be used for both groups
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Formal Fairness Criteria: Independence – Problems

Problem 1) Independence can prevent making perfect decisions.
• Imagine you were able to build the "perfect classifier": R = Y .
• Independence will disallow this, unless Y ⊥ A.

Problem 2) Independence does not guarantee equal treatment.

Imagine a decision rule for gradschool recruiting:
• for candidates with A = a, hire the best p percent
• for candidates with A = b, hire a random subset of p percent

(not necessarily out of malicousness, could just be incompetence in judging the cases)
This fulfills independence (same acceptance rates), but is not particularly fair.

Even worse: in the long run, accepted students with A = a will probably do better on
average than those with A = b, potentially reinforcing stereotypes and providing arguments
to opponents of "fair recruiting".
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Formal Fairness Criteria: Independence – Problems

Problem 3) It does not always reflect what we consider "fair" – it’s too strong.

For example: paper acceptance should be fair with respect to the authors’ origin.
• fair decision rule: accept the best p% of papers from each continent → independence

Problems:
• what, if papers from different continents have different quality on average?

I enforcing independence means we might have to some bad papers from one continent over
some good papers from another continent → is that fair?

• what, if one continent decides to submit many additional papers (e.g. random gibberish)
I enforcing independence means we’ll have to accept more papers from that continent

Problem 4) It does not always reflect what we consider "fair" – it’s too weak.
• in politics, when women run for office they win approximately equally often as men
→ independence is fulfilled
• yet, only 8% of world leaders (and only 2% of presidents) are female
• independence is insufficient to increase the fraction of women in politics
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Formal Fairness Criteria: Separation

Definition (Separation)

The response variable R fulfills separation with respect to the sensitive attribute A and true
outcome Y , if R ⊥ A|Y .

This is like independence, but separately for Y = 0 and Y = 1, i.e. for all a, b ∈ A.

Pr{R = 1 | Y = 1, A = a} = Pr{R = 1 | Y = 1, A = b}

true positive rate (TPR)

Pr{R = 1 | Y = 0, A = a} = Pr{R = 1 | Y = 0, A = b}

false positive rate (FPR)

Separation enforces that all groups have the same TPR and FPR.

Example:
• If a man and a women are equally qualified, they have the same chance to get an offer.

Note: independence and separation are often mutually exclusive (unless Y ⊥ A.)

Separation is also called equalized odds. If applied only to the TPR (not the FPR), it’s called
equality of opportunity.
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Formal Fairness Criteria: Separation – Properties

Property 1) Separation allows making perfect decisions.
• The "perfect" classifier: R = Y has TPR = 1.0 and FPR = 0.0 for all groups.

Property 2) Is some situations, separation is "more fair" than independence

Example: paper acceptance should be fair with respect to the authors’ origin
• decision rule fulfilling separation:

I identify all submissions that meet the quality criteria (Y = 1)
I of these, accept p% of papers from each continent (TPR=p)
I reject all others (FPR=0)

• quality determines the chance of acceptance, not the author origin
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Formal Fairness Criteria: Independence – Problems

Problem 1) It can be hard to achieve in practice (see next slide).

Problem 2) It’s prone to dataset bias.
• to measure separation one needs information about Y (e.g. true quality)
• if historic values of Y are biased, the "separated" classifier can as well be

Problem 3) It does not always reflect what we think is "fair".
Example task: select 10 astronauts for flying to Mars
• identify all suitable candidates (Y = 1):

I BSc in engineering, physics, computer science, or math
I at least 3 years professional flight test experience or 1000 hours as aircraft pilot
I 20/20 vision, blood pressure not exceeding 140/90
I between 157cm and 190cm tall

assume, e.g., that the resulting set has 90% men and 10% women
• from each group, pick the same percentage → 9 men, 1 women

Source: https://www.nasa.gov/centers/johnson/pdf/606877main_FS-2011-11-057-JSC-astro_trng.pdf
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Achieving Fairness: Separation

Separation by group-specific thresholds
Can we achieve separation by post-processing the scores without retraining?

• ROC curve: FPR/TPR for all possible thresholds
• per-groups thresholds → FPR/TPR adjustable per group

Problem:
• equal FPR and TPR between groups only where curves
intersect → might no nowhere
• typically not the desired operating points

Solution 1:
• additional randomization allows reaching any point in
shaded area → sacrifice accuracy for higher fairness

Solution 2:
• only ask for identical TPR → "equality of opportunity"
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Can we achieve separation by post-processing the scores without retraining?

• ROC curve: FPR/TPR for all possible thresholds

• per-groups thresholds → FPR/TPR adjustable per group
Problem:
• equal FPR and TPR between groups only where curves
intersect → might no nowhere
• typically not the desired operating points

Solution 1:
• additional randomization allows reaching any point in
shaded area → sacrifice accuracy for higher fairness

Solution 2:
• only ask for identical TPR → "equality of opportunity"

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

 (T
PR

)

predictor
chance

26 / 55



Achieving Fairness: Separation

Separation by group-specific thresholds
Can we achieve separation by post-processing the scores without retraining?

• ROC curve: FPR/TPR for all possible thresholds
• per-groups thresholds → FPR/TPR adjustable per group

Problem:
• equal FPR and TPR between groups only where curves
intersect → might no nowhere
• typically not the desired operating points

Solution 1:
• additional randomization allows reaching any point in
shaded area → sacrifice accuracy for higher fairness

Solution 2:
• only ask for identical TPR → "equality of opportunity"

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

 (T
PR

)

group A
group B
chance

26 / 55



Achieving Fairness: Separation

Separation by group-specific thresholds
Can we achieve separation by post-processing the scores without retraining?

• ROC curve: FPR/TPR for all possible thresholds
• per-groups thresholds → FPR/TPR adjustable per group

Problem:
• equal FPR and TPR between groups only where curves
intersect → might no nowhere
• typically not the desired operating points

Solution 1:
• additional randomization allows reaching any point in
shaded area → sacrifice accuracy for higher fairness

Solution 2:
• only ask for identical TPR → "equality of opportunity"

26 / 55



Achieving Fairness: Separation

Separation by group-specific thresholds
Can we achieve separation by post-processing the scores without retraining?

• ROC curve: FPR/TPR for all possible thresholds
• per-groups thresholds → FPR/TPR adjustable per group

Problem:
• equal FPR and TPR between groups only where curves
intersect → might no nowhere
• typically not the desired operating points

Solution 1:
• additional randomization allows reaching any point in
shaded area → sacrifice accuracy for higher fairness

Solution 2:
• only ask for identical TPR → "equality of opportunity"

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

 (T
PR

)

group A
group B
chance

26 / 55



Achieving Fairness: Separation

Separation by group-specific thresholds
Can we achieve separation by post-processing the scores without retraining?

• ROC curve: FPR/TPR for all possible thresholds
• per-groups thresholds → FPR/TPR adjustable per group

Problem:
• equal FPR and TPR between groups only where curves
intersect → might no nowhere
• typically not the desired operating points

Solution 1:
• additional randomization allows reaching any point in
shaded area → sacrifice accuracy for higher fairness

Solution 2:
• only ask for identical TPR → "equality of opportunity"

26 / 55



Summary – Fairness

Intersection of Machine Learning/Statistics, Psychology, Social Science, . . .

• Psychology etc.: what do people consider fair in which situation?
• ML/Stats: many different (usually mutually exclusive) formal definition of fairness

Popular Approaches
• "fairness through unawareness" does not work for ML!
• independence = "demographic parity": same acceptance rate for each subgroup.
• separation = "equalized odds": same TPR and FPR for each subgroup.
• "equality of opportunity": same TPR for each subgroup.

Topic of Active Research
• many open questions, e.g. long-term effects, feedback loops
• dedicated conferences: FAT/ML, ACM FAccT
• more and more present at mainstream ML conferences
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Domain Adaptation
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Beyond i.i.d. data

The main assumption underlying machine learning is that
• at prediction time, data comes distributed according to (some unknown) p(x, y)
• the training set contains i.i.d. samples from d(x, y)

In practice, this is very often not true:
• class bias: some classes are over-/underrepresented
• domain shift: classes have different distribution at training vs prediction time
• label noise: some labels in the training data are (randomly?) flipped
• dependent data: training data is not independent, e.g. a time series
• . . .

There’s many possible reasons for that:
• data collection: data is collected by people, who are human
• annotation issues: labels are provided by people, who are human
• real-world vs simulation: simulated data is much easier to obtain than real world data
• . . .
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Domain Adaptation

Notation:
• situation at training time: "source", abbreviated S
• situation at prediction time: "target", abbreviated T
• training data: DS

i.i.d.∼ pS(x, y)
• goal: find a predictor f : X → Y with small target risk, R(f) = E(x,y)∼pT `(y, f(x))

Domain Adaptation
Domain adaptation research studies the question if and how learning is possible when

pS(x, y) 6= pT(x, y).
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Domain Adaptation

Domain Adaptation Scenarios
There’s at least three different scenarios for pS(x, y) 6= pT(x, y) that allow different
treatment:

• prior shift: write pS(x, y) = pS(x|y)pS(y) and pT(x, y) = pT(x|y)pT(y):

pS(y) 6= pT(y) and pS(x|y) = pT(x|y)

• covariate shift: write pS(x, y) = pS(y|x)pS(x) and pT(x, y) = pT(y|x)pT(x):

pS(x) 6= pT(x) and pS(y|x) = pT(y|x)

• arbitrary shift: anything else
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Tackling class prior shift

Can we derive an estimator of the target risk if only source data is available?
RT(f) = E

(x,y)∼pT
`(y, f(x)) =

∑
x∈X

∑
y∈Y

pT(x, y)`(y, f(x))

=
∑
x∈X

∑
y∈Y

pT(x, y)
pS(x, y) pS(x, y)`(y, f(x))

=
∑
x∈X

∑
y∈Y

����pT(x|y)pT(y)
����pS(x|y)pS(y) pS(x, y)`(y, f(x))

=
∑
x∈X

∑
y∈Y

pT(y)
pS(y)︸ ︷︷ ︸
=:w(y)

pS(x, y)`(y, f(x))

= E
(x,y)∼pS

[
w(y)`(y, f(x))

]

→ R̂T(f) = 1
|DS|

∑
(x,y)∈DS

w(y)`(y, f(x))
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How to get the class weights?

w(y) = pT(y)
pS(y)

Observation:
• w ∈ R|Y|, vector of ratio of probabilities
• need either prior knowledge, or data from pT(y)

Method 1:
• estimate p̂S(y) and p̂T(y) from data

I see lecture about generative models: empirical frequencies, Laplace smoothing, etc.
• set ŵ(y) = p̂T(y)

p̂S(y) "plug-in estimator"
Note:
• ŵ(y) is not an unbiased estimator of w(y) (because E A

B 6=
EA
EB )

• the bias is of order 1
n , so it vanishes for n→∞
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Tackling covariate shift

RT(f) = E
(x,y)∼pT

`(y, f(x)) =
∑
x∈X

∑
y∈Y

pT(x, y)`(y, f(x))

=
∑
x∈X

∑
y∈Y

pT(x, y)
pS(x, y) pS(x, y)`(y, f(x))

=
∑
x∈X

∑
y∈Y

����pT(y|x)pT(x)
����pS(y|x)pS(x) pS(x, y)`(y, f(x))

=
∑
x∈X

∑
y∈Y

pT(x)
pS(x)︸ ︷︷ ︸
=:w(x)

pS(x, y)`(y, f(x))

= E
(x,y)∼pS

[
w(x)`(y, f(x))

]

→ R̂T(f) = 1
|DS|

∑
(x,y)∈DS

w(x)`(y, f(x))
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How to get the data weights?

w(x) = pT(x)
pS(x)

Observation:
• weights are a function, w : X → R+, but values at w(x1), . . . , w(xn) for xi ∈ DS suffice
• need either prior knowledge, or data from pT(x) ← unlabeled data suffices!

Method 1:
• estimate p̂S(x) and p̂T(x) from data

I see lecture about generative models: Parzen window, Gaussian Mixture Model, etc.
I needs a lot of samples if data is high-dimensional

• set ŵ(x) = p̂T(x)
p̂S(x) "plug-in estimator", not unbiased

Method 2:
• estimate directly...
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Density Ratio Estimation by Logistic Regression
Available data DS = {x1, . . . , xn}, DT = {x′1, . . . , x′m}. Define auxiliary distribution q:
• introduce indicator variable z = {src, tgt} with q(z = src) = q(z = tgt) = 1

2 .
• set q(x|z = src) = pS(x) and q(x|z = tgt) = pT(x)

w(x) = pT(x)
pS(x) = q(x|z = tgt)

q(x|z = src)
Bayes rule= q(z = tgt|x)q(x)q(z = src)

q(z = src|x)q(x)q(z = tgt) = q(z = tgt|x)
q(z = src|x)

Idea: train a discriminative probabilistic model, e.g. Logistic Regression:

q̂(z = tgt|x) = exp〈θ, φ(x)〉
1 + exp〈θ, φ(x)〉 q̂(z = src|x) = 1

1 + exp〈θ, φ(x)〉
to distinguish between classes tgt and src, i.e. between DT and DS.

ŵ(x) = exp〈θ, φ(x)〉
1
n

∑
x∈DS

exp〈θ, φ(x)〉
where numerator ensures 1

n

∑
x∈DS

ŵ(x) = 1
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Kullback-Leibler Importance Estimation Procedure (KLIEP)

Available data DS = {x1, . . . , xn}, DT = {x′1, . . . , x′m}.

Parameterize ŵ as a generalized log-linear model with suitable normalization as

ŵ(x) = exp(〈θ, φ(x)〉)
1
n

∑
x∈DS

exp(〈θ, φ(xi)〉)

Idea: Find ŵ(x) by minimizing KL-Divergence between pT(x) and p̃T(x) = ŵ(x)pS(x).

KL(pT|p̃T) = E
x∼pT(x)

log pT(x)
p̃T(x) = E

x∼pT(x)
log pT(x)

pS(x)︸ ︷︷ ︸
independent of ŵ

− E
x∼pT(x)

log ŵ(x)

Minimizing KL w.r.t. ŵ is equivalent to maximizing E
x∼pT(x)

log ŵ(x) ≈ 1
m

∑
x∈DT

log ŵ(x)

The resulting optimization problem is convex and unconstrained→ solve via gradient descent.
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Tackling arbitrary shift

RT(f) = E
(x,y)∼pT

`(y, f(x)) =
∑
x∈X

∑
y∈Y

pT(x, y)`(y, f(x))

=
∑
x∈X

∑
y∈Y

pT(x, y)
pS(x, y) pS(x, y)`(y, f(x))

=
∑
x∈X

∑
y∈Y

pT(x, y)
pS(x, y)︸ ︷︷ ︸
=:w(x,y)

pS(x, y)`(y, f(x))

= E
(x,y)∼pS

[
w(x, y)`(y, f(x))

]

→ R̂T(f) = 1
|DS|

∑
(x,y)∈DS

w(x, y)`(y, f(x))
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Estimating the weights

Method 1:
• estimate p̂S(x, y) and p̂T(x, y) from data
• set ŵ(x, y) = p̂S(x,y)

p̂T(x,y) "plug-in estimator", not unbiased
• note: a good estimate of p̂T(x, y) we need a lot of data. If we have that, why not
simply use it as a training set?

Method 2:
• direct estimation as for w(x), still needs sufficiently much labeled data from pT

Method 3:
• use a "supervised domain adaptation" method instead of the weighted estimator
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Supervised Domain Adaptation by Feature Augmentation
Available data: DS = {(x1, y1), . . . , (xn, yn)}, DT = {(x′1, y′1) . . . , (x′m, y′m)}, with n� m.

Idea: learn a predictor for from a newly constructed training set with transformed features:

D̃ = {(x̃1, y1), . . . , (x̃n, yn), (x̃′1, y′1), . . . , (x̃′m, y′m)}

where
x̃i =

(
xi︸︷︷︸
∈Rd

, xi︸︷︷︸
∈Rd

, 0, · · · , 0︸ ︷︷ ︸
d times

)
x̃′i =

(
xi︸︷︷︸
∈Rd

, 0, · · · , 0︸ ︷︷ ︸
d times

, xi︸︷︷︸
∈Rd

)

• any original feature is made available twice: once as part of a shared feature space and
once as part of a domain specific feature space.
• for data with consistent labeling between src and tgt, the classifier can use the shared
part of the feature space
• for data with inconsistent labeling between src and tgt, the classifier can use the
domain-specific part of the feature space

[Hal Daumé III, "Frustratingly Easy Domain Adaptation", ACL 2007] 40 / 55



Supervised Domain Adaptation by Feature Extraction or Fine-Tuning
Available data: DS = {(x1, y1), . . . , (xn, yn)}, DT = {(x′1, y′1) . . . , (x′m, y′m)}, with n� m.

Particularly popular with deep neural networks, which have the form f(x) = 〈w, φ(x)〉, where
the feature function φ : X → RD and the weight vector w ∈ RD are both learned.

Idea:
• use DS a source predictor fφ,w; use DT to learn a target predictor, but stay close to fφ,w

Example: deep features
• learn target weight vector wT but keep the feature mapping fixed, φT = φS,
→ much fewer parameters than for learning both, less data suffices

Example: finetuning
• learn target feature mapping φT and target weight vector wT, but initialize learning at

source values and regularize to stay close (e.g. early stopping): wT ≈ wS and φT ≈ φS
→ strong regularization prevents overfitting, less data required
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Unsupervised domain adaptation

If no labeled target data is available, one has to use unsupervised domain adaptation.

Idea:
• find transformations φS : pS → p̃S and φT : pT → p̃T, such that p̃S ≈ p̃T

• apply φS to DS to get a labeled dataset D̃S ∼ p̃S

• learn a predictor, f , from D̃S

• use f ◦ φT as predictor on new data x ∼ pT, where (f ◦ φT)(x) := f(x̃) for x̃ = φT(x)
• since x̃ = φT(x) ∼ p̃T ≈ p̃S, the predictor f can be expected to work well

Example (exercise sheet): src = {left eyes}, tgt = {right eyes}.
Flipping images horizontally turns one into the other.

Generally, we don’t have such prior knowledge and want to learn the transformations.

Caveat: make sure to avoid trivial solutions, such as φS(x) = 0, φT(x) = 0.
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Unsupervised domain adaptation

Available data: DS = {(x1, y1), . . . , (xn, yn)} (labeled), DT = {x′1, . . . , x′m} (unlabeled).
For any φT : X → RD, φS : X → RD, define transformed datasets
D̃φS

S = {x̃1, . . . , x̃n} with x̃j = φS(xj) and D̃φT
T = {x̃′1 . . . , x̃′m} with x̃′j = φT(x′j)

How to check if D̃S and D̃T have the same distribution?

Excurse: similarity measures between sample sets
Desirable properties of a similarity measure d(S, S′) for S i.i.d.∼ p and S′ i.i.d.∼ p′:
1) p ≈ p′ ⇒ d(S, S′) should be small (at least, if enough samples are available)

2) d(S, S′) is small ⇒ learning on S and learning on S′ should yield similar predictors

Observation:
• most candidate distances do not fulfill both conditions simultaneously:

I geometric: average Euclidean distance, Chamfer distance, Haussdorf distance, . . .
I probabilistic: moments, Wasserstein distance, total variation, KL-divergence, . . .

• discrepancy distance does fulfill both conditions!
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Definition (Discrepancy Distance [Kifer et al ., 2004])

For binary classifiers f ∈ H:

disc(S, S′) := 2 sup
h∈H

( 1
|S|

∑
x∈S

Jh(x) = 1K− 1
|S′|

∑
x′∈S′

Jh(x′) = 1K
)

Properties:
• disc(S, S′) = 2

(
1− inf

h∈H
α(h)

)
for α(h) = 1

|S|
∑
x∈S

Jh(x) 6= 1K + 1
|S′|

∑
x′∈S′

Jh(x′) 6= 0K

• α is the (class-balanced) loss of a h as a classifier distinguishing between S and S′
• infh α(h), and therefore disc, can be computed by training a classifier on a dataset
obtained by merging S and S′ with different labels assigned to them.

Final task to solve for unsupervised domain adaptation with discrepancy distance:
min
φS,φT,f

R̂S(f ◦ φS) + disc(D̃φS
S , D̃φT

T )

Resulting classifier f(φT(x)) should have low target risk RT. (theoretical guarantees exist)
[D. Kifer, S. Ben-David, J. Gehrke: "Detecting change in data streams", VLDB 2004]
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