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Date no. | Topic

Oct 05 | Mon | 1 | A Hands-On Introduction

Oct 07 | Wed | 2 | Bayesian Decision Theory, Generative Probabilistic Models
Oct 12 | Mon | 3 | Discriminative Probabilistic Models

Oct 14 | Wed | 4 | Maximum Margin Classifiers, Generalized Linear Models
Oct 19 | Mon | 5 | Estimators; Overfitting/Underfitting, Regularization, Model Selection
Oct 21 | Wed | 6 | Bias/Fairness, Domain Adaptation

Oct 26 | Mon | - | no lecture (public holiday)

Oct 28 | Wed | 7 | Learning Theory I, Concentration of Measure

Nov 02 | Mon | 8 | Learning Theory Il

Nov 04 | Wed | 9 | Deep Learning |

Nov 09 | Mon | 10 | Deep Learning Il

Nov 11 | Wed | 11 | Unsupervised Learning

Nov 16 | Mon | 12 | project presentations

Nov 18 | Wed | 13 | buffer
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The Holy Grail of Statistical Machine Learning

What problems
are "learnable"?




PAC Learning Scenario

input set X, label set ) = {£1}, loss ¢(y,y") = [y # ¢'], data distribution p(z,y)
for now: assume deterministic labels, y = f(z) for some unknown f: X — Y

. j.i.d.
training set D,,, = {(z1,v1),- -+ (T, Ym) } “RS p(z,y)

hypothesis set H C {h: X — Y}, e.g. "all linear classifiers in R%"
for now: assume realizability, i.e. the true labeling function, f, lies in H

Quantity of interest:
risk R(h) = E(z,y)wp(z,y) E(ya h(x) ) = Prxwp(x){ f(.fl?) 7& h($) }

"Learning" becomes "search with limited information":
We know: there is at least one h € H that fulfills R(h) = 0.
Questions: Can we find such h from D,,? If yes, how large does m have to be?

Answer: that depends on # (and pretty much nothing else)
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Example (Learning a threshold)
X =01, Y={+1}, Uyy)=ly#v1]
true labeling function f*(x) = sign(z — 6*) for some 6* € [0, 1]
data distribution p(z,y) = p(z)p(y|z) with p(y|z) = 6, ()
hypothesis set H C {h(x) = sign(z — ) : 6 € [0, 1]}, "all threshold functions"

i.0.d

training set D,, = {(z1,y1),-- -, (Tm,Ym)} ~ p(z,y)

How well will be able to determine 6* from D,,?

5 /37



Example (Learning a threshold)

X=101], Y={+1}, Lyy)=1[y#v1]

true labeling function f*(x) = sign(z — 6*) for some 6* € [0, 1]

data distribution p(z,y) = p(z)p(y|z) with p(y|z) = 6, ()

hypothesis set H C {h(x) = sign(z — ) : 6 € [0, 1]}, "all threshold functions"
ii.d

training set D,, = {(z1,y1),-- -, (Tm,Ym)} ~ p(z,y)

How well will be able to determine 6* from D,,?
6 ) )

—_— —
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1) for any finite m some uncertainty about 6* will remain
— we cannot hope to find f* perfectly, only better and better approximations to it
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Example (Learning a threshold)

X=101], Y={+1}, Lyy)=1[y#v1]

true labeling function f*(x) = sign(z — 6*) for some 6* € [0, 1]

data distribution p(z,y) = p(z)p(y|z) with p(y|z) = 6, ()

hypothesis set H C {h(x) = sign(z — ) : 6 € [0, 1]}, "all threshold functions"
ii.d

training set D,, = {(z1,y1),-- -, (Tm,Ym)} ~ p(z,y)

How well will be able to determine 6* from D,,?
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1) for any finite m some uncertainty about 6* will remain
— we cannot hope to find f* perfectly, only better and better approximations to it
9 . 9
j . — ~ . |
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2) for any finite m, there is a chance that the training data will be unlucky (and useless)

— we cannot be 100% certain that the approximation will behave well .



Definition (Probably Approximately Correct (PAC) Learnability)

A hypothesis class H is called PAC learnable by an algorithm A, if

for every € > 0 (accuracy — "approximate correct")
and every § > 0 (confidence — "probably")

there exists an
mo = mo(€,0) €N (minimal training set size)

such that

for any probability distribution p over X, and
for any labeling function f € #H, with R(f) =0,
when we run the learning algorithm A on a training set consisting of m > mg examples

sampled i.i.d. from p, the algorithm returns a hypothesis h € H that, with probability at least
1 -4, fulfills Ry(h) <e.

Vm > mo(e, d) DEEp[Rd(A[Dm]) >e] <6.

. .. . . 11 .
Note: for "efficient learning”, A must run in poly(m, ¢, 5, "size of Dy, "). 6/ 37



Empirical Risk Minimization

What learning algorithm?

Definition (Empirical Risk Minimization (ERM) Algorithm)

input hypothesis set # C {h: X — YV} (not necessarily finite)

input training set D = {(x1,91), ..., (Tm,Ym)}

1 m
output h € argmin— > ((y;, h(xz;)) (lowest training error)
heH T .

ERM learns a classifier that has minimal training error.
There might be multiple, we can’t control which one.
We already saw cases where ERM worked well and some where it didn't.
Can we characterize when ERM works and when it fails?
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A constant decision is PAC-learnable by ERM

X =R V={+£1} Uy, vy) =y,¥]
H ={hy,h_} with hy(z) =+1 and h_(z) = -1
p arbitrary
ERM needs only mg = 1 example, then its solution is unique and perfect.
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A constant decision is PAC-learnable by ERM

X =R V={+£1} Uy, vy) =y,¥]
H ={hy,h_} with hy(z) =+1 and h_(z) = -1
p arbitrary
ERM needs only mg = 1 example, then its solution is unique and perfect.

Coordinate classifiers

X =R%Y={+1}, {(y,y) = ly # V]
H = {hi,...,hq} with h;(x) = sign z[i]

Lemma
If p is uniform in [—1,1]¢, ERM works for mg(e, §) = [log, %]

Proof: textbook

For general p, we might have to return hypothesis with € > 0, and have mg depend on €. s/37



Which # are PAC-learnable by ERM?

Can we prove general statements?

Theorem (PAC Learnability of finite hypothesis classes)

Let H ={h1,...,hk} be a finite hypothesis class and f € H (i.e. the true labeling function
is one of the hypotheses). Then H is PAC-learnable by the ERM algorithm with

mo(e,3) = [ (log([#] + log(1/3) )

Proof: textbook
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Which # are PAC-learnable by ERM?

Can we prove general statements?

Theorem (PAC Learnability of finite hypothesis classes)

Let H ={h1,...,hk} be a finite hypothesis class and f € H (i.e. the true labeling function
is one of the hypotheses). Then H is PAC-learnable by the ERM algorithm with

mo(e,3) = [ (log([#] + log(1/3) )

Proof: textbook

Corollary

Let D be a training set of size m. Let fgry be the result of running ERM on D. Then

< log |#H| + log(1/6)

m

R(ferm)
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Examples: Finite hypothesis classes

Model selection:

Classifiers trained with K different hyperparameter settings. Can we be sure to pick the
right one?

Finite precision:
For X C R?, the hypothesis set H = {f(z) = sign{w, z)} is infinite.

But: on a computer, w is restricted, e.g. to 32-bit floats: |H.| = 932d
mole, 8) = L(log([H] + log(1/8)) ~ 1 (224 + log(1/5))

Implementation:
H = { all algorithms implementable in 10 KB C-code } is finite.

Logarithmic dependence on |H| makes even large (finite) hypothesis sets (kind of) practical.
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Which # are PAC-learnable by ERM?

What about infinite/continuous hypothesis classes?

Example (PAC-Learning for threshold functions)
253

6 h
X =101, Y={-1,1}, H = {ho(z)=sign(x —0)], for 6* € [0,1]},
f*(x) = hg«(x) for some 6* € [0, 1]
ERM rule: 6 = argmin % i[[hg(ﬂ?i) # yil,

96[0,1] i=1
any rule to make unique, e.g. "pick the smallest possible +1 region"

Claim: ERM learns f* (in the PAC sense). Proof: textbook...
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Which # are PAC-learnable by ERM?

Example (Learning Intervals)

.......................... i
22K, Tt
P

X =01, ¥ =1{0.1}, H = {hy, o(x) =[x > 6 Aw < 6], for 0 <6 < <1},
f(@) = hg: gz () for some 0 < 67 < 0 < 1.
training set S = {(z1,v1), .-, (Tm, Ym)}

m

ERM rule: h = argmin 1 Z[[h[%b] (z5) # vil,
[ap] ™3

to make unique pick smallest possible "+1" interval

Claim: ERM learns f* (in the PAC sense). Proof: textbook...

12 /37



Which # are PAC-learnable by ERM?

Example (Learning Unions of Intervals)
| s S +
[ I 1 1

X =10,1], Y ={0,1}, H = {hz(z) for T ={11,...,Ix} for any K € N},
for hz(z) = [= € Ur_; I] with I; = [0}, 6%]

f(x) = hz«(x) for some set of intervals Z*
training set S = {(z1,y1), .-, (Tm, Ym)}
1 m
ERM rule: h = argmin — Z[[hz(ﬂfz) # yil,
£

to make unique pick smallest possible "+1" region

Claim: ERM does not learn f* (in the PAC sense).

Proof: textbook... (though obvious here: hggm = 0 except in x1, ..., Zpn)
13 /37



There’s No Free Lunch

Observation: ERM can learn all finite classes, but it fails on some infinite ones.

Is there a better algorithm than ERM, one that always works?
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There’s No Free Lunch

Observation: ERM can learn all finite classes, but it fails on some infinite ones.

Is there a better algorithm than ERM, one that always works?

No-Free-Lunch Theorem
X input set, Y = {0, 1} label set, £: Y x Y — {0,1}: 0/1-loss,
A an arbitrary learning algorithm for binary classification,
m (training size) any number smaller than |X'|/2
There exists
a data distribution p over X x ), and
a function f: X x Y — {0,1} with R(f) =0, but
Pr [R(A[D])>1/8]>1/7.

D~p®m

Summary: For every learning algorithm there exists a task on which it fails!

[David Wolpert. “The Lack of A Priori Distinctions between Learning Algorithms", Neural Computation, 1996] 1437



Agnostic PAC Learning

More realistic scenario: labeling isn't a deterministic function
input set X', label set Y = {£1}, data distribution p(z,y)
| inistic labels—y = F(z)f | R
loss function £(y,y") = [y # ¥']
H C {h:X — YV}: hypothesis set

i.d

D={(x1,y1)s- -, (T, Ym)} "~ p(x,y): training set

Quantity of interest:

R(h)y= E  ly,h(z)= Pr {h(z)#y}
(z,y)~p(z,y) (z,y)~p(z,y)

What can we learn?
there might not be any f: X — ) that has R(f) = 0.
but: can we at least find the best A from the hypothesis set?
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Definition (Agnostic PAC Learning)

A hypothesis class H is called agnostic PAC learnable by A, if

for every € > 0 (accuracy — "approximate correct")
and every § > 0 (confidence — "probably")

there exists an
mo = mo(€,0) €N (minimal training set size)

such that

for every probability distribution p(x,y) over X x ),

when we run the learning algorithm A on a training set consisting of m > mg examples
sampled i.i.d. from d, the algorithm returns a hypothesis h € H that, with probability at least
1 — 0, fulfills

R(h) < minR(h) + .
heH

Vm > mo(e, 0) Di%m[R(A[DD_I;%i;?R(h) > €] < 0.
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Theorem (Agnostic PAC Learnability of finite hypothesis classes)

Let H ={h1,...,hi} be a finite hypothesis class.

Then H is agnostic PAC-learnable by ERM with mg (e, 8) = [ % (log(|H| + log(2/6))].

Proof. later
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Theorem (Agnostic PAC Learnability of finite hypothesis classes)

Let H ={h1,...,hi} be a finite hypothesis class.
Then H is agnostic PAC-learnable by ERM with mg (e, 8) = [ % (log(|H| + log(2/6))].

Proof. later

Corollary

Let D be a training set of size m. Let fgrym be the result of running ERM on D. Then

2(log(|H] + log(2/4))

R(ferm) < R(ferm) + \/
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Concentration of Measure Inequalities

Z random variables, taking values z € Z C R.
p(Z = z) probability distribution

» u=E[Z] mean

» Var[z] = E[(Z — p)?] variance

Lemma (Law of Large Numbers)

Let Zy,Zs, ..., be i.i.d. random variables with mean E[Z] < oo, then

]- s m—0o0
— Z Z; " E[Z] with probability 1.

In machine learning, we have finite data, so m — oo is less important.
Concentration of measure inequalities quantify the deviation between average and

expectation for finite m.
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Assumption: Z C Ry, i.e. Z takes only non-negative values.

Lemma (Markov’s inequality)

Va > 0: Pr[ZZa]gE[aZ].

Proof. Step 1) We can write

E[Z] = /:O Pr(Z > 1] do

Step 2) Since Pr[Z > x] is non-increasing in x, we have for any a > 0:

E[Z] > /a Pr[Z > z] dx > /aOPr[Z > a] dx = aPr[Z > d]
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Proof sketch of Step 1 inequality (ignoring questions of measurability and exchange of
limit processes and writing the expression as if Z had a density p(z))

o)

Pr[Z > z] :/ xp(z)dz = /:OO[[Z > x] p(z) dz

z=

/ Pr[Z > z] dx = / [z > z] p(z)dz dx
=0 =0 J2=0

= / [z > z] dx p(2)dz
z=0 Jz=0

o0 z

= /Z dzr p(z)dz

=0 Jz=0

=z

= /ZOOO z p(z)dz

- E[:Z]
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Assumption: Z C R, i.e. Z takes only non-negative values.

Lemma (Markov’s inequality)

E[Z]

Va>0: Pr[Z>a]<
a

Corollary

Va>0: Pr[Z>aE[Z]] <

Q|

Example

Is it possible that more than half of the population have a salary more than twice the mean
salary?
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Assumption: Z C R, i.e. Z takes only non-negative values.

Lemma (Markov’s inequality)

E[Z]

Va>0: Pr[Z>a]<
a

Corollary

Va>0: Pr[Z>aE[Z]] <

Q|

Example

Is it possible that more than half of the population have a salary more than twice the mean
salary? No, by corrolary with a = 2.
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Assumption: Z C R, i.e. Z takes only non-negative values.

Lemma (Markov’s inequality)

E[Z]

Va>0: Pr[Z>a]<
a

Corollary

Va>0: Pr[Z>aE[Z]] <

Q|

Example

Is it possible that more than half of the population have a salary more than twice the mean
salary? No, by corrolary with a = 2.

Example

Is it possible that more than 90% of the population have a salary less than one tenth of the
mean?
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Assumption: Z C R, i.e. Z takes only non-negative values.

Lemma (Markov’s inequality)

E[Z]

Va>0: Pr[Z>a]<

Corollary

Va>0: Pr[Z>aE[Z]] <

Q|

Example

Is it possible that more than half of the population have a salary more than twice the mean
salary? No, by corrolary with a = 2.

Example

Is it possible that more than 90% of the population have a salary less than one tenth of the
mean? Easily: p($1) = 0.99, p($100000) = 0.01.
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Lemma (Chebyshev’s inequality)

VarlZ]

a2

Va>0: Pr[|Z—-E[Z]]>a]<

Proof. Apply Markov's Inequality to the random variable (Z — E[Z])2.
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Lemma (Chebyshev’s inequality)

VarlZ]

a2

Va>0: Pr[|Z—-E[Z]]>a]<

Proof. Apply Markov's Inequality to the random variable (Z — E[Z])2.

For any a > 0:

Pr[|Z — E[Z]| > a] = Pr[(Z —E[Z])? > d?] < E[(Z - E[Z])*] _ VarlZ]
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Lemma (Chebyshev’s inequality)

VarlZ]

a?

Va>0: Pr[|Z—-E[Z]]>a]<

Proof. Apply Markov's Inequality to the random variable (Z — E[Z])2.

For any a > 0:

Pr[|Z — E[Z]| > a] = Pr[(Z —E[Z])? > d?] < E[(Z - E[Z])*] _ VarlZ]

- a? a?

Remark: Chebyshev ineq. has similar role as "o-rules" for Gaussians:
68% of probability mass of a Gaussian lie within p + o,
95% of probability mass of a Gaussian lie within u + 20,
99.7% of probability mass of a Gaussian lie within u + 30,

Chebyshev holds for arbitrary probability distributions, not just Gaussians.
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Chebyshev’s Inequality

Example (Soccer Match Statistics)

z = —1 for loss, z = 0 for draw, z = 1 for win.
p(—1) = 15, p(1) = 15, p(0) = 3.
E[Z] = 0.

VarlZ] = E[(2)°) = (-1)* + 30° + (1 = §

What if we pretended Z is Gaussian?

p=0 0=/t ~045
we expect < 5% prob.mass outside of the 2o-interval [—0.9,0.9]

but really, its 20%!

With Chebyshev:
Pr[|Z| > 0.9] < 1/(0.9)? ~ 0.247, so bound is correct
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Applying Chebyshev’s Inequality

Lemma (Quantitative Version of the Law of Large Numbers)

Set Z1,...,Zy be ii.d. random variables with E[Z;] = u and Var[Z;] < C. Then, for any
0 € (0,1), the following inequality holds with probability at least 1 — o:

1 & | C

Equivalent formulations:

Pr[|;§:1Zi—,u| < %}21—5.
Pr“;iZi—M > %}gé.
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Applying Chebyshev’s Inequality

Lemma (Quantitative Version of the Law of Large Numbers)

Set Zy,...,Zy beiid. RVs with E[Z;] = p and Var|Z;] < C. Then, for any § € (0,1),

Pr[|%§;Z¢—u| 2\/%] <.
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Applying Chebyshev’s Inequality

Lemma (Quantitative Version of the Law of Large Numbers)

Set Zi,...,Zy beiid. RVs with E[Z;] = u and Var|Z;] < C. Then, for any § € (0,1),
1 & | C

Proof. The Z; are indep., so Var[L S, Z;] = m2 > Var[Z;] < %
2) Chebyshev's inequality gives us for any a > 0:

Var[%zgi Z;) C
“*ZZ ,u|>a}_ a2 : SmaQ'

<
om”

Setting 0 =
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Sanity check: How large should my test set be?

Setup: fixed classifier g : X — ), 0/1-loss: £(y,y) = [y # ]

test set D = {(z1, 1) ..., (™ y™)} "X p(z,y),

random variables Z; = [g(z%) # '] € {0,1},

E[ZY] = E{[g(z") #4']} =1 (generalization error of g)

Var[Z'] = E{(Z'—p)?} = p(1=p)* + (1—p)pi® = p(1—p) < § = C

Setup: fixed confidence, e.g. 6 = 0.1, W/T(;n = ./—8'12; = ‘/%5
1 & 2.5
l — ol </22] >o.
P| i}:lizz ul </=2] =009

To be 90%-certain that the error is within +0.05, use m > 1, 000.
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Sanity check: How large should my test set be?

Setup: fixed classifier g : X — Y, 0/1-loss: (y,y) = [y # y]

test set D = {(z},¢y!)..., (2™, y™)} vi p(z,y),
random variables Z; = [g(z ) #y'] € {0,1},
E[Z]] = E{[g(z") # v']} = (generalization error of g)

Var|Z'| = E{(Z'—p)*} = ( W+ (- =p(l—p) < 3 =C
Setup: fixed confidence, e.g. § = 0.1, /= = \/% = /28
1 & 2.5
P||l— Z; — < — 1 >0.9
[\m; ul <= >

To be 90%-certain that the error is within +0.05, use m > 1, 000.
10x more certain: to be 99%-certain that the error is within £0.05, use m > 10, 000.
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Sanity check: How large should my test set be?

Setup: fixed classifier g : X — Y, 0/1-loss: (y,y) = [y # y]

test set D = {(z},¢y!)..., (2™, y™)} vi p(z,y),
random variables Z; = [g(z ) #y'] € {0,1},
E[Z]] = E{[g(z") # v']} = (generalization error of g)

Var|Z'| = E{(Z'—p)*} = ( W+ (- =p(l—p) < 3 =C
Setup: fixed confidence, e.g. § = 0.1, /= = \/% = /28
1 & 2.5
P||l— Z; — < — 1 >0.9
[\m; ul <= >

To be 90%-certain that the error is within +0.05, use m > 1, 000.
10x more certain: to be 99%-certain that the error is within £0.05, use m > 10, 000.
10x more accuracy: to be 90%-certain that the error is within £0.005, use m > 100, 000.

27 /37



Sanity check: How large should my test set be?

Setup: fixed classifier g : X — Y, 0/1-loss: (y,y) = [y # y]

test set D = {(z},¢y!)..., (2™, y™)} vi p(z,y),
random variables Z; = [g(z ) #y'] € {0,1},
E[Z]] = E{[g(z") # v']} = (generalization error of g)

Var|Z'| = E{(Z'—p)*} = ( W+ (- =p(l—p) < 3 =C
Setup: fixed confidence, e.g. § = 0.1, /= = \/% = /28
1 & 2.5
P||l— Z; — < — 1 >0.9
[\m; ul <= >

To be 90%-certain that the error is within +0.05, use m > 1, 000.
10x more certain: to be 99%-certain that the error is within £0.05, use m > 10, 000.
10x more accuracy: to be 90%-certain that the error is within £0.005, use m > 100, 000.

. admittedly not very impressive. Luckily, a bit tighter bounds are coming up next.
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Hoeffding’s Lemma and Inequality

Lemma (Hoeffding’s Lemma)

Let Z be a random variable that takes values in [a,b] and E[Z] = 0. Then, for every A\ > 0,

A2 (h—a)?
E[e*] <e :

Proof: Exercise...
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Lemma (Hoeffding’s Inequality)

Let Zy,...,Zy, bei.id. random variables that take values in the interval [a,b]. Let

Z =L Z; and denote E[Z] = pu. Then, for any e > 0,

&2

Pl(EYzi—4) > ] <" T,
=1

and
1 & —m<
(- 2502 > ] <o
i=1
and
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Hoeffding’'s Inequality — Proof

Define new RVs: X; = Z; — E[Z;], X = % > X

e E[X;] = 0; E[X] = 0; each X, takes values in [a — E[Z;], b — E[Z;]]

Use 1) monotonicity of exp and 2) Markov's inequality to check
_ - 2) -
PIX > 2 P > < e R[]

From 3) the independence of the X; we have
n n
E[eAX] _ E[H e)\Xi/m] 3:) HE[ez\Xi/m]
i=1 i=1
Use 4) Hoeffding's Lemma for every i:
2 2
E[GAXi/m] 4§) 67/\ él;;;)

In combination:
_ Y 22 (b—a)?
P[X >¢ < e e sm
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Hoeffding’'s Inequality — Proof cont.

Previous step:

; e 2202
P[X Z 6] S e 66 8m
So far, A was arbitrary. Now we set A = (1)4_”?;)2
7 —_dme ame V2 @-a)®  _ 2me?
IP[X Z 6] S e (b—a)2€+((b—a)2) sSm —e (b—a)2

This proves the first statement.

If we repeat the same steps again for —X instead of X, we get

2m62

PX < —¢ < e (-7

This proves the second statement.
Use the union bound: P[AV B] < P[A] + P[B], to combine both directions:

2me2

P|X|>¢ = PI(X>e) V(X <—€)] < 2 02,
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How large should my test set be?

2me2

‘—ZZ ,u’>e <2em

Setup: fixed classifier g : X — Y

test set D = {(a",y").... (2", y™)} "~ play),
random variables Z; = [g(x H#£4]€{0,1}, > b—a=1

E[Z] =E{[9(z") # y']} = n (test error of g)

Setup: m = £ log(%)/€%.

For fixed confidence 6 = 0.1 = € = +/log(20)/(2m) ~ 1.22\/%
P [|lizi —ul < 1.22,/% > 0.9
mi— o mid
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How large should my test set be?

2me2

‘—ZZ ,u’>e <2em

Setup: fixed classifier g : X — Y

test set D = {(a",y").... (2", y™)} "~ play),
random variables Z; = [g(x H#£4]€{0,1}, > b—a=1

E[Z] =E{[9(z") # y']} = n (test error of g)

Setup: m = £ log(%)/€%.

For fixed confidence 6 = 0.1 = € = +/log(20)/(2m) ~ 1.22\/%
P [|lizi —ul < 1.22,/% > 0.9
mi— o mid

To be 90%-certain that the error is within £0.05, use m > 600.
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How large should my test set be?

2me2

‘—ZZ ,u’>e <2em

Setup: fixed classifier g : X — Y

test set D = {(z,5") ..., (2™, 5™} " p(z,y),
random variables Z; = [g(x ) #1940 €{0,1}, - b—a=1

E[Z;] = E{[g(z") # ']} = (test error of g)
Setup: m = £ log(%)/€%.

For fixed confidence 6 = 0.1 = € = +/log(20)/(2m) ~ 1.22\/%

1 I
IP’“m;Zi—M <1.22 E} > 0.9

To be 90%-certain that the error is within £0.05, use m > 600.
10x more certain: to be 99%-certain that the error is within 4+0.05, use m > 1, 060.
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How large should my test set be?

2me2

‘—ZZ ,u’>e <2em

Setup: fixed classifier g : X — Y
test set D = {(z1,91) ..., (2™, y™)} & p(a,y),
random variables Z; = [g(x ) #1940 €{0,1}, - b—a=1
E[Z;] = E{[g(z") # ']} = (test error of g)

Setup: m = £ log(%)/€%.

For fixed confidence 6 = 0.1 = € = +/log(20)/(2m) ~ 1.22\/%

1 I
IP’“m;Zi—M <1.22 E} > 0.9

To be 90%-certain that the error is within £0.05, use m > 600.
10x more certain: to be 99%-certain that the error is within 4+0.05, use m > 1, 060.

10x more accuracy: to be 90%-certain that the error is within +0.005, use m > 59,914.
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Difference: Chebyshev’s vs. Hoeffding’s Inequality

With R = L™ Z; and R = E[X Y7, Z;]:
Chebyshev's: Var[Z;] < C

P[Iﬁ—Rb\/g]s&, [|R R|>e]§%

interval decreases like ——, confidence grows like 1 — =
v/m m

Hoeffding's: Z; takes values in [a, b]:

2me2

<6, P[|R-R|>e| <2e 007,

p (1R - Rl > Ll
m

interval decreases like \/» confidence grows like 1 —e™™
Both are typical PAC (probably approximately correct) statements:

"With prob. 1 — §, the estimated R is an e-close approximation of R."
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Theorem (Finite hypothesis classes are agnostic PAC learnable)

Let H ={h1,...,hk} be a finite hypothesis class.

For any 6 >0 and € > 0 let mg(e,8) = [ (log(|H| + log(2/6))]. For any m > my, let
D ={(z1,y1)5- -+ (@m, Ym) } < p(z,y) be a training set and let fgrp be the result of
running an ERM algorithm on D. Then, it holds with probability at least 1 — § over the

sampled D that

< mi h
R(ferm) < 1;%517%( )+ €
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Theorem (Finite hypothesis classes are agnostic PAC learnable)

Let H ={h1,...,hk} be a finite hypothesis class.

For any 6 >0 and € > 0 let mg(e,8) = [ (log(|H| + log(2/6))]. For any m > my, let
D ={(z1,y1)5- -+ (@m, Ym) } < p(z,y) be a training set and let fgrp be the result of

running an ERM algorithm on D. Then, it holds with probability at least 1 — § over the
sampled D that

< mi h
R(ferm) < 1;%517%( )+ €

Proof strategy.
Step 1: show that R(h) and R,,(h) close together with high probability uniformly in h:
Step 1: apply this result specifically to ferm and argming ., R(h)
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Lemma
For any e > 0, § > 0, the following holds with probability at least 1 — d w.r.t. Dy,:

. Nlog |#| + log 2
VheH  |R(h) — Rum(h)| < %

1. For any individual h € H, we get fromAHoedeing's inequality;
P[|R(h) — Rm(h)| > €] < 2e2™.

Proof:

call this event "Cp"

36 /37



Lemma
For any e > 0, § > 0, the following holds with probability at least 1 — d w.r.t. Dy,:

. Nlog |#| + log 2
VheH  |R(h) — Rum(h)| < %

1. For any individual h € H, we get fromAHoeffding's inequality;
P[|R(h) — Rm(h)| > €] < 2e2™.

Proof:

call this event "Cp"

2. From a union bound, Pr{\/,cy; Cr} < > jcy Pr{Ch}, we obtain

A

]P[Hh € H: |R(h) — Rm(h)| > 6] < "H|2€72m52'
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Lemma
For any e > 0, § > 0, the following holds with probability at least 1 — d w.r.t. Dy,:

. Nlog |#| + log 2
VheH  |R(h) — Rum(h)| < W

1. For any individual h € H, we get fromAHoeffding's inequality;
P[|R(h) — Rm(h)| > €] < 2e2™<.

Proof:

call this event "Cp"

2. From a union bound, Pr{\/,cy; Cr} < > jcy Pr{Ch}, we obtain

A

P[3h € H : [R(h) — Run(h)| > €] < |H[2e727<.

. . . .. log | H|+log 2
3. Setting the right hand side to be J, we solve for ¢, obtaining € = |/ ————*.
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Lemma
For any e > 0, § > 0, the following holds with probability at least 1 — d w.r.t. Dy,:

. Nlog |#| + log 2
VheH  |R(h) — Rum(h)| < W

1. For any individual h € H, we get fromAHoeffding's inequality;
P[|R(h) — Rm(h)| > €] < 2e2™<.

Proof:

call this event "Cp"

2. From a union bound, Pr{\/,cy; Cr} < > jcy Pr{Ch}, we obtain

A

P[3h € H : [R(h) — Run(h)| > €] < |H[2e727<.

. . . .. log | H|+log 2
3. Setting the right hand side to be J, we solve for ¢, obtaining € = |/ ————*.

4. The statement of the lemma follows, because
Pr{vh e H:[R(h) —R(h)| < e} =1-Pr{IneH:[R(R) - R(h)| <}
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Lemma

For any ¢ > 0, 6 > 0, the following holds with probability at least 1 — § w.r.t. Dyy,:

. log |H| + log 2
VheH |R(h)—7€m(h)|§\/og|2‘;0g5::a

Step 2: we use the lemma to bound the difference between
herm € argming,, Ron(h) (result of ERM)

h* € argming, R(h) (if exists, otherwise argue with arbitrarily close approximation)

R(herm) — R(R*) =
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Lemma

For any ¢ > 0, 6 > 0, the following holds with probability at least 1 — § w.r.t. Dyy,:

. log |H| + log 2
VheH |R(h)—72m(h)|§\/og|2‘;:0g5::a

Step 2: we use the lemma to bound the difference between
herm € argming,, Ron(h) (result of ERM)

h* € argming,, R(h) (if exists, otherwise argue with arbitrarily close approximation)

R(herm) — R(R")

<a

R(hERM) — ﬁ(hERM) + ﬁ(hERM) — ﬁ(h*) + ﬁ(h*) — R(h*)

—_—

<a
<

. . llog |H| +1log2 m>m
R(herm) — R(1*) + 20 < 2 log [#] + log 5 <" e
2m
<0
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