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Overview (tentative)

Date no. Topic
Oct 05 Mon 1 A Hands-On Introduction
Oct 07 Wed 2 Bayesian Decision Theory, Generative Probabilistic Models
Oct 12 Mon 3 Discriminative Probabilistic Models
Oct 14 Wed 4 Maximum Margin Classifiers, Generalized Linear Models
Oct 19 Mon 5 Estimators; Overfitting/Underfitting, Regularization, Model Selection
Oct 21 Wed 6 Bias/Fairness, Domain Adaptation
Oct 26 Mon - no lecture (public holiday)
Oct 28 Wed 7 Learning Theory I, Concentration of Measure
Nov 02 Mon 8 Learning Theory II
Nov 04 Wed 9 Deep Learning I
Nov 09 Mon 10 Deep Learning II
Nov 11 Wed 11 Unsupervised Learning
Nov 16 Mon 12 project presentations
Nov 18 Wed 13 buffer
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The Holy Grail of Statistical Machine Learning

What problems
are "learnable"?
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PAC Learning Scenario

• input set X , label set Y = {±1}, loss `(y, y′) = Jy 6= y′K, data distribution p(x, y)
for now: assume deterministic labels, y = f(x) for some unknown f : X → Y

• training set Dm = {(x1, y1), . . . , (xm, ym)} i.i.d.∼ p(x, y)
• hypothesis set H ⊆ {h : X → Y}, e.g. "all linear classifiers in Rd"
for now: assume realizability, i.e. the true labeling function, f , lies in H

Quantity of interest:
• risk R(h) = E(x,y)∼p(x,y) `( y, h(x) ) = Prx∼p(x){ f(x) 6= h(x) }

"Learning" becomes "search with limited information":
• We know: there is at least one h ∈ H that fulfills R(h) = 0.
• Questions: Can we find such h from Dm? If yes, how large does m have to be?
• Answer: that depends on H (and pretty much nothing else)
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Example (Learning a threshold)

• X = [0, 1], Y = {±1}, `(y, y′) = Jy 6= y′K
• true labeling function f∗(x) = sign(x− θ∗) for some θ∗ ∈ [0, 1]
• data distribution p(x, y) = p(x)p(y|x) with p(y|x) = δy=f∗(x)

• hypothesis set H ⊆ {h(x) = sign(x− θ) : θ ∈ [0, 1]}, "all threshold functions"

• training set Dm = {(x1, y1), . . . , (xm, ym)} i.i.d.∼ p(x, y)

How well will be able to determine θ∗ from Dm?

x x
θ

xx x x
θ

x xx x x x xx
θ

1) for any finite m some uncertainty about θ∗ will remain
→ we cannot hope to find f∗ perfectly, only better and better approximations to it

x x
θ

x x x
θ

x xx x x
θ

x xxxxxxx

2) for any finite m, there is a chance that the training data will be unlucky (and useless)
→ we cannot be 100% certain that the approximation will behave well
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Definition (Probably Approximately Correct (PAC) Learnability)

A hypothesis class H is called PAC learnable by an algorithm A, if
• for every ε > 0 (accuracy → "approximate correct")
• and every δ > 0 (confidence → "probably")

there exists an
• m0 = m0(ε, δ) ∈ N (minimal training set size)

such that
• for any probability distribution p over X , and
• for any labeling function f ∈ H, with R(f) = 0,

when we run the learning algorithm A on a training set consisting of m ≥ m0 examples
sampled i.i.d. from p, the algorithm returns a hypothesis h ∈ H that, with probability at least
1− δ, fulfills Rp(h) ≤ ε.

∀m ≥ m0(ε, δ) Pr
Dm∼p

[Rd(A[Dm]) > ε ] ≤ δ.

Note: for "efficient learning", A must run in poly(m, 1
ε ,

1
δ , "size of Dm"). 6 / 37



Empirical Risk Minimization

What learning algorithm?

Definition (Empirical Risk Minimization (ERM) Algorithm)

input hypothesis set H ⊆ {h : X → Y} (not necessarily finite)

input training set D = {(x1, y1), . . . , (xm, ym)}

output h ∈ argmin
h∈H

1
m

m∑
i=1

`( yi, h(xi) ) (lowest training error)

ERM learns a classifier that has minimal training error.
• There might be multiple, we can’t control which one.
• We already saw cases where ERM worked well and some where it didn’t.
• Can we characterize when ERM works and when it fails?
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Examples

A constant decision is PAC-learnable by ERM

• X = R, Y = {±1}, `(y, y′) = Jy, y′K
• H = {h+, h−} with h+(x) = +1 and h−(x) = −1
• p arbitrary

ERM needs only m0 = 1 example, then its solution is unique and perfect.

Coordinate classifiers

• X = Rd, Y = {±1}, `(y, y′) = Jy 6= y′K
• H = {h1, . . . , hd} with hi(x) = sign x[i]

Lemma
If p is uniform in [−1, 1]d, ERM works for m0(ε, δ) = dlog2

d−1
δ e

Proof: textbook
For general p, we might have to return hypothesis with ε > 0, and have m0 depend on ε.
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Which H are PAC-learnable by ERM?

Can we prove general statements?
Theorem (PAC Learnability of finite hypothesis classes)

Let H = {h1, . . . , hK} be a finite hypothesis class and f ∈ H (i.e. the true labeling function
is one of the hypotheses). Then H is PAC-learnable by the ERM algorithm with

m0(ε, δ) = d1
ε

( log(|H|+ log(1/δ) )e

Proof: textbook

Corollary
Let D be a training set of size m. Let fERM be the result of running ERM on D. Then

R(fERM) ≤ log |H|+ log(1/δ)
m

(1)
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Examples: Finite hypothesis classes

Model selection:
• Classifiers trained with K different hyperparameter settings. Can we be sure to pick the

right one?

Finite precision:
• For X ⊂ Rd, the hypothesis set H = {f(x) = sign〈w, x〉} is infinite.
• But: on a computer, w is restricted, e.g. to 32-bit floats: |Hc| = 232d.
m0(ε, δ) = 1

ε ( log(|H|+ log(1/δ) ) ≈ 1
ε (22d+ log(1/δ))

Implementation:
• H = { all algorithms implementable in 10KB C-code } is finite.

Logarithmic dependence on |H| makes even large (finite) hypothesis sets (kind of) practical.
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Which H are PAC-learnable by ERM?

What about infinite/continuous hypothesis classes?

Example (PAC-Learning for threshold functions)

x xx x x x
h

xx
θ

θ*

• X = [0, 1], Y = {−1, 1}, H = {hθ(x) = sign(x− θ)K, for θ∗ ∈ [0, 1]},
• f∗(x) = hθ∗(x) for some θ∗ ∈ [0, 1]

• ERM rule: θ = argmin
θ∈[0,1]

1
m

m∑
i=1

Jhθ(xi) 6= yiK,

any rule to make unique, e.g. "pick the smallest possible +1 region"

Claim: ERM learns f∗ (in the PAC sense). Proof: textbook...
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Which H are PAC-learnable by ERM?

Example (Learning Intervals)

x xx x x x x xx
f*

f

• X = [0, 1], Y = {0, 1}, H =
{
h[θL,θR](x) = Jx ≥ θL ∧ x ≤ θR K, for 0 ≤ θL ≤ θR ≤ 1

}
,

• f(x) = h[θ∗
L,θ

∗
R](x) for some 0 ≤ θ∗L ≤ θ∗R ≤ 1.

• training set S = {(x1, y1), . . . , (xm, ym)}

• ERM rule: h = argmin
[a,b]

1
m

m∑
i=1

Jh[a,b](xi) 6= yiK,

to make unique pick smallest possible "+1" interval

Claim: ERM learns f∗ (in the PAC sense). Proof: textbook...
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Which H are PAC-learnable by ERM?

Example (Learning Unions of Intervals)

xx x x x x xx
h

f*x x

• X = [0, 1], Y = {0, 1}, H = {hI(x) for I = {I1, . . . , IK} for any K ∈ N},
for hI(x) = Jx ∈

⋃K
k=1 IkK with Ii = [θiL, θiR]

• f(x) = hI∗(x) for some set of intervals I∗

• training set S = {(x1, y1), . . . , (xm, ym)}

• ERM rule: h = argmin
I

1
m

m∑
i=1

JhI(xi) 6= yiK,

to make unique pick smallest possible "+1" region

Claim: ERM does not learn f∗ (in the PAC sense).
Proof: textbook... (though obvious here: hERM ≡ 0 except in x1, . . . , xm)
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There’s No Free Lunch

Observation: ERM can learn all finite classes, but it fails on some infinite ones.

Is there a better algorithm than ERM, one that always works?

No-Free-Lunch Theorem

• X input set, Y = {0, 1} label set, ` : Y × Y → {0, 1}: 0/1-loss,
• A an arbitrary learning algorithm for binary classification,
• m (training size) any number smaller than |X |/2

There exists
• a data distribution p over X × Y, and
• a function f : X × Y → {0, 1} with R(f) = 0, but

Pr
D∼p⊗m

[ R(A[D]) ≥ 1/8 ] ≥ 1/7.

Summary: For every learning algorithm there exists a task on which it fails!
[David Wolpert. "The Lack of A Priori Distinctions between Learning Algorithms", Neural Computation, 1996]
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Agnostic PAC Learning

More realistic scenario: labeling isn’t a deterministic function
• input set X , label set Y = {±1}, data distribution p(x, y)
• deterministic labels, y = f(x) for unknown f : X → Y
• loss function `(y, y′) = Jy 6= y′K
• H ⊆ {h : X → Y}: hypothesis set

• D = {(x1, y1), . . . , (xm, ym)} i.i.d.∼ p(x, y): training set

Quantity of interest:
• R(h) = E

(x,y)∼p(x,y)
`(y, h(x)) = Pr

(x,y)∼p(x,y)
{h(x) 6= y}

What can we learn?
• there might not be any f : X → Y that has R(f) = 0.
• but: can we at least find the best h from the hypothesis set?
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Definition (Agnostic PAC Learning)

A hypothesis class H is called agnostic PAC learnable by A, if
• for every ε > 0 (accuracy → "approximate correct")
• and every δ > 0 (confidence → "probably")

there exists an
• m0 = m0(ε, δ) ∈ N (minimal training set size)

such that
• for every probability distribution p(x, y) over X × Y,

when we run the learning algorithm A on a training set consisting of m ≥ m0 examples
sampled i.i.d. from d, the algorithm returns a hypothesis h ∈ H that, with probability at least
1− δ, fulfills

R(h) ≤min
h̄∈H
R(h̄) + ε.

∀m ≥ m0(ε, δ) Pr
D∼p⊗m

[R(A[D])−min
h∈H
R(h) > ε ] ≤ δ.
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Theorem (Agnostic PAC Learnability of finite hypothesis classes)

Let H = {h1, . . . , hK} be a finite hypothesis class.

Then H is agnostic PAC-learnable by ERM with m0(ε, δ) = d 2
ε2 ( log(|H|+ log(2/δ) )e.

Proof. later

Corollary
Let D be a training set of size m. Let fERM be the result of running ERM on D. Then

R(fERM) ≤ R̂(fERM) +

√
2( log(|H|+ log(2/δ) )

m
(2)
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Excurse: Concentration of Measure
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Concentration of Measure Inequalities

• Z random variables, taking values z ∈ Z ⊆ R.
• p(Z = z) probability distribution

I µ = E[Z ] mean
I Var[z] = E[ (Z − µ)2 ] variance

Lemma (Law of Large Numbers)

Let Z1, Z2, . . . , be i.i.d. random variables with mean E[Z] <∞, then

1
m

m∑
i=1

Zi
m→∞−→ E[Z] with probability 1.

In machine learning, we have finite data, so m→∞ is less important.
Concentration of measure inequalities quantify the deviation between average and
expectation for finite m.
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Assumption: Z ⊆ R+, i.e. Z takes only non-negative values.

Lemma (Markov’s inequality)

∀a > 0 : Pr[Z ≥ a] ≤ E[Z]
a

.

Proof. Step 1) We can write

E[Z] =
∫ ∞
x=0

Pr[Z ≥ x] dx

Step 2) Since Pr[Z ≥ x] is non-increasing in x, we have for any a ≥ 0:

E[Z] ≥
∫ a

x=0
Pr[Z ≥ x] dx ≥

∫ a

x=0
Pr[Z ≥ a] dx = aPr[Z ≥ a]
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Proof sketch of Step 1 inequality (ignoring questions of measurability and exchange of
limit processes and writing the expression as if Z had a density p(z))

Pr[Z ≥ x] =
∫ ∞
z=x

p(z)dz =
∫ ∞
z=0

Jz ≥ xK p(z) dz

∫ ∞
x=0

Pr[Z ≥ x] dx =
∫ ∞
x=0

∫ ∞
z=0

Jz ≥ xK p(z)dz dx

=
∫ ∞
z=0

∫ ∞
x=0

Jz ≥ xK dx p(z)dz

=
∫ ∞
z=0

∫ z

x=0
dx︸ ︷︷ ︸

=z

p(z)dz

=
∫ ∞
z=0

z p(z)dz

= E[Z]
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Assumption: Z ⊆ R+, i.e. Z takes only non-negative values.

Lemma (Markov’s inequality)

∀a ≥ 0 : Pr[Z ≥ a] ≤ E[Z]
a

.

Corollary

∀a ≥ 0 : Pr[Z ≥ aE[Z]] ≤ 1
a
.

Example
Is it possible that more than half of the population have a salary more than twice the mean
salary?

No, by corrolary with a = 2.

Example
Is it possible that more than 90% of the population have a salary less than one tenth of the
mean? Easily: p($1) = 0.99, p($100000) = 0.01.
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Lemma (Chebyshev’s inequality)

∀a ≥ 0 : Pr[|Z − E[Z]| ≥ a] ≤ Var[Z]
a2

Proof. Apply Markov’s Inequality to the random variable (Z − E[Z])2.

For any a ≥ 0:

Pr[ |Z − E[Z]| ≥ a] = Pr[(Z − E[Z])2 ≥ a2]
Markov
≤ E[ (Z − E[Z])2 ]

a2 = Var[Z]
a2 .

Remark: Chebyshev ineq. has similar role as "σ-rules" for Gaussians:
• 68% of probability mass of a Gaussian lie within µ± σ,
• 95% of probability mass of a Gaussian lie within µ± 2σ,
• 99.7% of probability mass of a Gaussian lie within µ± 3σ,

Chebyshev holds for arbitrary probability distributions, not just Gaussians.
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Chebyshev’s Inequality

Example (Soccer Match Statistics)

• z = −1 for loss, z = 0 for draw, z = 1 for win.
• p(−1) = 1

10 , p(1) = 1
10 , p(0) = 4

5 .
• E[Z] = 0.
• Var[Z] = E[ (Z)2] = 1

10(−1)2 + 4
502 + 1

10(1)2 = 1
5

What if we pretended Z is Gaussian?
• µ = 0, σ =

√
1
5 ≈ 0.45,

• we expect ≤ 5% prob.mass outside of the 2σ-interval [−0.9, 0.9]
• but really, its 20%!

With Chebyshev:
• Pr[|Z| ≥ 0.9] ≤ 1

5/(0.9)2 ≈ 0.247, so bound is correct
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Applying Chebyshev’s Inequality

Lemma (Quantitative Version of the Law of Large Numbers)

Set Z1, . . . , Zm be i.i.d. random variables with E[Zi] = µ and Var[Zi] ≤ C. Then, for any
δ ∈ (0, 1), the following inequality holds with probability at least 1− δ:

∣∣ 1
m

m∑
i=1

Zi − µ
∣∣ <

√
C

δm
.

Equivalent formulations:

Pr
[∣∣ 1
m

m∑
i=1

Zi − µ
∣∣ <

√
C

δm

]
≥ 1− δ.

Pr
[∣∣ 1
m

m∑
i=1

Zi − µ
∣∣ ≥

√
C

δm

]
≤ δ.
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Applying Chebyshev’s Inequality

Lemma (Quantitative Version of the Law of Large Numbers)

Set Z1, . . . , Zm be i.i.d. RVs with E[Zi] = µ and Var[Zi] ≤ C. Then, for any δ ∈ (0, 1),

Pr
[∣∣ 1
m

m∑
i=1

Zi − µ
∣∣ ≥

√
C

δm

]
≤ δ.

Proof. The Zi are indep., so Var
[ 1
m

∑m
i=1 Zi

]
= 1

m2
∑m
i=1 Var[Zi] ≤ C

m .

2) Chebyshev’s inequality gives us for any a ≥ 0:

P
[∣∣ 1
m

m∑
i=1

Zi − µ
∣∣ ≥ a] ≤ Var

[ 1
m

∑m
i=1 Zi

]
a2 ≤ C

ma2 .

Setting δ = C
ma2 and solving for a yields a =

√
C
δm .
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ma2 and solving for a yields a =

√
C
δm .
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Sanity check: How large should my test set be?

Setup: fixed classifier g : X → Y, 0/1-loss: `(ȳ, y) = Jȳ 6= yK

• test set D = {(x1, y1) . . . , (xm, ym)} i.i.d.∼ p(x, y),
• random variables Zi = Jg(xi) 6= yiK ∈ {0, 1},
• E[Zi] = E{Jg(xi) 6= yiK} = µ (generalization error of g)
• Var[Zi] = E{(Zi−µ)2} = µ(1−µ)2 + (1−µ)µ2 = µ(1−µ) ≤ 1

4 =: C

Setup: fixed confidence, e.g. δ = 0.1,
√

C
δm =

√
0.25
0.1m =

√
2.5
m

P
[∣∣ 1
m

m∑
i=1

Zi − µ
∣∣ ≤ √2.5

m

]
≥ 0.9

To be 90%-certain that the error is within ±0.05, use m ≥ 1, 000.

10× more certain: to be 99%-certain that the error is within ±0.05, use m ≥ 10, 000.
10× more accuracy: to be 90%-certain that the error is within ±0.005, use m ≥ 100, 000.

... admittedly not very impressive. Luckily, a bit tighter bounds are coming up next.
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Hoeffding’s Lemma and Inequality

Lemma (Hoeffding’s Lemma)

Let Z be a random variable that takes values in [a, b] and E[Z] = 0. Then, for every λ > 0,

E[eλX ] ≤ e
λ2(b−a)2

8 .

Proof: Exercise...
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Lemma (Hoeffding’s Inequality)

Let Z1, . . . , Zm be i.i.d. random variables that take values in the interval [a, b]. Let
Z̄ = 1

m

∑m
i=1 Zi and denote E[Z̄] = µ. Then, for any ε > 0,

P
[ ( 1
m

m∑
i=1

Zi − µ
)
> ε

]
≤ e−m

ε2
(b−a)2 .

and

P
[ (
µ− 1

m

m∑
i=1

Zi
)
> ε

]
≤ e−m

ε2
(b−a)2 .

and

P
[ ∣∣∣ 1
m

m∑
i=1

Zi − µ
∣∣∣ > ε

]
≤ 2e−m

ε2
(b−a)2 .
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Hoeffding’s Inequality – Proof

Define new RVs: Xi = Zi − E[Zi], X̄ = 1
m

∑
iXi

• E[Xi] = 0; E[X̄] = 0; each Xi takes values in [a− E[Zi], b− E[Zi]]

Use 1) monotonicity of exp and 2) Markov’s inequality to check

P[X̄ ≥ ε] 1)= P[eλX̄ ≥ eλε]
2)
≤ e−λε E[eλX̄ ]

From 3) the independence of the Xi we have

E[eλX̄ ] = E[
n∏
i=1

eλXi/m] 3)=
n∏
i=1

E[eλXi/m]

Use 4) Hoeffding’s Lemma for every i:

E[eλXi/m]
4)
≤ e

λ2(b−a)2

8m2 .

In combination:
P[X̄ ≥ ε] ≤ e−λεe

λ2(b−a)2
8m
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Hoeffding’s Inequality – Proof cont.

Previous step:
P[X̄ ≥ ε] ≤ e−λεe

λ2(b−a)2
8m

So far, λ was arbitrary. Now we set λ = 4mε
(b−a)2

P[X̄ ≥ ε] ≤ e
− 4mε

(b−a)2 ε+
(

4mε
(b−a)2

)2 (b−a)2
8m = e

− 2mε2
(b−a)2

This proves the first statement.
If we repeat the same steps again for −X̄ instead of X, we get

P[X̄ ≤ −ε] ≤ e
− 2mε2

(b−a)2

This proves the second statement.
Use the union bound : P[A ∨B] ≤ P[A] + P[B], to combine both directions:

P[|X̄| ≥ ε] = P[ (X̄ ≥ ε) ∨ (X̄ ≤ −ε) ] ≤ 2e−
2mε2

(b−a)2 .

2
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How large should my test set be?

P[
∣∣∣ 1
m

m∑
i=1

Zi − µ
∣∣∣ > ε ] ≤ 2e−

2mε2
(b−a)2 .

Setup: fixed classifier g : X → Y
• test set D = {(x1, y1) . . . , (xm, ym)} i.i.d.∼ p(x, y),
• random variables Zi = Jg(xi) 6= yiK ∈ {0, 1}, → b− a = 1
• E[Zi] = E{Jg(xi) 6= yiK} = µ (test error of g)

Setup: m = 1
2 log(2

δ )/ε2.
For fixed confidence δ = 0.1⇒ ε =

√
log(20)/(2m) ≈ 1.22

√
1
m

P
[∣∣ 1
m

m∑
i=1

Zi − µ
∣∣ ≤ 1.22

√
1
m

]
≥ 0.9

To be 90%-certain that the error is within ±0.05, use m ≥ 600.
10× more certain: to be 99%-certain that the error is within ±0.05, use m ≥ 1, 060.
10× more accuracy: to be 90%-certain that the error is within ±0.005, use m ≥ 59, 914.
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Difference: Chebyshev’s vs. Hoeffding’s Inequality

With R̂ = 1
m

∑m
i=1 Zi and R = E[ 1

m

∑m
i=1 Zi]:

• Chebyshev’s: Var[Zi] ≤ C

P
[
|R̂ − R| >

√
C

δm

]
≤ δ, P

[
|R̂ − R| > ε

]
≤ C

ε2m

• interval decreases like 1√
m
, confidence grows like 1− 1

m

• Hoeffding’s: Zi takes values in [a, b]:

P
[
|R̂ − R| >

√
(b− a)2 log 2

δ

m

]
≤ δ, P

[
|R̂ − R| > ε

]
≤ 2e−

2mε2
(b−a)2 .

• interval decreases like 1√
m
, confidence grows like 1− e−m

Both are typical PAC (probably approximately correct) statements:
“With prob. 1− δ, the estimated R̂ is an ε-close approximation of R.”
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Theorem (Finite hypothesis classes are agnostic PAC learnable)

Let H = {h1, . . . , hK} be a finite hypothesis class.

For any δ > 0 and ε > 0 let m0(ε, δ) = d 2
ε2 ( log(|H|+ log(2/δ) )e. For any m ≥ m0, let

Dm = {(x1, y1), . . . , (xm, ym)} i.i.d.∼ p(x, y) be a training set and let fERM be the result of
running an ERM algorithm on D. Then, it holds with probability at least 1− δ over the
sampled D that

R(fERM) ≤min
h∈H
R(h) + ε

Proof strategy.
• Step 1: show that R(h) and R̂m(h) close together with high probability uniformly in h:
• Step 1: apply this result specifically to fERM and argminh∈HR(h)
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Lemma
For any ε > 0, δ > 0, the following holds with probability at least 1− δ w.r.t. Dm:

∀h ∈ H |R(h)− R̂m(h)| ≤

√
log |H|+ log 2

δ

2m

Proof:
1. For any individual h ∈ H, we get from Hoeffding’s inequality:

P[
∣∣R(h)− R̂m(h)

∣∣ > ε︸ ︷︷ ︸
call this event "Ch"

] ≤ 2e−2mε2 .

2. From a union bound, Pr{
∨
h∈HCh} ≤

∑
h∈H Pr{Ch}, we obtain

P[ ∃h ∈ H : |R(h)− R̂m(h)| > ε ] ≤ |H|2e−2mε2 .

3. Setting the right hand side to be δ, we solve for ε, obtaining ε =
√

log |H|+log 2
δ

2m .

4. The statement of the lemma follows, because
Pr
{
∀h ∈ H : |R(h)− R̂(h)| ≤ ε

}
= 1− Pr

{
∃h ∈ H : |R(h)− R̂(h)| ≤ ε

}
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∀h ∈ H |R(h)− R̂m(h)| ≤

√
log |H|+ log 2

δ

2m =: α

Step 2: we use the lemma to bound the difference between
• hERM ∈ argminh̄∈H R̂m(h̄) (result of ERM)
• h∗ ∈ argminh̄∈HR(h̄) (if exists, otherwise argue with arbitrarily close approximation)

R(hERM)−R(h∗) =

R(hERM)− R̂(hERM)

︸ ︷︷ ︸
≤α

+ R̂(hERM)− R̂(h∗) + R̂(h∗)−R(h∗)

︸ ︷︷ ︸
≤α

≤ R̂(hERM)− R̂(h∗)

︸ ︷︷ ︸
≤0

+ 2α ≤ 2

√
log |H|+ log 2

δ

2m
m≥m0
≤ ε
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• hERM ∈ argminh̄∈H R̂m(h̄) (result of ERM)
• h∗ ∈ argminh̄∈HR(h̄) (if exists, otherwise argue with arbitrarily close approximation)

R(hERM)−R(h∗) = R(hERM)− R̂(hERM)︸ ︷︷ ︸
≤α

+ R̂(hERM)− R̂(h∗) + R̂(h∗)−R(h∗)︸ ︷︷ ︸
≤α

≤ R̂(hERM)− R̂(h∗)︸ ︷︷ ︸
≤0

+ 2α ≤ 2

√
log |H|+ log 2

δ

2m
m≥m0
≤ ε

37 / 37


