
Statistical Machine Learning
https://cvml.ist.ac.at/courses/SML_W20

Christoph Lampert (with material by Andrea Palazzi and others)

Fall Semester 2020/2021
Lecture 10

1 / 40

https://cvml.ist.ac.at/courses/SML_W20


Overview (tentative)

Date no. Topic
Oct 05 Mon 1 A Hands-On Introduction
Oct 07 Wed 2 Bayesian Decision Theory, Generative Probabilistic Models
Oct 12 Mon 3 Discriminative Probabilistic Models
Oct 14 Wed 4 Maximum Margin Classifiers, Generalized Linear Models
Oct 19 Mon 5 Estimators; Overfitting/Underfitting, Regularization, Model Selection
Oct 21 Wed 6 Bias/Fairness, Domain Adaptation
Oct 26 Mon - no lecture (public holiday)
Oct 28 Wed 7 Learning Theory I, Concentration of Measure
Nov 02 Mon 8 Learning Theory II
Nov 04 Wed 9 Learning Theory III, Deep Learning I
Nov 09 Mon 10 Deep Learning II
Nov 11 Wed 11 Deep Learning III
Nov 16 Mon 12 project presentations
Nov 18 Wed 13 buffer

2 / 40



(Non-convex) Numeric Optimization

3 / 40



Reminder: Stochastic Optimization

F (θ) = 1
n

∑n

i=1
fi(θ), for differentiable functions f1, . . . , fn.

Minibatch SGD

input step sizes α1, α2, . . . (=learning rate)
input number of iterations, T
input mini-batch size B

1: initialize θ0
2: for t = 1, . . . , T do
3: i1, . . . , iB ← B random indices
4: v ← 1

B

∑B
j=1∇fij (θt−1)

5: θt ← θt−1 − αtv
6: end for
output θT , or average 1

T−T0

∑T
t=T0 θt

• Time for each iteration is proportional to B

• Variance of gradient estimate is reduced by
1
B compared to plain SGD

• Optimal batchsize is problem dependent,
often as much as fits into GPU memory

• The computation of v can be performed in
a parallel/distributed way.

4 / 40



Coordinate-Dependent Rate Selection: AdaGrad

In vanilla GD or SGD, each entry of the parameter vector is updated with the same learning
rate. In some cases, it might be better to allow parameters to change at different rates.

AdaGrad
For parameter vector θ = (θj)j=1,...,d,
• base learning rate α, small constant ε, e.g. ε = 10−8.

AdaGrad uses the update rule: θ
(t)
j ← θ

(t−1)
j − α√

Gjj + ε
v

(t)
j for j = 1, . . . , d

where v(t) = ∇fi(θt−1) is the gradient and Gjj =
∑t
τ=1(v(τ)

j )2.

The learning rate it increased for dimensions that are updated rarely or only little (v(τ) often
0 or small). It is decreased for parameters that are updated often by large amounts.

AdaGrad was observed to help learning, e.g., when different data dimensions have different
sparsity levels, e.g. one-hot vectors in natural language processing.

5 / 40



Adaptive Learning Rate Selection: RMSProp

RMSProp resembles AdaGrad, but its learning rate schedule is more flexible.

RMSProp
For parameter vector θ = (θj)j=1,...,d,
• base learning rate α, small constant ε, e.g. ε = 10−8,
• discount factor γ, e.g. γ = 0.9.

RMSProp uses the update rule: θ
(t)
j ← θ

(t−1)
j − α√

G
(t)
j + ε

v
(t)
j for j = 1, . . . , d

with
• G(t)

j = γG
(t−1)
j + (1− γ)v(t)

j (exponentially weighted running average)

Main idea: divide the learning rate for each weight by a running average of the magnitudes of
recent gradients for that weight.

6 / 40



Adam [Kingma, Ba. "Adam: A Method for Stochastic Optimization", ICLR 2015] – 47774 citations as of 06/11/2020

Adam is similar to RMSProp, but also uses a form of momentum.
Adaptive Moment Estimation (Adam)

For parameter vector θ = (θj)j=1,...,d, and
• base learning rate α, small constant ε, e.g. ε = 10−8, discount factors γ1, γ2 < 1.

Exponentially weighted running averages:

• m(t)
j ← γ1m

(t−1)
j + (1− γ1)∇f(θ(t−1)) m̂

(t)
j = m

(t)
j

1−γt
1

• v(t)
j ← γ2v

(t−1)
j + (1− γ2)[∇f(θ(t−1))]2 v̂

(t)
j = v

(t)
j

1−γt
2

Adam update rule: θ
(t)
j ← θ

(t−1)
j − α√

v̂
(t)
w + ε

m̂
(t)
j for j = 1, . . . , d

• often Adam converges very fast, but sometimes not at all
• Models trained by Adams sometimes generalize worse than with vanilla/momentum SGD
→ for best performance one has to try different optimizers 7 / 40



Deep Learning: Regularization

8 / 40



Overfitting

On first sight, overfitting should be nightmare for deep networks:
• they have often tens or hundreds of millions of parameters
• they are trained on a many data points, but not hundreds of millions

Surprisingly, this is not the case:
• deep networks are often trained to very small training loss (even 0 training error), but
this does not cause test errors to get outrageously high.
• in fact, increasing model size very often leads to better test error, if done properly.
• the exact reasons for this are not well understood, yet.

Nevertheless, some forms of regularization are popular in deep learning, too:
• early stopping
• dropout
• data augmentation

We’ll discuss them only briefly, as we encountered them before.
9 / 40



Early Stopping

Deep learning training is organized in epochs, i.e.
passes through the dataset, typically in random
order.

Typically, one trains for a certain number of
epochs, until the loss on a validation set stops
decreasing (or even increases).

Note: training and validation loss are typically not
monotonic, so the exact criterion differ, e.g.
• loss did no decrease for k subsequent epochs
• average loss over k epochs did not decrease
• "the picture looks like it converged"
• "I don’t want to wait any longer"

"learning curve"

10 / 40



Dropout

Dropout is a regularization method used almost exclusively for
neural networks.

During the training process, for any forward pass, the outputs of
each neuron is set to zero with a drop probability p. Other
outputs are multiplied by 1

1−p to compensate.

This can be seen as sampling at each training step a different
(sparse) sub-network and updating only the corresponding
portion of parameters.

At prediction time, no neurons are dropped.

This can be interpreted as taking the average prediction of the
ensemble of sub-networks.

[Srivastava et al . "Dropout: A Simple Way to Prevent Neural Networks from Overfitting", JMLR 2014] 11 / 40



DropConnect

DropConnect regularization works similarly to dropout, but on
the level of weights rather than neurons.

During the training process, for any example any weight is set to
0 (dropped) with a drop probability p. Other weights are
multiplied by 1

1−p to compensate.

The result are still sparse subnetworks, but mainly number of
weigths is changed compared to the original network, not (so
much) the number of neurons.

At prediction time, no weights are dropped.

[Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, Rob Fergus. "Regularization of Neural Networks using DropConnect", 2013.]
12 / 40



Data Augmentation

If properties of the input data are well understood, data augmentation is often used.

Example (Object recognition from images)

For images, we know that certain trans-
formations do not affect which object is
visible, e.g.
• small amounts translation, rotation or
scaling
• minor color variations
• small amounts of noise

Adding images to the training set in which such changes have artificially be added can
improve generalization.
Typically, the additional images are not precomputed but created on the fly.

13 / 40



Deep Learning: Learning Rates

14 / 40



What learning rate to use?

Intuition from ordinary (non-stochastic) gradient descent:

• same learning rate α can be used for all steps of the optimization
• if chosen small enough, convergence to optimum is guaranteed

I close to optimum, gradient gets shorter, so updates get smaller
I at optimum, gradient is zero, update is zero

• unfortunately, for stochastic, situation is less easy
15 / 40



What’s the best learning rate to use?

16 / 40



What’s the best learning rate to use?

16 / 40



What’s the best learning rate to use?

16 / 40



Choosing a Learning Rate

The best learning rate is problem dependent:

Procedure to find a good learning rate

input A: range of possible values for α, e.g. A = {2−15, . . . , 2−1}
for α ∈ A do
Fα ← run optimizer with learning rate α starting at θ(0)

end for
α∗ ← argminα Fα

output α∗

Procedure makes no sense if we train until convergence every time.

Instead:
• train only for a small number of steps, e.g. 1 epoch
• if necessary, use only a subset of the data

17 / 40



Choosing a Learning Rate

Single-Pass Procedure

input αmin, αmax target range for α
input γ decay factor, e.g. γ = 0.999
θ ← θ(0)

α← αmin
while α < αmax do
θ ← one more step of (mini-batch) SGD with learning rate α
Fα ← F (θ)

end while

Choose α by looking at resulting curve.

18 / 40



What’s the learning rate to use?

• make sure all three regions are visible
• pick learning rate where curve has strong downwards slope

19 / 40



Optimal Learning Rate?

Formally, it is known how the learning rate influences SGD’s converge speed:

Theorem (Convergence Rate of SGD)

Let f : Rd → R be bounded from below by 0, let ∇f be L-Lipschitz continuous. Assume
there exists a σ2 > 0 such that E[‖∇fi(θ)‖2] ≤ σ2 for all θ (stochastic variance is bounded).
Then SGD with small enough step sizes α1, α2, . . . fulfills

min
t=1,...,T

{
E ‖∇f(θ(t))‖2

}
≤ f(θ(0))− f(θ∗)∑T

t=1 αt
+ Lσ2

2

∑T
t=1(αt)2∑T
t=1 αt

(conditions are not fulfilled for ReLU networks, but similar results exist)

Observation: for constant learning rate, αt = α for t = 1, 2, . . . :
• if σ = 0 (no stochasticity), right hand side converges to 0 with rate O( 1

T )

• with σ > 0, right hand side does not converge to 0, (because
∑T

t=1 α
2∑T

t=1 α
= α)

20 / 40



SGD with Constant Learning Rate

θ*

θ(0)

Two regimes:
• (vanilla) SGD reaches general vicinity of a good point rather quickly
• but then it fails to truly convergence because of stochasticity

21 / 40



SGD with Constant Learning Rate

θ*

θ(0)

Two regimes:
• (vanilla) SGD reaches general vicinity of a good point rather quickly
• but then it fails to truly convergence because of stochasticity

21 / 40



SGD with Constant Learning Rate

θ*

θ(0)

Two regimes:
• (vanilla) SGD reaches general vicinity of a good point rather quickly
• but then it fails to truly convergence because of stochasticity

21 / 40



SGD with Constant Learning Rate

θ*

θ(0)

Two regimes:
• (vanilla) SGD reaches general vicinity of a good point rather quickly
• but then it fails to truly convergence because of stochasticity

21 / 40



SGD with Constant Learning Rate

θ*

θ(0)

Two regimes:
• (vanilla) SGD reaches general vicinity of a good point rather quickly
• but then it fails to truly convergence because of stochasticity

21 / 40



Optimal Learning Rate?

Formally, it is known how fast stochastic gradient descent converges:
Theorem (Convergence Rate of SGD)

Let f : Rd → R be bounded from below by 0, let ∇f be L-Lipschitz continuous. Assume
there exists a σ2 > 0 such that E[‖∇fi(θ)‖2] ≤ σ2 for all θ (stochastic variance is bounded).
Then SGD with small enough step sizes α1, α2, . . . fulfills

min
t=1,...,T

{
E ‖∇f(θ(t))‖2

}
≤ f(θ(0))− f(θ∗)∑T

t=1 αt
+ Lσ2

2

∑T
t=1(αt)2∑T
t=1 αt

(conditions are not fulfilled for ReLU networks, but similar theorem exist)

Consequence: learning rate should decrease over time
• convergence, e.g., if

I
∑∞

t=1(αt)2 <∞ "square summable"
I
∑T

t=1 αt
T →∞→ ∞ but "not summable"

• prototypical example: αt = α
t or αt = α

t+t0
22 / 40



Time-Varying Learning Rates

Theory-suggested learning rate schedule

αt = O( 1
t+ t0

)

can be quite slow in practice. E.g., distance from initialization
∑T
t=1 αt = O(log T )

Many other proposed schedules:
• reduce learning rate by multiplicative
factor, e.g. γ = 0.1, at predetermined
epochs
• reduce learning rate by multiplicative
factor, e.g. γ = 0.95, after every epoch
• reduce learning rate quickly, raise it
again, reduce it again, etc.

A good schedule can have tremendous effects!

23 / 40



Time-Varying Learning Rates

Theory-suggested learning rate schedule

αt = O( 1
t+ t0

)

can be quite slow in practice. E.g., distance from initialization
∑T
t=1 αt = O(log T )

Many other proposed schedules:
• reduce learning rate by multiplicative
factor, e.g. γ = 0.1, at predetermined
epochs
• reduce learning rate by multiplicative
factor, e.g. γ = 0.95, after every epoch
• reduce learning rate quickly, raise it
again, reduce it again, etc.

A good schedule can have tremendous effects!

23 / 40



Time-Varying Learning Rates

Theory-suggested learning rate schedule

αt = O( 1
t+ t0

)

can be quite slow in practice. E.g., distance from initialization
∑T
t=1 αt = O(log T )

Many other proposed schedules:
• reduce learning rate by multiplicative
factor, e.g. γ = 0.1, at predetermined
epochs
• reduce learning rate by multiplicative
factor, e.g. γ = 0.95, after every epoch
• reduce learning rate quickly, raise it
again, reduce it again, etc.

A good schedule can have tremendous effects!

23 / 40



Deep Learning: Backpropagation

24 / 40



Computing Gradient

Reminder: we want to solve

min
θ

F (θ) with F (θ) =
n∑
i=1

fi(θ) for fi(θ) = L(yi, h(xi; θ))

by gradient-based optimization. To compute the gradient, we’ll need to use the chain rule.

To keep the notation simple, we pretend that all quantities are scalar and we write any fi
simply as f : R→ R.

Chain Rule
Let g2 ◦ g1 : R→ R with g1 : R→ R and g2 : R→ R. We write the argument to g2 as
w ∈ R and the argument to g1 as v ∈ R. Then

d

dv
g2(g1(v)) =

(
d

dv
g1
∣∣∣
v

)(
d

dw
g2
∣∣∣
w=g1(v)

)
= dg2
dg1

dg1
dv

25 / 40



For a neural network, the chain is very long, because the NN is a concatenation of the many
per-layer functions:

h(θ, ) = h(L)(h(L−1)( · · · h2(h1(x)) · · · )

In fact, it’s even longer, because each layer h(l)(·) = σl( g(l)(·) ) is a concatenation itself, of a
linear g(l)(al−1) = bl +W3al−1, followed by the non-linear activation function σl.

Let al denote the output of the l-th layer. Then,

al = σl(bl +Wlal−1) for l = 1, . . . , L, with a0 := x

Denote by yl the value computed by the layer before the activation function. Then,

yl = bl +Wlal−1 al = σl(yl) for l = 1, . . . , L.

26 / 40



yl = bl +Wlal−1 al = σl(yl) for l = 1, . . . , L.

First note that the derivatives of functions with respect to their immediate arguments are
easy to compute:

dyl
dbl

= d

dbl

(
bl +Wlal−1

)
= 1

dyl
dWl

= d

dWl

(
bl +Wlal−1

)
= al−1

dyl
dal−1

= d

dal−1

(
bl +Wlal−1

)
= Wl

dal
dyl

= d

dyl
σl(yl) = σ′l

dL
daL

= L′ (something explicit)

If a function depends indirectly on some parameters, we need to apply the chain rule
(potentially many times).

27 / 40



Example:

d

dWL
f(θ, x) = d

dWL
L(aL(θ, x)) =

=L′︷ ︸︸ ︷

dL
d aL

=σ′L︷︸︸︷

daL
dyL

=aL−1(θ,x)︷ ︸︸ ︷

d yL
dWL

→ good, now all components are known.

d

dWL−1
f(θ, x) =

=L′︷ ︸︸ ︷

dL
d aL

=σ′L︷︸︸︷

daL
dyL

?︷ ︸︸ ︷

dyL
dWL−1

=

=L′︷ ︸︸ ︷

dL
d aL

=σ′L︷︸︸︷

daL
dyL

=WL︷ ︸︸ ︷

dyL
daL−1

?︷ ︸︸ ︷

daL−1
dWL−1

=

=L′︷ ︸︸ ︷

dL
d aL

=σ′L︷︸︸︷

daL
dyL

=WL︷ ︸︸ ︷

dyL
daL−1

=σ′L−1︷ ︸︸ ︷

daL−1
dyL−1

=aL−1︷ ︸︸ ︷

dyL−1
dWL−1

28 / 40



Example:

d

dWL
f(θ, x) = d

dWL
L(aL(θ, x)) =

=L′︷ ︸︸ ︷
dL
d aL

=σ′L︷︸︸︷
daL
dyL

=aL−1(θ,x)︷ ︸︸ ︷
d yL
dWL

→ good, now all components are known.

d

dWL−1
f(θ, x) =

=L′︷ ︸︸ ︷

dL
d aL

=σ′L︷︸︸︷

daL
dyL

?︷ ︸︸ ︷

dyL
dWL−1

=

=L′︷ ︸︸ ︷

dL
d aL

=σ′L︷︸︸︷

daL
dyL

=WL︷ ︸︸ ︷

dyL
daL−1

?︷ ︸︸ ︷

daL−1
dWL−1

=

=L′︷ ︸︸ ︷

dL
d aL

=σ′L︷︸︸︷

daL
dyL

=WL︷ ︸︸ ︷

dyL
daL−1

=σ′L−1︷ ︸︸ ︷

daL−1
dyL−1

=aL−1︷ ︸︸ ︷

dyL−1
dWL−1

28 / 40



Example:

d

dWL
f(θ, x) = d

dWL
L(aL(θ, x)) =

=L′︷ ︸︸ ︷
dL
d aL

=σ′L︷︸︸︷
daL
dyL

=aL−1(θ,x)︷ ︸︸ ︷
d yL
dWL

→ good, now all components are known.

d

dWL−1
f(θ, x) =

=L′︷ ︸︸ ︷

dL
d aL

=σ′L︷︸︸︷

daL
dyL

?︷ ︸︸ ︷

dyL
dWL−1

=

=L′︷ ︸︸ ︷

dL
d aL

=σ′L︷︸︸︷

daL
dyL

=WL︷ ︸︸ ︷

dyL
daL−1

?︷ ︸︸ ︷

daL−1
dWL−1

=

=L′︷ ︸︸ ︷

dL
d aL

=σ′L︷︸︸︷

daL
dyL

=WL︷ ︸︸ ︷

dyL
daL−1

=σ′L−1︷ ︸︸ ︷

daL−1
dyL−1

=aL−1︷ ︸︸ ︷

dyL−1
dWL−1

28 / 40



Example:

d

dWL
f(θ, x) = d

dWL
L(aL(θ, x)) =

=L′︷ ︸︸ ︷
dL
d aL

=σ′L︷︸︸︷
daL
dyL

=aL−1(θ,x)︷ ︸︸ ︷
d yL
dWL

→ good, now all components are known.

d

dWL−1
f(θ, x) =

=L′︷ ︸︸ ︷
dL
d aL

=σ′L︷︸︸︷
daL
dyL

?︷ ︸︸ ︷
dyL

dWL−1

=

=L′︷ ︸︸ ︷

dL
d aL

=σ′L︷︸︸︷

daL
dyL

=WL︷ ︸︸ ︷

dyL
daL−1

?︷ ︸︸ ︷

daL−1
dWL−1

=

=L′︷ ︸︸ ︷

dL
d aL

=σ′L︷︸︸︷

daL
dyL

=WL︷ ︸︸ ︷

dyL
daL−1

=σ′L−1︷ ︸︸ ︷

daL−1
dyL−1

=aL−1︷ ︸︸ ︷

dyL−1
dWL−1

28 / 40



Example:

d

dWL
f(θ, x) = d

dWL
L(aL(θ, x)) =

=L′︷ ︸︸ ︷
dL
d aL

=σ′L︷︸︸︷
daL
dyL

=aL−1(θ,x)︷ ︸︸ ︷
d yL
dWL

→ good, now all components are known.

d

dWL−1
f(θ, x) =

=L′︷ ︸︸ ︷
dL
d aL

=σ′L︷︸︸︷
daL
dyL

?︷ ︸︸ ︷
dyL

dWL−1

=

=L′︷ ︸︸ ︷

dL
d aL

=σ′L︷︸︸︷

daL
dyL

=WL︷ ︸︸ ︷

dyL
daL−1

?︷ ︸︸ ︷

daL−1
dWL−1

=

=L′︷ ︸︸ ︷

dL
d aL

=σ′L︷︸︸︷

daL
dyL

=WL︷ ︸︸ ︷

dyL
daL−1

=σ′L−1︷ ︸︸ ︷

daL−1
dyL−1

=aL−1︷ ︸︸ ︷

dyL−1
dWL−1

28 / 40



Example:

d

dWL
f(θ, x) = d

dWL
L(aL(θ, x)) =

=L′︷ ︸︸ ︷
dL
d aL

=σ′L︷︸︸︷
daL
dyL

=aL−1(θ,x)︷ ︸︸ ︷
d yL
dWL

→ good, now all components are known.

d

dWL−1
f(θ, x) =

=L′︷ ︸︸ ︷
dL
d aL

=σ′L︷︸︸︷
daL
dyL

?︷ ︸︸ ︷
dyL

dWL−1

=

=L′︷ ︸︸ ︷
dL
d aL

=σ′L︷︸︸︷
daL
dyL

=WL︷ ︸︸ ︷
dyL
daL−1

?︷ ︸︸ ︷
daL−1
dWL−1

=

=L′︷ ︸︸ ︷

dL
d aL

=σ′L︷︸︸︷

daL
dyL

=WL︷ ︸︸ ︷

dyL
daL−1

=σ′L−1︷ ︸︸ ︷

daL−1
dyL−1

=aL−1︷ ︸︸ ︷

dyL−1
dWL−1

28 / 40



Example:

d

dWL
f(θ, x) = d

dWL
L(aL(θ, x)) =

=L′︷ ︸︸ ︷
dL
d aL

=σ′L︷︸︸︷
daL
dyL

=aL−1(θ,x)︷ ︸︸ ︷
d yL
dWL

→ good, now all components are known.

d

dWL−1
f(θ, x) =

=L′︷ ︸︸ ︷
dL
d aL

=σ′L︷︸︸︷
daL
dyL

?︷ ︸︸ ︷
dyL

dWL−1

=

=L′︷ ︸︸ ︷
dL
d aL

=σ′L︷︸︸︷
daL
dyL

=WL︷ ︸︸ ︷
dyL
daL−1

?︷ ︸︸ ︷
daL−1
dWL−1

=

=L′︷ ︸︸ ︷

dL
d aL

=σ′L︷︸︸︷

daL
dyL

=WL︷ ︸︸ ︷

dyL
daL−1

=σ′L−1︷ ︸︸ ︷

daL−1
dyL−1

=aL−1︷ ︸︸ ︷

dyL−1
dWL−1

28 / 40



Example:

d

dWL
f(θ, x) = d

dWL
L(aL(θ, x)) =

=L′︷ ︸︸ ︷
dL
d aL

=σ′L︷︸︸︷
daL
dyL

=aL−1(θ,x)︷ ︸︸ ︷
d yL
dWL

→ good, now all components are known.

d

dWL−1
f(θ, x) =

=L′︷ ︸︸ ︷
dL
d aL

=σ′L︷︸︸︷
daL
dyL

?︷ ︸︸ ︷
dyL

dWL−1

=

=L′︷ ︸︸ ︷
dL
d aL

=σ′L︷︸︸︷
daL
dyL

=WL︷ ︸︸ ︷
dyL
daL−1

?︷ ︸︸ ︷
daL−1
dWL−1

=

=L′︷ ︸︸ ︷
dL
d aL

=σ′L︷︸︸︷
daL
dyL

=WL︷ ︸︸ ︷
dyL
daL−1

=σ′L−1︷ ︸︸ ︷
daL−1
dyL−1

=aL−1︷ ︸︸ ︷
dyL−1
dWL−1

28 / 40



In general:

d

dWl
f(θ, x) =

=L′︷ ︸︸ ︷

dL
d aL

=σ′L︷ ︸︸ ︷

daL
d yL

=WL︷ ︸︸ ︷

dyL
d aL−1

=σ′L−1︷ ︸︸ ︷

daL−1
d yL−1

=WL−1︷ ︸︸ ︷

dyL−1
d aL−1

=σ′L−2︷ ︸︸ ︷

daL−2
d yL−2

· · ·

=Wl+1︷ ︸︸ ︷

dyl+1
d al

=σ′l︷︸︸︷

dal
d yl

=al︷ ︸︸ ︷

dyl
dWl

(1)

Reminder what al is:

al = σl(bl +Wlσ(bl−1 +Wl−1σ(· · · b1 +W1x) · · · ) (2)

To obtain the gradient of any individual layer l, we need:
(1) compute a matrix product of 2(L− l) many factors
(2) the value of al, which is a concatenation of 2l many operations

(matrix multiplications and non-linearities)
In total: O(L) operations

Does computing the gradients of all layer, l = 1, . . . , L take O(L2)?

Luckily, no! We can re-use terms to increase efficiency!

29 / 40



In general:

d

dWl
f(θ, x) =

=L′︷ ︸︸ ︷
dL
d aL

=σ′L︷ ︸︸ ︷
daL
d yL

=WL︷ ︸︸ ︷
dyL
d aL−1

=σ′L−1︷ ︸︸ ︷
daL−1
d yL−1

=WL−1︷ ︸︸ ︷
dyL−1
d aL−1

=σ′L−2︷ ︸︸ ︷
daL−2
d yL−2

· · ·

=Wl+1︷ ︸︸ ︷
dyl+1
d al

=σ′l︷︸︸︷
dal
d yl

=al︷ ︸︸ ︷
dyl
dWl

(1)

Reminder what al is:

al = σl(bl +Wlσ(bl−1 +Wl−1σ(· · · b1 +W1x) · · · ) (2)

To obtain the gradient of any individual layer l, we need:
(1) compute a matrix product of 2(L− l) many factors
(2) the value of al, which is a concatenation of 2l many operations

(matrix multiplications and non-linearities)
In total: O(L) operations

Does computing the gradients of all layer, l = 1, . . . , L take O(L2)?

Luckily, no! We can re-use terms to increase efficiency!

29 / 40



In general:

d

dWl
f(θ, x) =

=L′︷ ︸︸ ︷
dL
d aL

=σ′L︷ ︸︸ ︷
daL
d yL

=WL︷ ︸︸ ︷
dyL
d aL−1

=σ′L−1︷ ︸︸ ︷
daL−1
d yL−1

=WL−1︷ ︸︸ ︷
dyL−1
d aL−1

=σ′L−2︷ ︸︸ ︷
daL−2
d yL−2

· · ·

=Wl+1︷ ︸︸ ︷
dyl+1
d al

=σ′l︷︸︸︷
dal
d yl

=al︷ ︸︸ ︷
dyl
dWl

(1)

Reminder what al is:

al = σl(bl +Wlσ(bl−1 +Wl−1σ(· · · b1 +W1x) · · · ) (2)

To obtain the gradient of any individual layer l, we need:
(1) compute a matrix product of 2(L− l) many factors
(2) the value of al, which is a concatenation of 2l many operations

(matrix multiplications and non-linearities)
In total: O(L) operations

Does computing the gradients of all layer, l = 1, . . . , L take O(L2)?

Luckily, no! We can re-use terms to increase efficiency!
29 / 40



We already know: computing all activations a1, . . . , aL is just O(L), not O(L2)
• al = σl(bl +Wlal−1) fixed number of operations, independent of L
• computation operated layer-by-layer, l = 1, . . . , L → "forward pass"

Similiar trick works for gradients:

d

dWL
f(θ, x) =

=:δL︷ ︸︸ ︷

dL
daL

daL
dyL

aL−1 = δLaL−1

d

dWL−1
f(θ, x) = dL

daL

daL
dyL

dyL
daL−1

daL−1
dyL−1

aL−2 =

=:δL−1︷ ︸︸ ︷

δL
dyL
daL−1

daL−1
dyL−1

aL−2 = δL−1aL−2

d

dWl
f(θ, x) = δl+1

dyl+1
dal

dal
dyl

al−1 = δlal−1

With "backwards" layer-by-layer computation of δL, δL−1, . . . , δ1 by δl = δl+1
dyl+1
dal

dal
dyl

30 / 40



We already know: computing all activations a1, . . . , aL is just O(L), not O(L2)
• al = σl(bl +Wlal−1) fixed number of operations, independent of L
• computation operated layer-by-layer, l = 1, . . . , L → "forward pass"

Similiar trick works for gradients:

d

dWL
f(θ, x) =

=:δL︷ ︸︸ ︷
dL
daL

daL
dyL

aL−1 = δLaL−1

d

dWL−1
f(θ, x) = dL

daL

daL
dyL

dyL
daL−1

daL−1
dyL−1

aL−2 =

=:δL−1︷ ︸︸ ︷
δL

dyL
daL−1

daL−1
dyL−1

aL−2 = δL−1aL−2

d

dWl
f(θ, x) = δl+1

dyl+1
dal

dal
dyl

al−1 = δlal−1

With "backwards" layer-by-layer computation of δL, δL−1, . . . , δ1 by δl = δl+1
dyl+1
dal

dal
dyl

30 / 40



Backpropagation

This trick of arranging computation is called backpropagation (short: backprop)

Forward pass: compute all model
activations

input x
a0 ← x
for l = 1, . . . , L do
al ← σl(bl +Wlal−1)

end for
output a1, . . . , aL

Backwards pass: compute gradients
w.r.t. to all model parameters

input x, a1, . . . , aL
δL ← ∇L(aL)σ′L
for l = L− 1, L− 2, . . . , 1 do
δl ← δl+1Wl+1σ

′
l

end for
output δ1a0, . . . , δLaL−1

31 / 40



Backpropagation: animation

Disadvantage of BP: high memory usage, because all intermediate activations must be stored
→ if that’s a problem for you, look into "gradient checkpointing"

32 / 40



Backpropagation: animation

Disadvantage of BP: high memory usage, because all intermediate activations must be stored
→ if that’s a problem for you, look into "gradient checkpointing"

32 / 40



Backpropagation: animation

Disadvantage of BP: high memory usage, because all intermediate activations must be stored
→ if that’s a problem for you, look into "gradient checkpointing"

32 / 40



Backpropagation: animation

Disadvantage of BP: high memory usage, because all intermediate activations must be stored
→ if that’s a problem for you, look into "gradient checkpointing"

32 / 40



Backpropagation: animation

Disadvantage of BP: high memory usage, because all intermediate activations must be stored
→ if that’s a problem for you, look into "gradient checkpointing"

32 / 40



Backpropagation: animation

Disadvantage of BP: high memory usage, because all intermediate activations must be stored
→ if that’s a problem for you, look into "gradient checkpointing"

32 / 40



Backpropagation: animation

Disadvantage of BP: high memory usage, because all intermediate activations must be stored
→ if that’s a problem for you, look into "gradient checkpointing"

32 / 40



Backpropagation: animation

Disadvantage of BP: high memory usage, because all intermediate activations must be stored
→ if that’s a problem for you, look into "gradient checkpointing"

32 / 40



Backpropagation: animation

Disadvantage of BP: high memory usage, because all intermediate activations must be stored
→ if that’s a problem for you, look into "gradient checkpointing"

32 / 40



Backpropagation: animation

Disadvantage of BP: high memory usage, because all intermediate activations must be stored
→ if that’s a problem for you, look into "gradient checkpointing"

32 / 40



Automatic Differentiation

How to implement backpropagation and other gradient computations?

You don’t!

Many packages for numerical computation and all deep learning frameworks support
Automatic Differentiation (autodiff, AD)

Automatic differentiation is a set of techniques for automatically computing the numeric
value of the derivatives of any function implemented on a computer.

• it’s not symbolic differentiation (you don’t get the functional expression)
• it’s not approximate numeric differentiation e.g. by finite differences
• it’s essentially a smart way of automatically

I decomposing the implemented function into elementary operations
I looking up the derivatives of each elementary component
I combining the numeric values of each component via the chain rule

Note: AD is convenient, but not always the most efficient. For DL, it’s state-of-the-art, though.

more information: [Baydin, Pearlmutter, Radul, Siskind; "Automatic Differentiation in Machine Learning: a Survey", JMLR 2018]

33 / 40



Automatic Differentiation

How to implement backpropagation and other gradient computations? You don’t!

Many packages for numerical computation and all deep learning frameworks support
Automatic Differentiation (autodiff, AD)

Automatic differentiation is a set of techniques for automatically computing the numeric
value of the derivatives of any function implemented on a computer.

• it’s not symbolic differentiation (you don’t get the functional expression)
• it’s not approximate numeric differentiation e.g. by finite differences
• it’s essentially a smart way of automatically

I decomposing the implemented function into elementary operations
I looking up the derivatives of each elementary component
I combining the numeric values of each component via the chain rule

Note: AD is convenient, but not always the most efficient. For DL, it’s state-of-the-art, though.

more information: [Baydin, Pearlmutter, Radul, Siskind; "Automatic Differentiation in Machine Learning: a Survey", JMLR 2018]

33 / 40



Automatic Differentiation

How to implement backpropagation and other gradient computations? You don’t!

Many packages for numerical computation and all deep learning frameworks support
Automatic Differentiation (autodiff, AD)

Automatic differentiation is a set of techniques for automatically computing the numeric
value of the derivatives of any function implemented on a computer.

• it’s not symbolic differentiation (you don’t get the functional expression)
• it’s not approximate numeric differentiation e.g. by finite differences
• it’s essentially a smart way of automatically

I decomposing the implemented function into elementary operations
I looking up the derivatives of each elementary component
I combining the numeric values of each component via the chain rule

Note: AD is convenient, but not always the most efficient. For DL, it’s state-of-the-art, though.

more information: [Baydin, Pearlmutter, Radul, Siskind; "Automatic Differentiation in Machine Learning: a Survey", JMLR 2018]
33 / 40



Deep Learning: Parameter Initialization

34 / 40



Initialization

It’s lecture 10, and we haven’t mentioned parameter initialization before. Why not?

For convex problems, e.g. logistic regression training, initialization matters little.
• GD/SGD convert to same solution from every starting point
• initializing all parameters at 0 typically works well

For neural network training, initialization can matter a lot.
• GD/SGD find different solutions based on the starting point.
• initializing all parameters at 0 does not work

Problem 1) symmetry
• All neurons of a layer receive the same inputs. What if they also have the same weights?
→ they compute identical functions
→ they get identical gradient updates
→ the weights will always stay the same → wasted capacity and computation

Problem 2) zero gradients
• for the gradient we have to multiply many weights matrices together
if any of them is 0, the gradient will be 0, so no update

35 / 40



Initialization

Neural network parameters are typically initialized with small random values around 0.

How small?
• reminder: al = σl(Wlal−1)
• if weights are too small, activations get smaller and smaller through the network
→ "vanishing signal" problem

Won’t gradient descent fix that, by increasing the weights during training?
• reminder: l-th layer gradient is δlal−1 for δl ← δl+1Wl+1σ

′
l

• if weights are too small, gradients for earlier layers get smaller and smaller
→ "vanishing gradient" problem
• parameters of early layers take very long to converge

36 / 40



Initialization

What, if we initialize with large weights? Same argument in reverse!
• activations: al = σl(Wlal−1)
• if weights are too large, activations get bigger and bigger through the network
• reminder: l-th layer gradient is δlal−1 for δl ← δl+1Wl+1σ

′
l

• if weights are too large, gradients for earlier layers get bigger and bigger
→ "exploding gradient" problem
• very small learning rate required to avoid optimization diverging → no or slow learning

Problem 3) saturation
• some activation functions, e.g. tanh, are saturating → activations stay bounded
• but: σ′ ≈ 0 for input in region of saturation
→ weights and activations don’t change much → slow or no convergence

Ideally, activations should neither grow nor shrink too much: |al−1| ≈ |al|

Ideally, gradients should neither grow nor shrink too much: |δl| ≈ |δl−1|
37 / 40



Initialization

Let’s derive a proper initialization scheme.
Simplifying assumptions (for the time point of initialization, before training):
• activations will be i.i.d. random RVs from some distribution
• weights will be sampled i.i.d. from some distribution
• weights and activations will be independent

Let’s look at a single neuron with nin inputs x1, . . . , xnin and weights w1, . . . , wnin .

a = σ(
nin∑
j=1

wjxj )

Assume that σ behaves roughly linear around 0 with σ′(0) = 1, e.g. tanh.

Var[a] ≈
nin∑
j=1

Var[wjxj ]
indep.=

nin∑
j=1

Var[wj ]Var[xj ]
i.i.d.= ninVar[w]Var[x]

Our goal here is to make Var[a] ≈ Var[x], so we should choose Var[w] ≈ 1
nin

This will ensure that activations will neither shrink nor explode (much).
38 / 40



Weight Initialization

What about gradients?

δl = δl+1Wlσ
′
l backprop

Analogous analysis for a neuron that is used by nout neurons in the next layer,

Var[δl] ≈
nout∑
j=1

Var[δl+1
j wj ] =

nout∑
j=1

Var[δl+1
j ]Var[wj ] = noutVar[w]Var[δl+1]

Our goal is to make Var[δl] ≈ Var[δl+1], so we should choose Var[w] ≈ 1
nout

.

Xavier initialization [Glorot, Bengio. "Understanding the difficulty of training deep feedforward neural networks", 2010]

For a network with tanh or similar activation function, initialize weights from a either a
truncated Gaussian or a uniform distribution with mean 0 and variance 1

navg
for

navg = 1
2(nin + nout).

→ compromise between balancing activations and balancing gradients
39 / 40



Weight Initialization

For ReLU activation, there’s two differences compared to (almost) linear σ:
• activations al are always non-negative and cannot have mean 0

I not much of an issue, as wlal will restore mean zero, if E[wl] = 0
• σ sets all negative values to 0, so on average, half of the inputs to a neuron will be 0

I only half of the terms in the summation are non-zero, so the variance will be half as big

Consequently, for ReLU networks the weights should be initialized larger by a factor of 2.

He initialization [He et al. "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification", 2015]

For a network with ReLU activation function, initialize weights from a either a truncated
Gaussian or a uniform distribution with mean 0 and variance 2

navg
for navg = 1

2(nin + nout).

He et al . demonstrated that they could train very deep networks (> 20 layers) with this
initialization, but not with others.

40 / 40


