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https://cvml.ist.ac.at/courses/SML_W20

Date no. | Topic

Oct 05 | Mon | 1 | A Hands-On Introduction

Oct 07 | Wed | 2 | Bayesian Decision Theory, Generative Probabilistic Models
Oct 12 | Mon | 3 | Discriminative Probabilistic Models

Oct 14 | Wed | 4 | Maximum Margin Classifiers, Generalized Linear Models
Oct 19 | Mon | 5 | Estimators; Overfitting/Underfitting, Regularization, Model Selection
Oct 21 | Wed | 6 | Bias/Fairness, Domain Adaptation

Oct 26 | Mon | - | no lecture (public holiday)

Oct 28 | Wed | 7 | Learning Theory I, Concentration of Measure

Nov 02 | Mon | 8 | Learning Theory Il

Nov 04 | Wed | 9 | Learning Theory Ill, Deep Learning |

Nov 09 | Mon | 10 | Deep Learning Il

Nov 11 | Wed | 11 | Deep Learning Ill

Nov 16 | Mon | 12 | project presentations

Nov 18 | Wed | 13 | buffer
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Convolutional (Neural) Networks — CNNs, ConvNets
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Example: Image Classificati

One of the most popular benchmark tasks where Deep Networks excel is image classification,

ImageNet Large Scale Visual
Recognition Challenge
(ILSVRCQ):

1.2 million train images
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Example: Image Classification

Example

Image Classification
input X C R'%%528: RGB images at resolution 224 x 224 (224 x 224 x 3 = 150528)
output Y = {1,..., K} with K = 1000 object categories

What models can we build?
linear model: h(x) = Wax with W € R1000x150528
— ~150,000,000 parameters, 600MB RAM
network with 1 hidden layer of size 150528: h(x) = Wao(Wyix) W, € R150528x150528
— ~22,000,000,000 parameters, 88GB RAM

deep network with 50 hidden layer of size 150528
— > 1 trillion parameters, 4 TB RAM

For high-dimensional inputs, such as images, the number of parameters quickly gets
excessively large. One has to, either
make hidden layers very narrow, or think of something else. 5/68



Receptive Field

Weight matrices are so big, because every neuron in layer [ + 1 is connected to every neuron
in layer [:

Fully-Connected Layer

dense W € Réoutxdin s here: 5 x 6 = 30 entries

if we increase width of all layers, number of free parameters grows quadratically
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Receptive Field

Weight matrices are much smaller, if every neuron in layer [ + 1 is connected only to subset
of neurons in layer [:

Example: Layers with Restricted Receptive Field (1D)

sparse W € Rout % (;,, with at most k non-zero entries at fixed positions per row
— here £k = 2: 5 x 2 =10 entries

if we increase width of all layers (but keep & fixed), number of free parameters grows
linearly
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Receptive Field

For multi-dimensional inputs, e.g. images, neuron are connected locally:

Example: Layers with Restricted Receptive Field (2D)

.

Many properties of images are local, and a small receptive field suffices to identify them:

is this region bright or dark?
is this region a smooth or rough region?
is there a vertical /horizontal /diagonal line here?

is there a corner here?
8/68



Receptive Field

For multi-dimensional inputs, e.g. images, neuron are connected locally:

Example: Layers with Restricted Receptive Field (2D)

Later layers can combine local information from previous layers:

is there a corner? check for a vertical line next to a horizontal line
is there a stop sign? find eight red matching corners
etc.

9/68



Weight Sharing

Example property: for each 3 x 3 region, is there a vertical line here?
W = (w1, wa, ws, wy) € R¥*(B*3)

-1 0 1
wi=wy=w3=wg4=|-1 0 1 why learn individual weights at all then?
-1 0 1

Weight sharing:
use same weights for each neuron in layer (they have different receptive fields)

number of free parameters = size of receptive field: 3 x 3 =9, regardless of d;_; and d
10/68



Weight Sharing

With weight sharing, the weight matrix between layer [ and layer [ + 1 learns learns one local
property for each neuron of layer [ 4 1, i.e. for all local regions of layer I.

Ultimately, one visual property is not enough, we will need multiple
— multiple weight matrices for each receptive field — multiple output values for each neuron

& o
e.g. W = "vertical line" e.g. W? = smooth/rough  e.g. W3 = dark/bright
(of course, these are just examples, in reality, the network learns W', W2, W3)
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Convolutional Layers

Example: for 1D data, receptive fields are short intervals

neuron j in layer [ takes as input neurons
(J—-K,j—K+1,...,j+K—-1,j+ K)
from layer [ — 1 and computes
K
Jlil= Y wikd -k @
k=—K
with weights w =
(w[-K],w[-K +1],...,w[K]) € R2K+1
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Convolutional Layers

Example: for 1D data, receptive fields are short intervals

neuron j in layer [ takes as input neurons
(J—-K,j—K+1,...,j+K—-1,j+ K)
from layer [ — 1 and computes
K
Jlil= Y wikd -k @
k=—K
with weights w =
(w[-K],w[-K +1],...,w[K]) € R2K+1

Observation: (1) is a convolution operation between a!~! and 1 (a flipped version of w)
K
Y= > wkld i -k =d"xd  with @[k] = w[—k]
k=—K
Layers of this type are called convolutional layers with convolution kernel w
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Convolutional Layers

Example (1D data with C output channels)

al—l c Rdl—l w e RKXC’ al c RleC

K

yliid = > wlkidad'[j — k]
k=—K
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Convolutional Layers

Example (1D data with C output channels)

al—l c Rdl—l w e RKXC’ CLl c RleC
K

yliid = > wlkidad'[j — k]
k=—K

a1 e Rdi—1xC w e RKXC/XC

al c RdeC’
C K
y'5.¢1=>" > wlk;d, a1 [j — k;c]
c=1k=—K
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Convolutional Layers

Example (2D data with layers arranged as 2D arrays)

Receptive fields are small (K x L)-rectangular regions:

neuron (7, ) in layer [ takes as input neurons
((—Ki—-K+1,...,i+K—-1,i+ K)Xx
(j—L,j—L+1,...,5+L—1,j+ L) from
layer I — 1 and computes

Z Z — 1,5 — k]
—Kl=—L

for weights (w[k, ) k=—K, . K
I=—L,...,.L
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Convolutional Layers
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Convolutional Layers

15 /68



Convolutional Layers
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Convolutional Layers
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Convolutional Layers
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Convolutional Layers
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Convolutional Layers
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Convolutional Layers
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Convolutional Layers
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Convolutional Layers: Padding

How to treat boundary cases?

Zero padding

Don't allow neurons where receptive field would
fallside of the input layer
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Convolutional Layers: Layer sizes

Observation: for convolutional layers, we cannot chose their sizes arbitrarily

Zero padding

size of layer [ is the same as for layer [ — 1

the number of channels for each layer is arbitrary

"Valid" padding
in 1D, for filters size (2K + 1)
ng=mnj—1 — K
in 2D, for filters size (2K + 1) x (2L + 1)
(nllvle) = (nll—l - K: n12—1 - L)

the number of channels for each layer is arbitrary
17 /68




Convolutional Networks: Pooling Layers

Other ways to combine local information besides convolutions?

Max Pooling

max(aj.1,a;,3j+1)

Non-linear pooling layer
input: receptive field, jumps K
neurons each time (="stride")

output: maximum over all
inputs

no parameters to learn

n; ~ nl_l/K
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Convolutional Networks: Pooling Layers

Other ways to combine local information besides convolutions?

Average Pooling

(aj1+aj+aj,1)/3

Linear pooling layer
input: receptive field, stride K

output: maximum over all
inputs

no parameters to learn

n; ~ nl,l/K

19 /68



Convolutional Networks: Pooling Layers

Other ways to combine local information besides convolutions?
Strided Convolutions

Ordinary convolutional layer
input: receptive field, stride K
output: convolution over inputs
filter kernel to learn

n ~ nl_l/K
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73063 citations as
AIeXNet [Krizhevsky, Sutskeyer, Hinton. "ImageNet Classification with Deep Convolutional Neural Networks", NeurlPS 2012] — of 06/11/2020

The most famous ConvNet in the world:

\
198 204 zo4g \dense
13 \
13 dense dense|
1000
128 Max . L
Max 28 Max pooling * 2048
pooling pooling

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624—64,896—-64,896—43.264—
4096-4096—-1000.
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VGG — [Simonyan, Zisserman. "Very deep convolutional networks for large-scale image recognition', ICLR 2015] — 46744 citations as of 06/11/2020

The VGG ConvNet architecture was proposed in 2014 by the Oxford Vision Geometry Group.

It quickly became popular for a variety of reasons:
great performance (in the sense of accuracy) in benchmark tasks
pre-trained weights were released
a wow-effect because the network was much deeper than previous ones

general smart (simple but elegant) architectural choices
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VGG16 Architecture

224 x 224 x 3 224 x 224 x 64

112x112x128

56|x 56 x 256
% 28x28x512

7x7x512
14 14 x 512
[

1x1x4096 1x1x1000

@ convolution+RelLU
[/ max pooling
fully nected+RelLU
softmax
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VGG16 Architecture

. Architecture:

[ conv-64 Input: fixed size 224x224 RGB images

} ,cn:nxt)::. Convolutional filters: 3x3 receptive field (smallest size that makes sense)
} zz::i;: Max pooling: over 2x2 pixel window with stride 2

[ maxpool ReLu activation in all hidden layers

‘ conv-256

| conv-256

| maspool Output: dimension 1000 (number of ImageNet classes) with softmax activation

‘ conv-512

Fully connected layers with 4096 neurons each followed by Relu

‘ conv-512
‘ maxpool

‘ conv-512
‘ conv-512

‘ maxpool

FC-4096
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VGG16 Architecture

Architecture:

‘ image ‘

[ conv-64 Input: fixed size 224x224 RGB images

} ,cn:nx:)::. Convolutional filters: 3x3 receptive field (smallest size that makes sense)
| conw-128 Max pooling: over 2x2 pixel window with stride 2

} ?Zipﬁf ReLu activation in all hidden layers

‘ conv-256

| conv-256

| maspool Output: dimension 1000 (number of ImageNet classes) with softmax activation

‘ conv-512

Fully connected layers with 4096 neurons each followed by Relu

‘ conv-512
[ magool | Properties:

‘ conv-512

memory usage per image: 93MB (forward pass), 186MB (forward-+backward)

‘ conv-512

| maxpool number of learnable parameters: 138 million
FCa0%6 » almost all in fully-connected part

» quiz: one single layer is responsible for 100 millions parameters.
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Fully-convolutional networks

Common structure for image classification networks, including AlexNet and VGG:
first: some convolutional and local pooling layers
> weight are convolution kernels, W € RE*XC*C" (1d) or W € REXEXCXC" (2d)
— not restricted to a specific input size, number of channels must be fixed
> parametrizes a function

¢ s RWXHX3 _y LI x| F7=) <07 for (almost) any choice of W, H

then: some fully connected layers
> weight are fixed size, W € R"™*"™+1
— input and output must have specific number of neurons
» parametrizes a function

W—aJXLH

c: R ToIXCT _y Rrowr for a single choice of W, H
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Fully-convolutional networks

Common structure for image classification networks, including AlexNet and VGG:
first: some convolutional and local pooling layers
> weight are convolution kernels, W € RE*XC*C" (1d) or W € REXEXCXC" (2d)
— not restricted to a specific input size, number of channels must be fixed
> parametrizes a function

¢ s RWXHX3 _y LI x| F7=) <07 for (almost) any choice of W, H

then: some fully connected layers
> weight are fixed size, W € R"™*"™+1
— input and output must have specific number of neurons
» parametrizes a function

W-—a H—c

¢ RUTFHIXLTTEIXCT _y mitous for a single choice of W, H

What, if there were no fully connected layers at the end, only convolutional ones?
arbitrary input sizes possible, output size would vary depending on input size

""Fully-convolutional' networks
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Example: Image Segmentation
pixel-wise softmax activation

Conv argmax
—

Scores: Predictions:
CxHxW HxW

Convolutions:
DxHxW

Fully-convolutional network without spatial pooling:

can provide per-pixel segmentations for images of arbitrary sizes W x H x 3
disadvantages: for good quality, at least one of the following is needed:
> very large convolution kernel sizes
> very many layers
26 / 68
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K size of convolution kernel



Example: Image Segmentation

Med-res:
[I'}2 x HI2 x W/2

Low-res:

I:l':q x Hi4 x W/4
Input: High-res: Predictions:

3xHxW DTxHxW Low-res: H/4 x W/4

Fully-convolutional network without spatial pooling:
more efficient, because field of view grows much quicker

disadvantages: output is lower-resolution than input
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Example: Image Segmentation

Med-res: Med-res:
D, x H/2 x Wr2 D, x H/2 x Wi2

Low-res:
D3 x H/4 x W/i4

Input: High-res: High-res: Predictions:
3xHxW D, x HxW D, xHxW Hx W

Fully-convolutional network with downscaling (spatial pooling) and upscaling
efficient: reasonable depth and kernel size, reasonably small intermediate layers

high quality: wide field of view
What's the "upscaling" part?
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Image Upscaling
Nearest Neighbor Bilinear Scaling

11122 10 | 12| 17 | 20
112 111122 10 | 20 2x 15|17 | 22| 25
3 4 31 3|4 4 30 | 40 25 | 27| 32 | 35
313|144 30| 32| 37| 40
Input: 2 x 2 Output: 4 x 4 Input: 2 x 2 Output: 4 x 4
duplicate pixel values bilinear interpolation
efficient, no parameters efficient, no parameters
output looks blocky output looks washed out
— better after one more convolution — better after one more convolution

Images: https://towardsdatascience.com/transposed-convolution-demystified-84ca81b4baba
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Image Upscaling

Transpose Convolution (=de-comvetttion) < misnomer

Input Kernel Output
0O o1 ol0]1
011 011
=|0]0 + 213 |+|0]2 + 0|3|=|0]4]|6
213 213
4|6 619 4 112 9

linear operation: output is sum of kernel multiplied with input values

kernel entries can be learned
output looks better than nearest or bilinear, but sometimes shows some regular artifacts

formula in matrix notation looks like transpose of a convolution operation

Images: https://towardsdatascience.com/transposed-convolution-demystified-84ca81b4baba
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Converting Fully-Connected into Convolutional Layers

An n;, — ngy fully-connected layer is equivalent to a convolutional one with kernel size 1
(or 1 x 1), but C" = n;;, input channels and C' = n,,; output channels:

Fully-Connected equivalent ("'1 x 1'"") convolution

1

1-1

units are neurons of a layer

fori=1,...,N0u:
Nin

'l = > wli, jla' " [j]
j=1

O,

1-1

units are channels of a single neuron n
forc=1,...,C:

y'lndl=) ] wl & da" i

c=1
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Converting Fully-Connected into Convolutional Layers

An n;, — ngy fully-connected layer is equivalent to a convolutional one with kernel size 1
(or 1 x 1), but C" = n;;, input channels and C' = n,,; output channels:

Fully-Connected equivalent ("'1 x 1'"") convolution

N
1 1 0,

1-1 1-1

] units are channels of a single neuron n
units are neurons of a layer

) forc=1,...,C:
fori=1,...,N0u: 5
Nin l / / -1
. C a1 n,c| = w| ¢, cla’ [n;e
il = 3 wli, a1 in el =3, ) ullie, da™nid
=1

in a bigger layer, each neuron is

processed separately 32/ 68



Image Segmentation

Convolutional Encoder-Decoder

Al

RGE Image

Segmentation

® Conv +RelU ® Pooling ® Upsampling Softmax

In image segmentation, pixel-precise outputs can be important, e.g. road markings.

This is a problem for wide-narrow-wide (encoder-decoder) architectures, because all
information from high-res input to high-res output has to flow through low-res intermediate
layers.
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Image Segmentation

Convolutional Encoder-Decoder

Al

RGE Image Segmentation

® Conv +RelU ® Pooling ® Upsampling Softmax

In image segmentation, pixel-precise outputs can be important, e.g. road markings.

This is a problem for wide-narrow-wide (encoder-decoder) architectures, because all
information from high-res input to high-res output has to flow through low-res intermediate
layers.

Solution: introduce skip connection, directly from early to late layers of same resolution.

Image: Abhishek Kumar, https://medium.com/abhishekkakiak/semantic-segmentation-segnet-a54af19b6d6 33 /68



19373 citations as

Net [Ronneberger, : Convolutional Networks for Biomedical Image Segmentation', MICCAI 2015] — of 06/11/2020

Originally introduced for biological

Lo image analysis, now also popular
2 6 a2 elsewhere.
_input output
IMage | o *|*|* segmentation
tle 3l e 44 map
g EEE
' 128 128
256 128
' 256 256 512 256 t
o Y ':I':I =»conv 3x3, ReLU
S “TpS S copy and crop
512 1024 512
3 § max pool 2x2
-] 4 up-conv 2x2
> i = conv 1x1
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Residual Networks

Long-range skip connections provide short-cuts from early to late layers.

Advantage in forward pass:
information from early layers doesn't arrive "washed out" at later layers
reduced risk of "vanishing signal" effect

Advantage in backwards pass:
early layers get more direct gradient signal from loss layer

reduced risk of "vanishing gradient" effect

These advantage are not specific to image segmentation. Other applications can benefit.

Connections do not even have to be long-range. Short-range skip connections are also useful.
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Residual Networks

Residual blocks are a re-interpretation of short-range skip connections.

Skip Connection

—| layer —

output is connected to input by
computational layer
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Residual Networks
Residual blocks are a re-interpretation of short-range skip connections.

Skip Connection

skip connection

layer

output is connected to input by
computational layer

skip connection provides shortcut
that just copies values

result of layer and shortcut are added
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Residual Networks

Residual blocks are a re-interpretation of short-range skip connections.

Skip Connection Residual block

skip connection
layer —'

layer identity map®
output is connected to input by output is connected to input by
computational layer identity function
skip connection provides shortcut computational layer can provide
that just copies values correction term
result of layer and shortcut are added result of identity and layer are added
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Residual Networks [He, Zhang, Ren, Sun. "Deep Residual Learning for Image Recognition™, CVPR 2016] — 60052 citations as of 06/11/2020

Puzzling observation:

increasing the number of layers of a
ConvNet (18 to 34) does not lead to
lower training error

puzzling, because the deeper model
can encode stricly more functions.
For example, extra layers could just
learn the identity function.

note: this is different from
overfitting, which would be a
statement about the test error

possible reason: optimization is
harder for deeper network

60

30

plain-18
—plain-34

200

10

20 30 40 50
iter. (1e4)
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Residual Networks [He, zhang, Ren, Sun. "Deep Residual Learning for Image Recognition”, CVPR 2016] — 60052 citations as of 06/11/2020

Analysis: it's hard for a network layer h;(x) = Wz to learn an identity function (W; = Id)
when initialized with random W; =~ 0.
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Residual Networks [He, zhang, Ren, Sun. "Deep Residual Learning for Image Recognition”, CVPR 2016] — 60052 citations as of 06/11/2020

Analysis: it's hard for a network layer h;(x) = Wz to learn an identity function (W; = Id)
when initialized with random W; =~ 0.

Specific choice slightly more complex:

X
Solution: .
make the identity function explicit ide’;my
hi(z) =z + Wiz Fx)+x @
Wiz acts only as a correction term "Residual Block"

initializing W; =~ 0 is fine
If input-output dimensions not the same,
use linear Wiz instead of identity x in the
shortcut.
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Residual

Networks [He, Zhang, Ren, Sun. "Deep Residual Learning for Image Recognition", CVPR 2016] — 60052 citations as of 06/11/2020

S
40- - - - - - - —— - 5

34-layer ©

AYAVIA
30 _________________________ = -
plain-18 ResNet-18 WA AN,
—plain-34 —ResNet-34 34-layer
2GO 10 20 30 40 50 200 10 20 30 40 50
iter. (le4) iter. (le4)

Observation: with residual blocks (ResNets)

optimization becomes easier
deeper networks achieve smaller training error (and test error)

to drive home its point, paper trains a 1202-layer network (but that overfits)
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22093 citations

BatchNorm [loffe, Szegedy. "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift". 2015] 06,/11/2020

Unusual but popular layer type that helps with optimization. Assume SGD training with mini
batches of size B. Batch normalization (BatchNorm, BN) acts on all examples of a mini
batch jointly, but independently on each input/output dimension.

Batch Normalization Layer — Training Time

BN performs a linear scale-
and-shift normalization of
each input dimension

input z1,...,zpg with each z; € R: mini batch of inputs
input ¢: small constant, e.g. ¢ = 1078

input ~: scaling parameter < trainable

input [: shift parameters < trainable Any batch of examples is
transformed to have compa-

1 <~B .
— > 2w mini-batch mean .
,u2 3121791 ! 9 _ ) rable output distribution
0% 5 yim1 (T — ) mini-batch variance _ _ R
fori=1 B do intermediate Zs have
=1,...,
2 Iﬁégﬁe normalization mean = 0, std.dev. 1
Y & v B scale and shift output ys have learned
end for mean (3, std.dev.

output y1,...,yp with each y; € R: mini batch of outputs
40/ 68



22093 citations

BatchNorm [loffe, Szegedy. "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift". 2015] 06/11,/2020
Advantages: including BN layers
stabilizes training, e.g. smoother objective function
Batch Normalization Layer allows larger learning rates — faster convergence

— Prediction Time

enables training with sigmoid activations
Same as at training time, but:

TEET SEl VAR EE ST M Disadvantages: in practice

estimated from mini batch, BN only works with large enough batch sizes
but precomputed averages it's annoying having to compute p and o at training
from training set are used time and storing it to be used at prediction time

it's error prone to have a layer behave differently

Prediction-ti BN li
reciction-time appiies 4 during training than during prediction time

fixed linear transformation
< can be absorbed by next layer  Discussion:
weights original paper argues with "internal covariate shift"
later analyses pretty much refutes this
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Deep Learning: Other Architectures
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Sequence-to-Sequence Models

input: sequence of symbols, e.g. natural language text
output: sequence of symbols, e.g. natural language text

methods: recurrent neural networks (RNNs) or transformer networks

Deep Generative Models

input: a small amount of information, or even none
output: complex output, e.g. an image or natural language text

methods: variational autoencoder (VAE) or generative adversarial networks (GANs)

Graph Classification or Labelings

input: a graph
output: per-graph or per-node labels
method: graph neural networks (GNNSs) or graph convolutional networks (GCNs)
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Deep Learning: Sequence-to-Sequence Models
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e DeepL Translator  Linguee A Llogin  —

Translate from German v Translate into English (US) v Glossary
Osterreich bewegt sich auf 10'000 gemeldete Austria is moving towards 10'000 reported cases
Falle pro Tag zu. Da nur wenige von uns auf dem per day. Since only a few of us live on campus,
Campus leben, stellt unser Institut ein offenes our institute represents an open system. For this
System dar. Aus diesem Grund ist es statistisch reason it is statistically probable that we have to
wahrscheinlich, dass wir am Campus mit einem expect one reported case per day on campus.
gemeldeten Fall pro Tag rechnen mussen. Unser Our main goal is to maintain the central research
Hauptziel ist es, die zentralen R activities. To achieve this goal, it is crucial to keep
Forschungsaktivitaten aufrechtzuerhalten. Um the transmission of the virus inside and outside
dieses Ziel zu erreichen, ist es entscheidend, die the campus as low as possible.

Ubertragung des Virus innerhalb und auBerhalb
des Campus so gering wie moglich zu halten.

-
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e DeeplL Translator  Linguee A Login =

Translate from German v Translate into English (US) v Glossary
LAustria is moving towards 10’000 reported cases Austria is moving towards 10'000 reported cases
per day. With only few of us living on campus our per day. Since only a few of us live on campus,
institute is an open system. Thus, it is statistically our institute represents an open system. For this
likely that we will encounter one case per day at reason it is statistically probable that we have to
the institute. Our main goal is to maintain the expect one reported case per day on campus.
central research activities. To achieve this goal it Our main goal is to maintain the central research
is vital to keep on-campus and off-campus (a) activities. To achieve this goal, it is crucial to keep
transmission as low as possible. the transmission of the virus inside and outside

the campus as low as possible.
IST Austria's English version
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Recurrent Neurons

Recurrent neurons implement feedback.

In each time step, ¢, a neuron A produces two outputs
prediction hy = Ap(z¢, 2¢-1)
state vector z; = A, (x4, 2¢—1)

and it consumes two inputs:
ordinary input: x¢, e.g. from a previous layer

its own state vector z;_1 from one time step earlier

(with 29 = 0)
Result:
for an input sequence z1,..., 27
output: predictions hy, ..., hp with hy = h(z1,...,2¢),

i.e. each output h; depends not only on A; but on the
complete sequence of inputs so far

&> @
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Training Recurrent Neural Networks

Given all inputs z1, ...,z and target outputs y1,...,yr. How to train this?

imagine to "unroll" the feedback loop
one "ordinary" neuron per time step arranged in a sequence
all neurons have shared weights

supervised training using backpropagation

(h)
re=n

v

v

®  ®
r 1
A -l A
& & -

Backpropagation through time (BPTT)

@—>—®

v

@—>—@
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Recurrent Neural Networks

More complex variant of the vanilla recurrent neuron:
LSTMs: each neuron has a memory cell and switches for read/write/erase

GRUs: simplified LSTM neuron, no memory but some switching behavior

Extensions of the vanilla recurrent neural network architecture:
encoder-decoder architecture:

» encoder networks reads all inputs and transforms them inputs into a state vector
» decoder inputs the state vector and outputs a sequence of predictions

attention mechanism assign time-dependent weights to different parts of the inputs

beam search: predict multiple possible outputs at each time step instead of single one

Most recent trend:

transformer networks: forget about recurrence etc., just use attention
[Vaswani et al., "Attention Is All You Need", NeurlPS 2017] — 13955 citations as of 07/11/2020

e.g., at the core of powerful language models, e.g. GPT-3 nttps://en.wikipedia. org/uiki/cpT-3
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Deep Learning: Deep Generative Models
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Deep Generative Models

Traditional predictive models

x € X: complex input, e.g. an image, h(zx) € Y: simple output, e.g. a label

(Deep) generative models:

x € X: any or no input, h(z) € Y: complex output, e.g. a natural image

None of these people exist, the images are outputs of a Generative Adversarial Network (GAN).
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o a 11495 citati
Variational Autoencoders (VAES) [Kingma, Weliing. i

""Auto-Encoding Variational Bayes", ICLR 2013] — a5 0f 10/11/2020

Reconstructed
Input <--- oo Ideally they are identical. ------------------ inpur
x~x
Bottleneck!

Encoder Decoder
X |——» > > . x/
9¢ fo

An compressed low dimensional
representation of the input.

: . d decod
encoder-decoder architecture: (large) input "X (small) code ““X" output
trained by auto-encoding £ = ||input — output||? + regularizer

produce new outputs by decoding a randomly produced code

Image: https://medium.com /iitg-ai/variational-autoencoders-c780c4acaf4f



24566 citations

Generative Adversarial Networks (GANS) [Goodfellow et al. “Generative adversarial nets", NeurlPS 2014] — as of 10/11/2020

Real faces

Discriminator Fake

Generator

| > > XX

NSNS

Random noise

Real

Generated faces

generator-discriminator architecture:
» generator: a decoder-type network that transform random codes into outputs (e.g. images)
» discriminator: a classifier that tries to distinguished between real and generated data

generator and discriminator networks are trained jointly (competing with each other)
after training, discard discriminator, decoder produces new outputs

Image: https://medium.com/sigmoid/a-brief-introduction-to-gans-and-how-to-code-them-2620ee465c30 52/68



Deep Learning: Graph Models
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Graph Neural Networks (GNNs)

Task: graph classification
input: input data x1,...,x, € X, where each z; = (V;, E;) is a graph
output: label y1,...,yn, e.g. "Is molecule x toxic?"

Naive Method:
transform z € X into a feature representation ¢(x) € RP
train a neuron network on dataset {(¢(x1),y1),...,(¢(xn),yn)}

Example (DeepTox [Mayr et al., "DeepTox: Toxicity Prediction using Deep Learning", Frontiers in Environmental Science 2016])

Large number of (often sparse) features from the literature:
presence or absence of a library of substructures
molecular weight,
charge descriptors,
geometric descriptors, ...

Architecture and hyperparameters chosen by extensive model selection.
54 /68



Graph Convolutional Networks (GCNs)

Task: node classification from training data {(z', y') dots (™, y™)} with
each 2t = (V*, E*) is a graph
» assume that each node VJz has an attribute vector (b;» € RP attached to it
» for any graph z*, let A; € R™*™ be its adjacency matrix

each y; € {1,..., K}V" is a labeling of the nodes in z;

Method:
define a neural network with layers

cRmixni cR™i %M1 crd—1%d
= —~

~ =~ . .
H(z))=0o( A  H™ Wl ) e Ruxd with HO =& = (¢}),_; v

» A; = D' A; with D; = diag(d}, ..., d}") for d; = >_; aij (normalized adjacency matrix )
» W, are learnable weights

A; term propagates information between adjacent nodes in graph
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Deep Learning: Summary

Viewpoint 1: Deep Learning is the present and the future of Al.

Regardless of the hype, deep learning has catapulted machine learning to the next level of
usefulness and societal relevance. So far, there is no end in sight to its success.

Viewpoint 2: Deep Learning is nothing special.

Deep learning is simply a specific choice of hypothesis class that allows learning a classifier
and a feature mapping together.

Viewpoint 3: Deep Learning is a powerful tool.

Many research areas have adopted deep learning into their toolboxes for solving problems of
actual interest, let it be computer graphics, bio-imaging, computational physics, or others.

Viewpoint 4: Deep Learning will not be the final answer.

Relevant open questions, such as determining cause vs. effect, or learning on quantum
computers, are not solved by deep learning and will probably require other techniques.
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Significance of Results

5. Experiments

— Visual words (SIFT)
—Gist

In this section we present experiments for indoor scene
recognition performed on the dataset described in section
2. We show that the model and representation proposed
in this paper give significant improvement over a state of

—— Raw RGB image

Percent correct
3

20%

Average Precision

. - . - 0 ~

Ihg art an)del for thls task. We also perform experiments e S PEFiEZEEGELE -

using different versions of our model and compare manual 252 2523 8 2 % %35 é g, % GstSW - Rol ROL OGSt  ROISGit
) . ) 323 B 2 i E] Seqmentation Amotaton Segmentation Amnolation

segmentations to segmentations obtained by running a seg- EZ = 2g LR ¥

mentation algorithm = g Figure 6. Multiclass average precision performance for the base-

Tine and four different versions of our model.

How to tell if reported differences are due to chance?
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Significance of Results

5. Experiments

— Visual words (SIFT)
—Gist

In this section we present experiments for indoor scene
recognition performed on the dataset described in section
2. We show that the model and representation proposed
in this paper give significant improvement over a state of
the art model for this task. We also perform experiments

—— Raw RGB image

20%

Average Precision

. . . gg.53§§5;;gg5555 154
using different versions of our model and compare manual 25t E5L% H H g ] é §,, ] Gist SV
) . ) 393 B 2 E F]
segmentations to segmentations obtained by running a seg- £ g = 2 § £5E
mentation algorithm. °

Figure 6. Multiclass average precision performance for the base-
line and four different versions of our model

ROI ROI ROIGist  ROI+Gist
Segmentation  Annotation Segmentation  Annotation

How to tell if reported differences are due to chance?

Accuracy on a Single Dataset
two-sample significance tests

paired significance tests

Multiple Datasets

non-parametric paired significance tests
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Test on a Single Dataset

Classification rate (%)

Proposed Proposed
method |method with CA

99.00 99.50

Two classifiers are evaluated on the same test set.
classifier 1 has error rate e; € [0, 1]
classifier 2 has error rate ez € [0, 1]

Are these significantly different, or due to chance?
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Test on a Single Dataset

Classification rate (%)

Proposed Proposed
method |method with CA

99.00 99.50

Two classifiers are evaluated on the same test set.
classifier 1 has error rate e; € [0, 1]
classifier 2 has error rate ez € [0, 1]

Are these significantly different, or due to chance?

Impossible to say (or even estimate), unless we know how many test samples!

How many examples do you guess?
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Test on a Single Dataset

| | Classification rate (%)
Number of samples

(training) Proposed

method

Proposed
method with CA

10K (FT) 900 (100)

Two classifiers are evaluated on the same test set.
classifier 1 has error rate e; € [0, 1]
classifier 2 has error rate ez € [0, 1]

Are these significantly different, or due to chance?

Impossible to say (or even estimate), unless we know how many test samples!

How many examples do you guess? Okay, that's a start...
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true error rate of classifier f is p € [0,1] — Bernoulli variable

estimate from m test samples: p = % Soillf(zi) # il

variance of estimate from m test samples: V = %ﬁ(l - D)
p(1—p)

report mean =+ standard error of the mean: p + /=~

Classification rate (%)
N Number of samples
ame (training) Proposed Proposed
method  |method with CA
10K (FT) 500 (100) 99.00 59.50
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true error rate of classifier f is p € [0,1] — Bernoulli variable

estimate from m test samples: p = % Soillf(zi) # il

variance of estimate from m test samples: V = %ﬁ(l - D)
p(1—p)

report mean =+ standard error of the mean: p + /=~

Classification rate (%)

Number of samples
(training) Proposed Proposed
method  |method with CA

10K (FT) 500 (100) 99.00+033| 99.50+0.24

Name

Not particularly convincing... better than nothing, but also not a proper test of significance.
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Significance testing

Procedure:
state the target hypothesis and the null hypothesis
» H: "method A and method B differ in quality"
» Hjy: "method A and method B are equally good"

compute the p-value and interpret it

Definition (p-value)

The p-value is the probability of obtaining a test result at least as extreme as the results
actually observed, under the assumption that the null hypothesis is correct.
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Significance testing

Procedure:
state the target hypothesis and the null hypothesis
» H: "method A and method B differ in quality"
» Hjy: "method A and method B are equally good"
compute the p-value and interpret it

Definition (p-value)

The p-value is the probability of obtaining a test result at least as extreme as the results
actually observed, under the assumption that the null hypothesis is correct.

Observation: even for difficult setting the p-value can often be computed because it
conditions on the null hypothesis being correct.

Example

For n = 800 samples, we observe that method A makes n4 = 8 mistakes (99% accuracy)
and method B make np = 4 mistakes (99.5% accuracy). If both methods were equally

good, what's the probability of observing this outcome, or an even more extreme one?
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Paired test

For a sequence of experiments we always observe two sets of outcomes A, B. Are the
differences between them due to chance?

g is right | g is wrong
2 x 2 contingency table: [ fis right a b
f is wrong c d

binomial test: ignore a and d, analyze b and c.
null hypothesis: f and g are equally good. we'd expect b =~ ¢
probability of seeing (b, ¢) split or more extreme in b + ¢ differences:

1 min(b,c) btoe
p-value = 2% Z ;
=0

scipy.stats.binom_test( min(b,c), n=b+c )
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Paired test
For a sequence of experiments we always observe two sets of outcomes A, B. Are the
differences between them due to chance?

g is right | g is wrong
2 x 2 contingency table: [ fis right a b
f is wrong c d

binomial test: ignore a and d, analyze b and c.
null hypothesis: f and g are equally good. we'd expect b =~ ¢
probability of seeing (b, ¢) split or more extreme in b + ¢ differences:

1 min(b,c) btoe
p-value = 2% Z ;

1=0
scipy.stats.binom_test( min(b,c), n=b+c )
792 | O 787 | 5 8920 0 8875 | 40
Exam p|e: 4 4 9 0 40 40 80 0

p=0.125 p~039 p~10~2 p~0.0003
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Significance Using Multiple Datasets

Standard procedure in Machine Learning research:

develop a new method

compare it to results of previous methods on standard benchmarks

| [ HCRF | Our |
SIFT-flow 31.22% | 27.73%
MSRC-21 78.89% | 8L11%
VOC 2008 | 20.13 % | 30.12%
VOC 2009 | 4243 % | 43.37%
VOC 2010 | 30.13 % | 32.14%
Are the differences just due to chance?
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| [ HCRF | Our |
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VOC 2008 | 20.13 % | 30.12%
VOC 2009 | 4243 % | 43.37%
VOC 2010 | 30.13 % | 32.14%
Are the differences just due to chance?

Idea 1: mean/std.err.: 40.6 +20.4 vs. 42.9 +£19.8



Significance Using Multiple Datasets

Standard procedure in Machine Learning research:

develop a new method

compare it to results of previous methods on standard benchmarks

| BIELE0. 0 FEL T "HCRF" method is better
SIFT-flow 31.22% | 27.73% 8
MSRC-21 | 7889% | 8L.11% "Our" method is better
VOC 2008 | 20.13 % | 30.12% both methods are equal
VOC 2009 | 4243 % | 43.37%
VOC 2010 | 30.13 % | 32.14%
Are the differences just due to chance?

Idea 1: mean/std.err.: 40.6 +20.4 vs. 42.9 +£19.8

Idea 2: sign test (like binomial before): binom_test(1,5)=0.375




Significance Using Multiple Datasets

Standard procedure in Machine Learning research:

develop a new method

compare it to results of previous methods on standard benchmarks

| BIELE0. 0 FEL T "HCRF" method is better
SIFT-flow 31.22% | 27.73% 8
MSRC-21 | 7889% | 8L.11% "Our" method is better
VOC 2008 | 20.13 % | 30.12% both methods are equal
VOC 2009 | 4243 % | 43.37%
VOC 2010 | 30.13 % | 32.14%
Are the differences just due to chance?

Idea 1: mean/std.err.: 40.6 +20.4 vs. 42.9 +£19.8

Idea 2: sign test (like binomial before): binom_test(1,5)=0.375

Idea 3: take differences into account, not just the sign
» Hj: differences have a symmetric distribution around zero




Wilcoxon signed rank test

Given: real values aq,...,a,, and by,..., by
drop all cases with a; = b;, call remaining points ai,...,ax and by,...,b; again
compute 0; = |a; — b;| and s; = sign(a; — b;) fori =1,... .k

sort elements from smallest to larges 9;
compute rank, R;, of each §;, ties get average of covered ranks

compute statistics (sum of signed ranks)

k
W = Z SiRi
i=1

compare value to table, Weitical 1 (large k: Gaussian approximation)

"HCRF" vs. "Our" example (5 datasets):
A=[31.22[7889]20.13 ] 4243 [30.13 | B= 27.73 | 81.11 | 30.12 [ 43.37 [ 32.14 |
scipy.stats.wilcoxon( A, B ) = 0.35
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Wilcoxon signed rank test

Given: real values a1, ..

., @y, for method A, and by, ..

dataset | A [%] | B [%] | abs.diff | sign
1 99.50 | 99.00 0.50 +
2 99.25 | 100.00 0.75 —
3 98.25 | 99.88 1.63 —
4 97.50 | 96.75 0.75 +
5 94.00 | 97.00 3.00 —
6 99.75 | 98.38 1.37 +
7 94.25 | 97.50 3.25 —
8 97.00 | 98.25 1.25 —
9 95.13 | 99.63 4.50 —
10 93.75 | 99.75 6.00 —
11 94.13 | 99.00 4.87 —
12 95.75 | 98.75 3.00 —

., by, for method B

Mean/std.dev.:

a: 96.5+2.14
b: 98.6 =£1.20
Sign test:
ai<bi ai:bi ai>bz-
9 0 3

binom_test(3,12) =~ 0.146

Signed rank test:
wilcoxon(A,B) ~ 0.017
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REPRODUCIBILITY

Statisticians issue
warning on Pvalues

Statement aims to halt missteps in the quest for certainty.

BY MONYA BAKER

isuse of the P value — a common
test for judging the strength of sci-
entific evidence — is contributing

to the number of research findings that cannot
be reproduced, the American Statistical Asso-
ciation (ASA) warned on 8 March. The group
has taken the unusual step of issuing principles
to guide use of the P value, which it says can-
not determine whether a hypothesis is true or
whether results are important.

cannot indicate the importance of a finding;
for instance, a drug can have a statistically sig-
nificant effect on patients’ blood glucose levels
without having a therapeutic effect.

Giovanni Parmigiani, a biostatistician at the
Dana Farber Cancer Institute in Boston, Mas-
sachusetts, says that misunderstandings about
what information a P value provides often crop
up in textbooks and practice manuals. A course
correction is long overdue, he adds. “Surely if
this happened twenty years ago, biomedical
research could be in a better place now.”

Sources: Nature doi:10.1038/nature.2016.19503; xkcd.com

Use and read p-values with care

p-VALE  INTERPRETATION
0,001

0ol HIGHLY SIGNIFICANT
0.02

0.03

0.04

00 %}—acmrm:r
0.050_3— CALCULATONS
0051 ]_ON THE EDGE

006 OF SIGNIFICANCE.
007 | HiGHLY SUGGESTIVE,

0.08 SIGNIFICANT” AT THE
0.07 P<0.I0 LEVEL

0.097 4 Hey, LOOK

s
>0.] TS INTERESTING
SUBGROUP ANALY51S

67 /68



Multiple Tests

= =) :2“ Often, we want to compare with more than one other method.
PASCAL || © -1 - . . . . gy
vocanz | & HE| £ simply making many pairwise comparisons will increase
val set jj = . . . .pe .
= =% | & risk of some coming up as significant just by chance
background T7.2|82.2 . .
seroplane -als1.7  Bonferroni correction:
sike 3.4 |26.0
b 2.4j60-4 target level: o, e.g. 0.05
oat 20.6
bottle 9 (45.6 H
- fros number of comparisons K, e.g. 5
AT 1.1163.2 .
o o s make each test with level a/K, e.g. 0.01
chair 2.7(20.9
oW .7(52.9 . .
diningtable Jsns Overall by union bound:
dog 9162.8
horse .1]56.8 . L.
motorbike 2(63.5 Pr{at least one tests 1,..., K is a false positive}
person r957.0
plant 28.3 [32.2 K K
sheep 44.0 60.6 < Pr Z {test k is a false positive} < Pr Z &
sofa 1132.3 — P = K =«
train 7.6 448 k=1 k=1
i 35.0(42.3
average ||32.27(33.6|33.8(35.37| 36.6|50.7
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