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Overview (tentative)

Date no. Topic
Oct 05 Mon 1 A Hands-On Introduction
Oct 07 Wed 2 Bayesian Decision Theory, Generative Probabilistic Models
Oct 12 Mon 3 Discriminative Probabilistic Models
Oct 14 Wed 4 Maximum Margin Classifiers, Generalized Linear Models
Oct 19 Mon 5 Estimators; Overfitting/Underfitting, Regularization, Model Selection
Oct 21 Wed 6 Bias/Fairness, Domain Adaptation
Oct 26 Mon - no lecture (public holiday)
Oct 28 Wed 7 Learning Theory I, Concentration of Measure
Nov 02 Mon 8 Learning Theory II
Nov 04 Wed 9 Learning Theory III, Deep Learning I
Nov 09 Mon 10 Deep Learning II
Nov 11 Wed 11 Deep Learning III
Nov 16 Mon 12 project presentations
Nov 18 Wed 13 buffer
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Convolutional (Neural) Networks – CNNs, ConvNets
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Example: Image Classification

One of the most popular benchmark tasks where Deep Networks excel is image classification,
ImageNet Large Scale Visual
Recognition Challenge
(ILSVRC):
• 1.2 million train images
• 1000 object categories
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Example: Image Classification

Example
Image Classification
• input X ⊂ R150528: RGB images at resolution 224× 224 (224× 224× 3 = 150528)
• output Y = {1, . . . ,K} with K = 1000 object categories

What models can we build?
• linear model: h(x) = Wx with W ∈ R1000×150528

→ ≈150,000,000 parameters, 600MB RAM
• network with 1 hidden layer of size 150528: h(x) = W2σ(W1x) W1 ∈ R150528×150528

→ ≈22,000,000,000 parameters, 88GB RAM
• deep network with 50 hidden layer of size 150528
→ > 1 trillion parameters, 4 TB RAM

For high-dimensional inputs, such as images, the number of parameters quickly gets
excessively large. One has to, either
• make hidden layers very narrow, or think of something else. 5 / 68



Receptive Field

Weight matrices are so big, because every neuron in layer l + 1 is connected to every neuron
in layer l:

Fully-Connected Layer

• dense W ∈ Rdout×din , → here: 5× 6 = 30 entries
• if we increase width of all layers, number of free parameters grows quadratically

6 / 68



Receptive Field

Weight matrices are much smaller, if every neuron in layer l + 1 is connected only to subset
of neurons in layer l:

Example: Layers with Restricted Receptive Field (1D)

• sparse W ∈ Rdout × din with at most k non-zero entries at fixed positions per row
→ here k = 2: 5× 2 = 10 entries
• if we increase width of all layers (but keep k fixed), number of free parameters grows
linearly
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Receptive Field

For multi-dimensional inputs, e.g. images, neuron are connected locally:

Example: Layers with Restricted Receptive Field (2D)

Many properties of images are local, and a small receptive field suffices to identify them:
• is this region bright or dark?
• is this region a smooth or rough region?
• is there a vertical/horizontal/diagonal line here?
• is there a corner here?
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Receptive Field

For multi-dimensional inputs, e.g. images, neuron are connected locally:

Example: Layers with Restricted Receptive Field (2D)

Later layers can combine local information from previous layers:
• is there a corner? check for a vertical line next to a horizontal line
• is there a stop sign? find eight red matching corners
• etc.
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Weight Sharing

Example property: for each 3× 3 region, is there a vertical line here?
• W = (w1, w2, w3, w4) ∈ R4×(3×3)

• w1 = w2 = w3 = w4 =

−1 0 1
−1 0 1
−1 0 1

 why learn individual weights at all then?

Weight sharing:
• use same weights for each neuron in layer (they have different receptive fields)
• number of free parameters = size of receptive field: 3× 3 = 9, regardless of dl−1 and dl
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Weight Sharing

With weight sharing, the weight matrix between layer l and layer l + 1 learns learns one local
property for each neuron of layer l + 1, i.e. for all local regions of layer l.

Ultimately, one visual property is not enough, we will need multiple
→ multiple weight matrices for each receptive field → multiple output values for each neuron

e.g. W 1 = "vertical line" e.g. W 2 = smooth/rough e.g. W 3 = dark/bright
(of course, these are just examples, in reality, the network learns W 1,W 2,W 3)
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Convolutional Layers

Example: for 1D data, receptive fields are short intervals

• neuron j in layer l takes as input neurons
(j −K, j −K + 1, . . . , j +K − 1, j +K)
from layer l − 1 and computes

yl[j] =
K∑

k=−K
w[k]al−1[j − k] (1)

with weights w =
(w[−K], w[−K + 1], . . . , w[K]) ∈ R2K+1

j

jj-1 j+1

w-1

w0

w+1

Observation: (1) is a convolution operation between al−1 and ŵ (a flipped version of w)

yl[j] =
K∑

k=−K
w[k]al−1[j − k] = al−1 ∗ ŵ with ŵ[k] = w[−k]

Layers of this type are called convolutional layers with convolution kernel w
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Convolutional Layers

Example (1D data with C output channels)

• al−1 ∈ Rdl−1 w ∈ RK×C al ∈ Rdl×C

yl[j; c] =
K∑

k=−K
w[k; c]al−1[j − k]

l-1

j
jl j

jj-1 j+1

w-1

w0

w+1

j

Example (1D data with C input and C ′ output channels)

• al−1 ∈ Rdl−1×C w ∈ RK×C′×C
al ∈ Rdl×C′

yl[j, c′] =
C∑
c=1

K∑
k=−K

w[k; c′, c]al−1[j − k; c] l-1

j
jl jj

jj-1 j+1

w-1

w0

w+1
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Convolutional Layers

Example (2D data with layers arranged as 2D arrays)

Receptive fields are small (K × L)-rectangular regions:

• neuron (i, j) in layer l takes as input neurons
(i−K, i−K + 1, . . . , i+K − 1, i+K)×
(j − L, j − L+ 1, . . . , j + L− 1, j + L) from
layer l − 1 and computes

ylj =
K∑

k=−K

K∑
l=−L

w[k, l]al−1[i− l, j − k]

for weights (w[k, l])k=−K,...,K
l=−L,...,L
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Convolutional Layers
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Convolutional Layers
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Convolutional Layers: Padding

How to treat boundary cases?

Zero padding

j

jj-1 j+1

w-1

w0

w+1

0 0

Set inputs of "missing" neurons to 0.

"Valid" padding

j

jj-1 j+1

w-1

w0

w+1 Don’t allow neurons where receptive field would
fallside of the input layer
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Convolutional Layers: Layer sizes

Observation: for convolutional layers, we cannot chose their sizes arbitrarily
Zero padding

j

jj-1 j+1

w-1

w0

w+1

0 0

• size of layer l is the same as for layer l − 1
• the number of channels for each layer is arbitrary

"Valid" padding

j

jj-1 j+1

w-1

w0

w+1

• in 1D, for filters size (2K + 1)
nl = nl−1 −K

• in 2D, for filters size (2K + 1)× (2L+ 1)
(n1
l , n

2
l ) = (n1

l−1 −K,n2
l−1 − L)

• the number of channels for each layer is arbitrary
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Convolutional Networks: Pooling Layers

Other ways to combine local information besides convolutions?

Max Pooling

jj-1 j+1

aj aj+1aj-1

max(aj-1,aj,aj+1) Non-linear pooling layer
• input: receptive field, jumps K

neurons each time (="stride")
• output: maximum over all
inputs
• no parameters to learn
• nl ≈ nl−1/K
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Convolutional Networks: Pooling Layers

Other ways to combine local information besides convolutions?

Average Pooling

jj-1 j+1

aj aj+1aj-1

(aj-1+aj+aj+1)/3

Linear pooling layer
• input: receptive field, stride K
• output: maximum over all
inputs
• no parameters to learn
• nl ≈ nl−1/K

19 / 68



Convolutional Networks: Pooling Layers

Other ways to combine local information besides convolutions?

Strided Convolutions

jj-1 j+1

aj aj+1aj-1

w0

w+1w-1

Ordinary convolutional layer
• input: receptive field, stride K
• output: convolution over inputs
• filter kernel to learn
• nl ≈ nl−1/K
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AlexNet [Krizhevsky, Sutskeyer, Hinton. "ImageNet Classification with Deep Convolutional Neural Networks", NeurIPS 2012] —
73063 citations as
of 06/11/2020

The most famous ConvNet in the world:
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VGG – [Simonyan, Zisserman. "Very deep convolutional networks for large-scale image recognition", ICLR 2015] — 46744 citations as of 06/11/2020

The VGG ConvNet architecture was proposed in 2014 by the Oxford Vision Geometry Group.

It quickly became popular for a variety of reasons:
• great performance (in the sense of accuracy) in benchmark tasks
• pre-trained weights were released
• a wow-effect because the network was much deeper than previous ones
• general smart (simple but elegant) architectural choices
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VGG16 Architecture
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VGG16 Architecture

Architecture:
• Input: fixed size 224x224 RGB images
• Convolutional filters: 3x3 receptive field (smallest size that makes sense)
• Max pooling: over 2x2 pixel window with stride 2
• ReLu activation in all hidden layers
• Fully connected layers with 4096 neurons each followed by ReLu
• Output: dimension 1000 (number of ImageNet classes) with softmax activation

Properties:
• memory usage per image: 93MB (forward pass), 186MB (forward+backward)
• number of learnable parameters: 138 million

I almost all in fully-connected part
I quiz: one single layer is responsible for 100 millions parameters. Can you spot it?
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Fully-convolutional networks

Common structure for image classification networks, including AlexNet and VGG:
• first: some convolutional and local pooling layers

I weight are convolution kernels, W ∈ RK×C×C′ (1d) or W ∈ RK×L×C×C′ (2d)
→ not restricted to a specific input size, number of channels must be fixed

I parametrizes a function

φ : RW×H×3 → Rb
W−a

b c×bH−c
d c×C′ for (almost) any choice of W,H

• then: some fully connected layers
I weight are fixed size, W ∈ Rnl×nl+1

→ input and output must have specific number of neurons
I parametrizes a function

c : Rb
W−a

b c×bH−c
d c×C′ → Rnout for a single choice of W,H

What, if there were no fully connected layers at the end, only convolutional ones?
• arbitrary input sizes possible, output size would vary depending on input size

"Fully-convolutional" networks
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Example: Image Segmentation

Fully-convolutional network without spatial pooling:
• can provide per-pixel segmentations for images of arbitrary sizes W ×H × 3
• disadvantages: for good quality, at least one of the following is needed:

I very large convolution kernel sizes
I very many layers
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j

jj-1 j+1

j-1 j+1

jj-1 j+1

j

j-2

j-2j-3 j+2 j+3

j+2

Size of input region that influences an output neuron ("field of view") grows like O(KL),
• K: size of convolution kernel
• L: number of layers

Unless K or L are large, output decisions are based on small subset of input information.
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Example: Image Segmentation

Fully-convolutional network without spatial pooling:
• more efficient, because field of view grows much quicker
• disadvantages: output is lower-resolution than input
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Example: Image Segmentation

Fully-convolutional network with downscaling (spatial pooling) and upscaling
• efficient: reasonable depth and kernel size, reasonably small intermediate layers
• high quality: wide field of view

What’s the "upscaling" part?
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Image Upscaling

Nearest Neighbor

• duplicate pixel values
• efficient, no parameters
• output looks blocky
→ better after one more convolution

Bilinear Scaling

• bilinear interpolation
• efficient, no parameters
• output looks washed out
→ better after one more convolution

Images: https://towardsdatascience.com/transposed-convolution-demystified-84ca81b4baba
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Image Upscaling

Transpose Convolution (=((((((((hhhhhhhhde-convolution) ← misnomer

• linear operation: output is sum of kernel multiplied with input values
• kernel entries can be learned
• output looks better than nearest or bilinear, but sometimes shows some regular artifacts
• formula in matrix notation looks like transpose of a convolution operation

Images: https://towardsdatascience.com/transposed-convolution-demystified-84ca81b4baba
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Converting Fully-Connected into Convolutional Layers

An nin → nout fully-connected layer is equivalent to a convolutional one with kernel size 1
(or 1× 1), but C ′ = nin input channels and C = nout output channels:

Fully-Connected

l-1

l

• units are neurons of a layer
• for i = 1, . . . , nout:

yl[i] =
nin∑
j=1

w[i, j]al−1[j]

equivalent ("1× 1") convolution

l-1

j
jl jj

j

• units are channels of a single neuron n
• for c = 1, . . . , C:

yl[n, c′] =
C∑
c=1

0∑
k=0

w[k;c′, c]al−1[n; c]

• in a bigger layer, each neuron is
processed separately
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Image Segmentation

In image segmentation, pixel-precise outputs can be important, e.g. road markings.
This is a problem for wide-narrow-wide (encoder-decoder) architectures, because all
information from high-res input to high-res output has to flow through low-res intermediate
layers.

Solution: introduce skip connection, directly from early to late layers of same resolution.
Image: Abhishek Kumar, https://medium.com/abhishekkakiak/semantic-segmentation-segnet-a54af19b6d6
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U-Net [Ronneberger, Fischer, Brox. "U-Net: Convolutional Networks for Biomedical Image Segmentation", MICCAI 2015] –
19373 citations as
of 06/11/2020

Originally introduced for biological
image analysis, now also popular
elsewhere.
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Residual Networks

Long-range skip connections provide short-cuts from early to late layers.

Advantage in forward pass:
• information from early layers doesn’t arrive "washed out" at later layers
• reduced risk of "vanishing signal" effect

Advantage in backwards pass:
• early layers get more direct gradient signal from loss layer
• reduced risk of "vanishing gradient" effect

These advantage are not specific to image segmentation. Other applications can benefit.

Connections do not even have to be long-range. Short-range skip connections are also useful.
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Residual Networks

Residual blocks are a re-interpretation of short-range skip connections.

Skip Connection

layer

• output is connected to input by
computational layer

• skip connection provides shortcut
that just copies values
• result of layer and shortcut are added

Residual block

identity map

layer

+

• output is connected to input by
identity function
• computational layer can provide
correction term
• result of identity and layer are added
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Residual Networks [He, Zhang, Ren, Sun. "Deep Residual Learning for Image Recognition", CVPR 2016] – 60052 citations as of 06/11/2020

Puzzling observation:
• increasing the number of layers of a
ConvNet (18 to 34) does not lead to
lower training error

• puzzling, because the deeper model
can encode stricly more functions.
For example, extra layers could just
learn the identity function.

• note: this is different from
overfitting, which would be a
statement about the test error

• possible reason: optimization is
harder for deeper network
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Residual Networks [He, Zhang, Ren, Sun. "Deep Residual Learning for Image Recognition", CVPR 2016] – 60052 citations as of 06/11/2020

Analysis: it’s hard for a network layer hl(x) = Wlx to learn an identity function (Wl = Id)
when initialized with random Wl ≈ 0.

Solution:
• make the identity function explicit

hl(x) = x+Wlx

• Wlx acts only as a correction term
• initializing Wl ≈ 0 is fine

Specific choice slightly more complex:

"Residual Block"

If input-output dimensions not the same,
use linear Wlx instead of identity x in the
shortcut.
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Residual Networks [He, Zhang, Ren, Sun. "Deep Residual Learning for Image Recognition", CVPR 2016] – 60052 citations as of 06/11/2020

Observation: with residual blocks (ResNets)
• optimization becomes easier
• deeper networks achieve smaller training error (and test error)
• to drive home its point, paper trains a 1202-layer network (but that overfits)
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BatchNorm [Ioffe, Szegedy. "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift". 2015]
22093 citations
06/11/2020

Unusual but popular layer type that helps with optimization. Assume SGD training with mini
batches of size B. Batch normalization (BatchNorm, BN) acts on all examples of a mini
batch jointly, but independently on each input/output dimension.

Batch Normalization Layer – Training Time
input x1, . . . , xB with each xi ∈ R: mini batch of inputs
input ε: small constant, e.g. ε = 10−8

input γ: scaling parameter ← trainable
input β: shift parameters ← trainable

µ← 1
B

∑B
i=1 xi mini-batch mean

σ2 ← 1
B

∑B
i=1(xi − µ)2 mini-batch variance

for i = 1, . . . , B do
x̂i ← xi−µ√

σ2+ε normalization
yi ← γx̂i + β scale and shift

end for
output y1, . . . , yB with each yi ∈ R: mini batch of outputs

BN performs a linear scale-
and-shift normalization of
each input dimension

Any batch of examples is
transformed to have compa-
rable output distribution
• intermediate x̂s have
mean = 0, std.dev. 1
• output ys have learned
mean β, std.dev. γ
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BatchNorm [Ioffe, Szegedy. "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift". 2015]
22093 citations
06/11/2020

Batch Normalization Layer
– Prediction Time
Same as at training time, but:
• mean and variance are not
estimated from mini batch,
but precomputed averages
from training set are used

Prediction-time BN applies a
fixed linear transformation
← can be absorbed by next layer
weights

Advantages: including BN layers
• stabilizes training, e.g. smoother objective function
• allows larger learning rates → faster convergence
• enables training with sigmoid activations

Disadvantages: in practice
• BN only works with large enough batch sizes
• it’s annoying having to compute µ and σ at training
time and storing it to be used at prediction time
• it’s error prone to have a layer behave differently
during training than during prediction time

Discussion:
• original paper argues with "internal covariate shift"
• later analyses pretty much refutes this
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Deep Learning: Other Architectures
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Sequence-to-Sequence Models

• input: sequence of symbols, e.g. natural language text
• output: sequence of symbols, e.g. natural language text
• methods: recurrent neural networks (RNNs) or transformer networks

Deep Generative Models

• input: a small amount of information, or even none
• output: complex output, e.g. an image or natural language text
• methods: variational autoencoder (VAE) or generative adversarial networks (GANs)

Graph Classification or Labelings

• input: a graph
• output: per-graph or per-node labels
• method: graph neural networks (GNNs) or graph convolutional networks (GCNs)
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Deep Learning: Sequence-to-Sequence Models

44 / 68



45 / 68



45 / 68



Recurrent Neurons

Recurrent neurons implement feedback.

In each time step, t, a neuron A produces two outputs
• prediction ht = Ah(xt, zt−1)
• state vector zt = Az(xt, zt−1)

and it consumes two inputs:
• ordinary input: xt, e.g. from a previous layer
• its own state vector zt−1 from one time step earlier

(with z0 = 0)

Result:
• for an input sequence x1, . . . , xT

• output: predictions h1, . . . , hT with ht = h(x1, . . . , xt),
i.e. each output ht depends not only on ht but on the
complete sequence of inputs so far
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Training Recurrent Neural Networks

Given all inputs x1, . . . , xT and target outputs y1, . . . , yT . How to train this?
• imagine to "unroll" the feedback loop
• one "ordinary" neuron per time step arranged in a sequence
• all neurons have shared weights
• supervised training using backpropagation

Backpropagation through time (BPTT)
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Recurrent Neural Networks

More complex variant of the vanilla recurrent neuron:
• LSTMs: each neuron has a memory cell and switches for read/write/erase
• GRUs: simplified LSTM neuron, no memory but some switching behavior

Extensions of the vanilla recurrent neural network architecture:
• encoder-decoder architecture:

I encoder networks reads all inputs and transforms them inputs into a state vector
I decoder inputs the state vector and outputs a sequence of predictions

• attention mechanism assign time-dependent weights to different parts of the inputs
• beam search: predict multiple possible outputs at each time step instead of single one

Most recent trend:
• transformer networks: forget about recurrence etc., just use attention

[Vaswani et al ., "Attention Is All You Need", NeurIPS 2017] – 13955 citations as of 07/11/2020

• e.g., at the core of powerful language models, e.g. GPT-3 https://en.wikipedia.org/wiki/GPT-3
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Deep Generative Models

Traditional predictive models
• x ∈ X : complex input, e.g. an image, h(x) ∈ Y: simple output, e.g. a label

(Deep) generative models:
• x ∈ X : any or no input, h(x) ∈ Y: complex output, e.g. a natural image

None of these people exist, the images are outputs of a Generative Adversarial Network (GAN).
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Variational Autoencoders (VAEs) [Kingma, Welling. "Auto-Encoding Variational Bayes", ICLR 2013] —
11495 citations
as of 10/11/2020

• encoder-decoder architecture: (large) input encoder→ (small) code decoder→ output
• trained by auto-encoding L = ‖input− output‖2 + regularizer
• produce new outputs by decoding a randomly produced code

Image: https://medium.com/iitg-ai/variational-autoencoders-c780c4acaf4f 51 / 68



Generative Adversarial Networks (GANs) [Goodfellow et al . "Generative adversarial nets", NeurIPS 2014] —
24566 citations
as of 10/11/2020

• generator-discriminator architecture:
I generator: a decoder-type network that transform random codes into outputs (e.g. images)
I discriminator: a classifier that tries to distinguished between real and generated data

• generator and discriminator networks are trained jointly (competing with each other)
• after training, discard discriminator, decoder produces new outputs

Image: https://medium.com/sigmoid/a-brief-introduction-to-gans-and-how-to-code-them-2620ee465c30
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Graph Neural Networks (GNNs)

Task: graph classification
• input: input data x1, . . . , xn ∈ X , where each xi = (Vi, Ei) is a graph
• output: label y1, . . . , yn, e.g. "Is molecule x toxic?"

Naive Method:
• transform x ∈ X into a feature representation φ(x) ∈ RD
• train a neuron network on dataset {(φ(x1), y1), . . . , (φ(xn), yn)}

Example (DeepTox [Mayr et al ., "DeepTox: Toxicity Prediction using Deep Learning", Frontiers in Environmental Science 2016])

Large number of (often sparse) features from the literature:
• presence or absence of a library of substructures
• molecular weight,
• charge descriptors,
• geometric descriptors, . . .

Architecture and hyperparameters chosen by extensive model selection.
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Graph Convolutional Networks (GCNs)

Task: node classification from training data {(x1, y1) dots (xm, ym)} with
• each xi = (V i, Ei) is a graph

I assume that each node V i
j has an attribute vector φi

j ∈ RD attached to it
I for any graph xi, let Ai ∈ Rni×ni be its adjacency matrix

• each yi ∈ {1, . . . ,K}V
i is a labeling of the nodes in xi

Method:
• define a neural network with layers

H l(xi) = σl(

∈Rni×ni︷︸︸︷
Ãi

∈Rni×dl−1︷ ︸︸ ︷
H l−1
i

∈Rdl−1×dl︷︸︸︷
W l ) ∈ Rni×dl with H0 = Φi = (φij)j=1,...,|V i|

I Ãi = D−1
i Ai with Di = diag(d1

i , . . . , d
ni
i ) for di =

∑
j aij (normalized adjacency matrix )

I Wl are learnable weights
• Ãi term propagates information between adjacent nodes in graph
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Deep Learning: Summary

Viewpoint 1: Deep Learning is the present and the future of AI.
Regardless of the hype, deep learning has catapulted machine learning to the next level of
usefulness and societal relevance. So far, there is no end in sight to its success.

Viewpoint 2: Deep Learning is nothing special.
Deep learning is simply a specific choice of hypothesis class that allows learning a classifier
and a feature mapping together.

Viewpoint 3: Deep Learning is a powerful tool.
Many research areas have adopted deep learning into their toolboxes for solving problems of
actual interest, let it be computer graphics, bio-imaging, computational physics, or others.

Viewpoint 4: Deep Learning will not be the final answer.
Relevant open questions, such as determining cause vs. effect, or learning on quantum
computers, are not solved by deep learning and will probably require other techniques.
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Significance of Results

How to tell if reported differences are due to chance?

Accuracy on a Single Dataset
• two-sample significance tests
• paired significance tests

Multiple Datasets
• non-parametric paired significance tests
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Test on a Single Dataset

Two classifiers are evaluated on the same test set.
• classifier 1 has error rate e1 ∈ [0, 1]
• classifier 2 has error rate e2 ∈ [0, 1]

Are these significantly different, or due to chance?

Impossible to say (or even estimate), unless we know how many test samples!

How many examples do you guess? Okay, that’s a start...
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Error bars

• true error rate of classifier f is p ∈ [0, 1] → Bernoulli variable
• estimate from m test samples: p̂ = 1

m

∑
iJf(xi) 6= yiK

• variance of estimate from m test samples: V = 1
m p̂(1− p̂)

• report mean ± standard error of the mean: p̂±
√

p̂(1−p̂)
m

Not particularly convincing... better than nothing, but also not a proper test of significance.
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Significance testing

Procedure:
• state the target hypothesis and the null hypothesis

I H: "method A and method B differ in quality"
I H0: "method A and method B are equally good"

• compute the p-value and interpret it

Definition (p-value)

The p-value is the probability of obtaining a test result at least as extreme as the results
actually observed, under the assumption that the null hypothesis is correct.

Observation: even for difficult setting the p-value can often be computed because it
conditions on the null hypothesis being correct.

Example
For n = 800 samples, we observe that method A makes nA = 8 mistakes (99% accuracy)
and method B make nB = 4 mistakes (99.5% accuracy). If both methods were equally
good, what’s the probability of observing this outcome, or an even more extreme one?
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Paired test
For a sequence of experiments we always observe two sets of outcomes A,B. Are the
differences between them due to chance?

2× 2 contingency table:
g is right g is wrong

f is right a b
f is wrong c d

binomial test: ignore a and d, analyze b and c.
• null hypothesis: f and g are equally good. we’d expect b ≈ c
• probability of seeing (b, c) split or more extreme in b+ c differences:

p-value = 2 1
2b+c

min(b,c)∑
i=0

(
b+ c

i

)

• scipy.stats.binom_test( min(b,c), n=b+c, p=0.5 )

Example:
792 0
4 4

787 5
9 0

8920 0
40 40

8875 40
80 0

p = 0.125 p ≈ 0.39 p ≈ 10−12 p ≈ 0.0003
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Significance Using Multiple Datasets

Standard procedure in Machine Learning research:
• develop a new method
• compare it to results of previous methods on standard benchmarks

"HCRF" method is better 1
"Our" method is better 4
both methods are equal 0

Are the differences just due to chance?

• Idea 1: mean/std.err.: 40.6± 20.4 vs. 42.9± 19.8

• Idea 2: sign test (like binomial before): binom_test(1,5)=0.375

• Idea 3: take differences into account, not just the sign
I H0: differences have a symmetric distribution around zero
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Wilcoxon signed rank test
Given: real values a1, . . . , am and b1, . . . , bm

• drop all cases with ai = bi, call remaining points a1, . . . , ak and b1, . . . , bk again
• compute δi = |ai − bi| and si = sign(ai − bi) for i = 1, . . . , k
• sort elements from smallest to larges δi
• compute rank, Ri, of each δi, ties get average of covered ranks
• compute statistics (sum of signed ranks)

W =
k∑
i=1

siRi

• compare value to table, Wcritical,k (large k: Gaussian approximation)

"HCRF" vs. "Our" example (5 datasets):
• A = 31.22 78.89 20.13 42.43 30.13 B = 27.73 81.11 30.12 43.37 32.14
• scipy.stats.wilcoxon( A, B ) = 0.35
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Wilcoxon signed rank test

Given: real values a1, . . . , am for method A, and b1, . . . , bm for method B

dataset A [%] B [%] abs.diff sign
1 99.50 99.00 0.50 +
2 99.25 100.00 0.75 −
3 98.25 99.88 1.63 −
4 97.50 96.75 0.75 +
5 94.00 97.00 3.00 −
6 99.75 98.38 1.37 +
7 94.25 97.50 3.25 −
8 97.00 98.25 1.25 −
9 95.13 99.63 4.50 −
10 93.75 99.75 6.00 −
11 94.13 99.00 4.87 −
12 95.75 98.75 3.00 −

Mean/std.dev.:
• a: 96.5± 2.14
• b: 98.6± 1.20

Sign test:

• ai < bi ai = bi ai > bi
9 0 3

• binom_test(3,12) ≈ 0.146

Signed rank test:
• wilcoxon(A,B) ≈ 0.017
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Use and read p-values with care

Sources: Nature doi:10.1038/nature.2016.19503; xkcd.com

67 / 68



Multiple Tests

Often, we want to compare with more than one other method.
• simply making many pairwise comparisons will increase
risk of some coming up as significant just by chance

Bonferroni correction:
• target level: α, e.g. 0.05
• number of comparisons K, e.g. 5
• make each test with level α/K, e.g. 0.01

Overall by union bound:

Pr
{
at least one tests 1, . . . ,K is a false positive

}
≤ Pr

K∑
k=1

{
test k is a false positive

}
≤ Pr

K∑
k=1

α

K
= α
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