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Abstract. Sliding window classifiers are among the most successful and
widely applied techniques for object localization. However, training is
typically done in a way that is not specific to the localization task. First
a binary classifier is trained using a sample of positive and negative ex-
amples, and this classifier is subsequently applied to multiple regions
within test images. We propose instead to treat object localization in a
principled way by posing it as a problem of predicting structured data: we
model the problem not as binary classification, but as the prediction of
the bounding box of objects located in images. The use of a joint-kernel
framework allows us to formulate the training procedure as a general-
ization of an SVM, which can be solved efficiently. We further improve
computational efficiency by using a branch-and-bound strategy for lo-
calization during both training and testing. Experimental evaluation on
the PASCAL VOC and TU Darmstadt datasets show that the structured
training procedure improves performance over binary training as well as
the best previously published scores.

1 Introduction

Object localization, also called object detection, is an important task for image
understanding, e.g. in order to separate an object from the background, or to
analyze the spatial relations of different objects. Object localization is commonly
performed using sliding window classifiers [1–6]. Sliding window classifiers train a
discriminant function and then scan over locations in the image, often at multiple
scales, and predict that the object is present in subwindows with high score. This
approach has been shown to be very effective in many situations, but suffers
from two main disadvantages: (i) it is computationally inefficient to scan over
the entire image and test every possible object location, and (ii) it is not clear
how to optimally train a discriminant function for localization. The first issue
has been recently addressed in [7] by using a branch-and-bound optimization
strategy to efficiently determine the bounding box with the maximum score of
the discriminant function. We address the second issue in this work by proposing
a training strategy that specifically optimizes localization accuracy, resulting in
much higher performance than systems that are trained, e.g., using a support
vector machine.
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In particular, we utilize a machine learning approach called structured learn-
ing. Structured learning is the problem of learning to predict outputs that are
not simple binary labels, but instead have a more complex structure. By ap-
propriately modeling the relationships between the different outputs within the
output space, we can learn a classifier that efficiently makes better use of the
available training data. In the context of object localization, the output space
is the space of possible bounding boxes, which can be parameterized, e.g., by
four numbers indicating the top, left, right, and bottom coordinates of the re-
gion. The coordinates can take values anywhere between 0 and the image size,
thus making the setup a problem of structured regression rather than classifi-
cation. Furthermore, the outputs are not independent of each other; the right
and bottom coordinates have to be larger than the top and bottom coordinates,
and predicting the top of the box independently of the left of the box will al-
most certainly give worse results than predicting them together. Additionally,
the score of one possible bounding box is related to the scores of other bounding
boxes; two highly overlapping bounding boxes will have similar objectives. By
modeling the problem appropriately, we can use these dependencies to improve
performance and efficiency of both the training and testing procedures.

The rest of the paper is organized as follows. In Section 2 we discuss previ-
ous work in object localization and structured learning and its relation to the
proposed method. In Section 3 we introduce the optimization used to train our
structured prediction model. The loss function is presented in Section 3.1, while
a joint kernel map for object localization is presented in Section 3.2. We dis-
cuss a key component of the optimization in Section 4. Experimental results
are presented in Section 5 and discussed in Section 6. Finally, we conclude in
Section 7.

2 Related Work

Localization of arbitrary object classes has been approached in many ways in the
literature. Constellation models detect object parts and the relationship between
them. They have been trained with varying levels of supervision and with both
generative and discriminative approaches [8–10]. A related approach has been
to use object parts to vote for the object center and then search for maxima
in the voting process using a generalized Hough transform [11]. This approach
has also been combined with a discriminatively trained classifier to improve per-
formance [12]. Alternatively, [13] have taken the approach of computing image
segments in an unsupervised fashion and cast the localization problem as deter-
mining whether each of the segments is an instance of the object. Sliding window
classifiers are among the most popular approaches to object localization [1–7],
and the work presented in this paper can broadly be seen to fall into this cat-
egory. The sliding window approach consists of training a classifier, e.g. using
neural networks [5], boosted cascades of features [6], exemplar models [2, 7], or
support vector machines [1, 3, 4, 7], and then evaluating the trained classifier at
various locations in the image. Each of these techniques rely on finding modes
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of the classifier function in the image, and then generally use a non-maximal
suppression step to avoid multiple detections of the same object. This of course
requires on a classifier function that has modes at the location of objects and
not elsewhere. However, while discriminatively trained classifiers generally have
high objectives at the object location, they are not specifically trained for this
property and the modes may not be well localized. One approach to address this
problem is to train a classifier iteratively in a boosting fashion: after each step,
localization mistakes are identified and added to the training data for the next
iteration, e.g. [3, 5]. These techniques, however, cannot handle the case when
earlier iterations partially overlap with the true object because incorporating
these locations would require either an overlap threshold or fractional labels.
In contrast, we propose an approach that uses all bounding boxes as training
examples and that handles partial detections by appropriately scaling the clas-
sifier loss. As we show in subsequent sections, we can efficiently take advantage
of the structure of the problem to significantly improve results by using this
localization specific training.

3 Object Localization as Structured Learning

Given a set of input images {x1, . . . , xn} ⊂ X and their associated annotations
{y1, . . . , yn} ⊂ Y, we wish to learn a mapping g : X 7→ Y with which we can
automatically annotate unseen images. We consider the case where the output
space consists of a label indicating whether an object is present, and a vector
indicating the top, left, bottom, and right of the bounding box within the image:
Y ≡ {(ω, t, l, b, r) | ω ∈ {+1,−1}, (t, l, b, r) ∈ R4}. For ω = −1 the coordinate
vector (t, l, b, r) is ignored. We learn this mapping in the structured learning
framework [14, 15] as

g(x) = argmaxy f(x, y) (1)

where f(x, y) is a discriminant function that should give a large value to pairs
(x, y) that are well matched. The task is therefore to learn the function f , given
that it is in a form that the maximization in Equation (1) can be done feasibly.
We address the issue of maximization in Section 4.

To train the discriminant function, f , we use the following generalization of
the support vector machine [14]

min
w,ξ

1
2
‖w‖2 + C

n∑
i=1

ξi (2)

s.t. ξi ≥ 0, ∀i (3)
〈w, φ(xi, yi)〉 − 〈w, φ(xi, y)〉 ≥ ∆(yi, y)− ξi, ∀i,∀y ∈ Y \ yi (4)

where f(xi, y) = 〈w, φ(xi, y)〉, φ(xi, y) is a joint kernel map implicitly defined by
the kernel identity k ((x, y), (x′, y′)) = 〈φ(x, y), φ(x′, y′)〉,

w =
n∑
i=1

∑
y∈Y\yi

αiy (φ(xi, yi)− φ(xi, y)) , (5)
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and ∆(yi, y) is a loss function that decreases as a possible output, y, approaches
the true output, yi. This optimization is convex and, given appropriate defini-
tions of φ(xi, y) and ∆(yi, y), does not significantly differ from the usual SVM
primal formulation except that there are an infeasibly large number of con-
straints in Equation (4) (the number of training samples times the size of the
output space, which can even become infinite, e.g. in the case of continuous
outputs). We note, however, that not all constraints will be active at any time,
which can be seen by the equivalence between Equation (4) and

ξi ≥ max
y∈Y\yi

∆(yi, y)− (〈w, φ(xi, yi)〉 − 〈w, φ(xi, y)〉) , ∀i (6)

which indicates that the αiy in Equation (5) will be sparse. At training time, we
can use constraint generation to solve the optimization in Equations (2)–(4). Es-
timates of w are trained using fixed subsets of constraints, and new constraints
are added by finding the y that maximize the right hand side of Equation (6).
This alternation is repeated until convergence, generally with a small set of
constraints compared to the size of Y. We therefore can efficiently optimize
the discriminant function, f , given a choice of the loss ∆(yi, y) and the kernel
k ((x, y), (x′, y′)), as well as a method of performing the maximization in Equa-
tion (6). We discuss the loss function in Section 3.1, while we discuss the joint
kernel in Section 3.2. A branch-and-bound procedure for the maximization step
is explained in Section 4.

3.1 Choice of Loss Function

The choice of loss function ∆(yi, y) should reflect the quantity that measures how
well the system performs. We have chosen the following loss, which is constructed
from the measure of area overlap used in the VOC challenges [16–18]

∆(yi, y) =

{
1− Area(yi

T
y)

Area(yi
S
y) if yiω = yω = 1

1−
(

1
2 (yiωyω + 1)

)
otherwise

(7)

where yiω ∈ {−1,+1} indicates whether the object is present or absent in the
image. ∆(yi, y) has the desirable property that it is equal to zero in the case
that the bounding boxes given by yi and y are identical, and is 1 if they are dis-
joint. It also has several favorable properties compared to other possible object
localization metrics [19], e.g. invariance to scale and translation. The formula-
tion (7) is attractive in that it scales smoothly with the degree of overlap between
the solutions, which is important to allow the learning process to utilize partial
detections for training. In the case that yi or y indicate that the object is not
present in the image, we have a loss of 0 if the labels agree, and 1 if they disagree,
which yields the usual notion of margin for an SVM. This setup automatically
enforces by a maximum margin approach two conditions that are important for
localization. First, in images that contain the object to be detected, the localized
region should have the highest score of all possible boxes. Second, in images that
do not contain the objects, no box should get a high score.
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3.2 A Joint Kernel Map for Localization

To define the joint kernel map, φ(xi, y), we note that kernels between images
generally are capable of comparing images of differing size [1, 4, 20, 21]. Cropping
a region of an image and then applying an image kernel is a simple and elegant
approach to comparing image regions. We use the notation x|y to denote the
region of the image contained within the bounding box defined by y, and φx(x|y)
to denote the representation of x|y in the Hilbert space implied by a kernel over
images, kx(·, ·). If y indicates that the object is not present in the image, we
consider φx(x|y) to be equal to the 0 vector in the Hilbert space, i.e. for all x′,
kx(x|y, x′) = 0. The resulting joint kernel map for object localization is therefore

k((x, y), (x′, y′)) = kx(x|y, x′|y′). (8)

Image kernels generally compute statistics or features of the two images and
then compare them. This includes for example, bag of visual words methods [22],
groups of contours [4], spatial pyramids [1, 21], and histograms of oriented gra-
dients [3]. An important property of the joint kernel defined in Equation (8) is
that overlapping image regions will have common features and related statistics.
This relationship can be exploited for computational efficiency, as we outline in
the subsequent section.

4 Maximization Step

Since the maximization in Equation (6) has to be repeated many times during
training, as well as a similar maximization at test time (Equation (1)), it is
important that we can compute this efficiently. Specifically, at training time we
need to compute

max
y∈Y\yi

∆(yi, y) + 〈w, φ(xi, y)〉

= max
y∈Y\yi

∆(yi, y) +
n∑
j=1

∑
ỹ∈Y

αjỹ
(
kx(xj|yj

, xi|y)− kx(xj|ỹ, xi|y)
)

(9)

We therefore need an algorithm that efficiently maximizes

max
y∈Y\yi

yω=yiω=1

−Area(yi
⋂
y)

Area(yi
⋃
y)

+
n∑
j=1

∑
ỹ∈Y

αjỹ
(
kx(xj|yj

, xi|y)− kx(xj|ỹ, xi|y)
)

(10)

and for testing, we need to maximize the reduced problem

max
y∈Y
yω=1

n∑
j=1

∑
ỹ∈Y

αjỹ
(
kx(xj|yj , xi|y)− kx(xj|ỹ, xi|y)

)
(11)
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The maximizations in Equations (10) and (11) can both be solved using a sliding
window approach. In Equation (10), the maximization finds the location in the
image that has simultaneously a high score for the given estimate of w and a
high loss (i.e. low overlap with ground truth). This is a likely candidate for
a misdetection, and the system therefore considers it as a training constraint
with the margin scaled to indicate how far the estimate is from ground truth.
Because of the infeasible computational costs involved in an exhaustive search,
sliding window approaches only evaluate the objective over a subset of possible
bounding boxes and therefore give only an approximate solution to Equation (9).
This can be viewed as searching for solutions in a strongly reduced set Ŷ ⊂ Y,
where Ŷ includes only the bounding boxes that are evaluated in the sliding
window search. However, we can it is more efficient to use a branch-and-bound
optimization strategy as in [7], which gives the maximum over the entire set,
Y. We adapt this approach here to the optimization problems in Equations (10)
and (11).

The branch and bound strategy consists of keeping a priority queue of sets
of bounding boxes, which is ordered by an upper bound on the objective func-
tion. The algorithm is guaranteed to converge to the globally optimal solution
provided the upper bound is equal to the true value of the quantity to be opti-
mized when the cardinality of the set of bounding boxes is equal to one. The sets
of bounding boxes, Ỹ, are represented compactly by minimum and maximum
values of the top, left, bottom, and right coordinates of a bounding box. This
procedure is fully specified given bounding functions, ĥ, for the objectives in
Equations (10) and (11) (Algorithm 1). We note that Equation (11) is simply a

Algorithm 1 Branch-and-Bound Optimization Procedure
Require: image I ∈ Rn×m

Require: quality bounding function ĥ
Ensure: y = argmaxR⊂I f(R)

initialize P as empty priority queue
initialize Ỹ = [0, n]× [0, m]× [0, n]× [0, m] indicating the top, left, bottom, and right
of the box could fall anywhere in I
repeat

split Ỹ→Ỹ1 ∪̇ Ỹ2 by splitting the range of one of the sides into two
push ( ĥ(Ỹ1 ), Ỹ1 ) and ( ĥ(Ỹ2 ), Ỹ2 ) into P
retrieve top state, Ỹ, from P

until Ỹ consists of only one rectangle, y

linear combination of kernel evaluations between xi|y and the support vectors,
and therefore is in exactly the form that was solved for in [7]. Bounds were
given for a variety of kernels commonly used in the literature for image clas-
sification, while bounds for arbitrary kernels can be constructed using interval
arithmetic [7]. Similarly, Equation (10) can be bounded by the sum of the bound
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for Equation (11) and a bound for the overlap term

∀ỹ ∈ Ỹ,−Area(yi
⋂
ỹ)

Area(yi
⋃
ỹ)
≤ −

miny∈Ỹ Area(yi
⋂
y)

maxy∈Ỹ Area(yi
⋃
y)
. (12)

5 Evaluation

For evaluation we performed experiments on two publicly available computer vi-
sion datasets for object localization: TU Darmstadt cows and PASCAL VOC 2006
(Figures 1 and 2).

Fig. 1. Example images from the TU Darmstadt cow dataset. There is always exactly
one cow in every image, but backgrounds vary.

Fig. 2. Example images from the PASCAL VOC 2006 dataset. Images can contain
multiple object classes and multiple instances per class.

5.1 Experimental Setup

For both datasets we represent images by sets of local SURF descriptors [23] that
are extracted from feature point locations on a regular grid, on salient points
and on randomly chosen locations. We sample 100,000 descriptors from training
images and cluster them using K-means into a 3,000-entry visual codebook.
Subsequently, all feature points in train and test images are represented by their
coordinates in the image and the ID of the corresponding codebook entry. Similar
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representations have been used successfully in many scenarios for object and
scene classification [1, 2, 7, 21, 22].

To show the performance of the proposed structured training procedure, we
benchmark it against binary training, which is a commonly used method to
obtain a quality function for sliding window object localization [1–7]. It relies on
first training a binary classifier and then using the resulting real-valued classifier
function as quality function. As positive training data, one uses the ground
truth object boxes. Since localization datasets usually do not contain boxes with
explicitly negative class label, one samples boxes from background regions to
use as the negative training set. In our setup, we implement this sampling in a
way that ensures that negative boxes do not overlap with ground truth boxes
or each other by more than 20%. The binary training consists of training an
SVM classifier with a kernel that is the linear scalar product of the bag-of-
visual-words histograms. The SVM’s regularization parameter C and number of
negative boxes to sample per image are free parameters.

Our implementation of the proposed structured training makes use of the
SVMstruct [14] package. It uses a constraint generation technique as explained
in Section 3 to solve the optimization problem (2). This requires iterative iden-
tification of example-label pairs that most violate the constraints (6). We solve
this by adapting the public implementation of the branch-and-bound optimiza-
tion ESS [7] to include the loss term ∆.1 As in the case of binary training, we use
a linear image kernel (8) over the space of bag-of-visual-word histograms. The
C parameter in Equation (2) is the only free parameter of the resulting training
procedure.

5.2 Results: TU Darmstadt cows

The TU Darmstadt cow dataset consists of 111 training and 557 test images
of side views of cows in front of different backgrounds, see Figure 1 [24]. The
dataset is useful to measure pure localization performance, because each train-
ing and test image contains exactly one cow. For other datasets, performance
is often influenced by the decision whether an object is present at all or not,
which is problem of classification, not of localization. We train the binary and
the structured learning procedure as described in the previous section. First we
perform 5-fold cross validation on the training set, obtaining the SVM’s regular-
ization parameter C between 10−4 and 104 for both training procedures, and the
number of negative boxes to sampled between 1 and 10 for the binary training.

Afterwards, the systems are retrained on all images in the training set. The
resulting systems are applied to the test set, which had not been used in any
of the previous steps. We predict three possible object locations per image and
rank them by their detection score (Equation (1)). Figure 3 shows the resulting
distribution of weights for an example image in the test set.

The object localization step detect in each image the rectangular region that
maximizes the sum of scores, which is a 4-dimensional search space. We visualize

1 The source code is available at the authors’ homepages.
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Fig. 3. Weight distribution for a TU Darmstadt cow test image (best viewed in color).
Red indicates positive weights, blue indicates negative weights. Both methods assign
positive weights to the cow area, but the structured learning better distributes them
across the spatial extent. Additionally, structured learning better learns to give negative
weight to image features that lie outside the object.

the quality function with contour lines of different two-dimensional intersections
through the parameter space (Figure 4). The left block of plots shows the quality
function for the upper left corner when we fix the lower right corner of the
detection box to the ground truth location. The right block shows the quality
for the box center when fixing the box dimensions to their ground truth size.
Structured training achieves tighter contours, indicating a stronger maximum of
the quality function at the correct location.

Fig. 4. Contour plots of the learned quality function for a TU Darmstadt cow test image
(best viewed in color). The first and third image corresponds to the quality function
learned by binary training, the second and fourth image shows structured training.
In left block shows the quality of the upper left corner when fixing the bottom right
corner at its ground truth coordinates. The right block shows the quality of the center
point when keeping the box dimensions fixed at their ground truth values. Structured
learning achieves tighter contours, indicating less uncertainty in localization.

This effect is also shown numerically: we calculate precision–recall curves us-
ing the overlap between detected boxes and ground truth as the criterion for
correct detections (for details see [12]). Table 1 contains the performance at
the point of equal-error rate. The structured detection framework achieves per-
formance superior to binary training and to the previously published methods.
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ISM LK LK+ISM binary training structured training

performance at EER 96.1% 95.3% 97.1% 97.3% 98.2%
Table 1. Performance on TU Darmstadt cows dataset at equal error rate. Binary
training achieves result on par with the best previously reported implicit shape model
(ISM), local kernels (LK) and their combination (LK+ISM) [12]. Structured training
improves over the previous methods.

5.3 Results: PASCAL VOC 2006

The PASCAL VOC 2006 dataset [17] contains 5,304 images of 10 object classes,
evenly split into a train/validation and a test part. The images were mostly
downloaded from the internet and then used for the PASCAL challenge on Visual
Object Categorization in 2006. The dataset contains ground truth in the form of
bounding boxes that were generated manually. Since the images contain natural
scenes, many contain more than one object class or several instances of the same
class. Evaluation is performed based on precision-recall curves for which the
system returns a set of candidate boxes and confidence scores for every object
category. Detected boxes are counted as correct if their area overlap with a
ground truth box exceeds 50% [17].

We use the binary and the structured procedures to train localization sys-
tems for all 10 categories. Parameter selection is done separately for each class,
choosing the parameter C and number of boxes to sampled based on the per-
formance when trained on the train and evaluated on the val part of the data.
The range of parameters is identical to the TU Darmstadt cow dataset. The re-
sulting system is then retrained on the whole train/val portion, excluding those
which are marked as difficult in the ground truth annotation. For the structured
training, we only train on the training images that contained the object to be
detected, while for the binary training negative image regions were sampled from
images with and without the object present.

The VOC dataset is strongly unbalanced, and in per-class object detection,
most test images do not contain the objects to be detected at all. This causes
the sliding window detection scores to become an unreliable measure for rank-
ing. Instead, we calculate confidence scores for each detection from the output
of a separate SVM with χ2-kernel, based on the image and box cluster his-
tograms. The relative weight between box and image kernel is determined by
cross-validation. The same resulting classifier is used to rank the detection out-
puts of both training methods.

Figure 5.3 shows the resulting precision–recall curves on the test data for 3
of the categories. For illustration, we also show some example detections of the
detection system based on structured learning. From the curves we can see that
structured training improves both precision and recall of the detection compared
to the binary training. Table 2 summarizes the results in numerical form using
the average precision (AP) evaluation that was also used in the original VOC
challenge. For reference, we also give the results of the best results in the 2006
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Fig. 5. Precision–recall curves and example detections for the PASCAL VOC bicycle,
bus and cat category (from left to right). Structured training improves both, precision
and recall. Red boxes are counted as mistakes by the VOC evaluation routine, because
they are too large or contain more than one object.

challenge and the best results from later publications. Object localization with
structured training achieves new best scores for 5 of the 10 categories. In all but
one category, it achieved better results than the binary training, often by a large
margin. In the remaining category, binary training obtains a better score, but
in fact both training methods improve over the previous state-of-the-art.

6 Discussion

We have seen in the previous sections that the structured training approach
can improve the quality of object detection in a sliding window setup. Despite
the simple choice of a single feature set and a linear image kernel, we achieve
results that often exceed the state-of-the art. In the following we discuss several
explanations for its high performance.

First, structured learning can make more efficient use of the possible train-
ing data, because it has access to all possible boxes in the input images. During
the training procedure, it automatically identifies the relevant boxes and in-
corporates them into the training set, focusing the training on locations where
mistakes would otherwise be made. This is in contrast to binary training in
which the ground truth object boxes are used as positive examples and negative
examples are sampled from background regions. The number of negative boxes is
by necessity limited in order balance the training set and avoid degenerate clas-
sifiers. However, sampling negative regions prior to training is done “blindly,”
without knowing if the sampled boxes are at all informative for training.
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bike bus car cat cow dog horse m.bike person sheep

structured training .472 .342 .336 .300 .275 .150 .211 .397 .107 .204
binary training .403 .224 .256 .228 .114 .173 .137 .308 .104 .099

best in competition .440 .169 .444 .160 .252 .118 .140 .390 .164 .251
post competition .498† .249‡ .458† .223∗ — .148∗ — — .340+ —

Table 2. Average Precision (AP) scores on the 10 categories of PASCAL VOC 2006.
Structured training consistently improves over binary training, achieving 5 new best
scores. In one category binary training achieves better results than structured train-
ing, but both methods improve the state-of-the-art. Results best in competition were
reported in [17]. Results post competition were published after the official competition:
†[25], ‡[2], ∗[7], +[10].

A second explanation is based on the observation that machine learning tech-
niques work best if the statistical sample distribution is the same during the
training phase as it is during the test phase. For the standard sliding window
approach that has been trained as a binary classifier, this is not the case. The
training set only contains examples that either completely show the object to
be detected, or not at all. At test time, however, many image regions have to be
evaluated that contain portions of the object. Since the system was not trained
for such samples, one can only hope that the classifier function will not assign
any modes to these regions. In contrast, structured training is able to appro-
priately handle partial detections by scaling the loss flexibly, depending on the
degree of overlap to the true solution. Note that a similar effect cannot easily be
achieved for a binary iterative procedure: even when iterating over the training
set multiple times and identifying wrong detections, only completely false pos-
itive detections can be reinserted as negative examples to the training set and
made use of in future iterations. Partial detections would require a training label
that is neither +1 or −1, and binary classifiers are not easily adapted to this
case.

7 Conclusions

We have proposed a new method for object localization in natural images. Our
approach relies on a structured-output learning framework that combines the
advantages of the well understood sliding window procedure with a novel training
step that avoids prediction mistakes by implicitly taking into account all possible
object locations in the input image.

The approach gives superior results compared with binary training because it
uses a training procedure that specifically optimizes for the task of localization,
rather than for classification accuracy on a training set. It achieves this in several
ways. First, it is statistically efficient; by implicitly using all possible bounding
boxes as training data, we can make better use of the available training images.
Second, it appropriately handles partial detections in order to tune the objective
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function and ensure that the modes correspond exactly to object regions and is
not distracted by features that may be discriminative but are not representative
for the object as a whole.

The structured training procedure can be solved efficiently by constraint
generation, and we further improve the computational efficiency of both training
and testing by employing a branch-and-bound strategy to detect regions within
the image that maximize the training and testing subproblems. The resulting
system achieves excellent performance, as demonstrated by new best results on
the TU Darmstadt cow and PASCAL VOC 2006 datasets.

In future work, we will adapt our implementation to different image kernels,
and explore strategies for speeding up the training procedure. We have only
explored a margin rescaling technique for incorporating the variable loss, while
a promising alternate formulation would rely on slack rescaling. We plan an
empirical evaluation of these alternatives, along with a comparison to related
adaptive training techniques, e.g. bootstrapping or boosted cascades.

Acknowledgments

This work was funded in part by the EC project CLASS, IST 027978. The first
author is supported by a Marie Curie fellowship under the EC project PerAct,
EST 504321. We would like to thank Mario Fritz for making the TU Darmstadt
cow dataset available to us.

References
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