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public research institute, opened in 2009

located in outskirts of Vienna

Focus on curiosity-driven basic research
avoiding boundaries between disciplines
current 75 research groups

— Computer Science, Mathematics,
Physics, Astronomy, Chemistry, Biology,
Neuroscience, Earth and Climate Sciences

ELLIS unit since 2019

We’'re hiring! (on all levels)

interns, PhD students, postdocs

faculty (tenure-track or tenured), ...

More information:  chl@ist.ac.at or https://cvml.ist.ac.at
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The Quest for Robustness

Prediction Time

7 /49



Attacking Artificial Intelligence: Al’s

Security Vulnerability and What
Policymakers Can Do About It

Author: Marcus Comiter | August 2019

SecurityIntelligence News

Why Adversarial Examples Are Such a
Dangerous Threat to Deep Learning

The security threat of adversarial

machlne learnlng is real
s 3

Machine learning creates a
new attack surface requiring
specialized defenses




Machine Learning is a way of telling computers what to do
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Machine Learning is a way of telling computers what to do
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Machine Learning is a way of telling computers what to do

=

L=, Task: create a routine f: & — Y,
Example: sorting ' Example: machine translation
Given: formal specification ‘ Given: training set of examples
Ve e X : f(r) =permutation(x) &g "Good morning" — "Guten Morgen"
Vo € X : entries of f(x) increasing "Let's go!" — "Auf geht's!", etc.
Solution: Solution:

Task: create a routine f : X — ),

developer comes up with an ) developer sets up a parametrized routine
algorithm and implements it V..

"training": parameters are numerically
Quality control: optimized to reproduce examples

code reviews Quality control:

test cases test cases (examples that were not used
formal verification against specs for training)




Textbook Machine Learning
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Textbook Machine Learning

"works well":  quality measure {(y, f(z)) (=loss function)

"future data":  (z,y) ~ p(z,y) for some data distribution p
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Textbook Machine Learning

"works well":  quality measure {(y, f(z)) (=loss function)

“future data":  (x,y) ~ p(z,y) for some data distribution p

Algorithm STANDARD MACHINE LEARNING
input training set 5,

f* + mingerers(f) forers(f) = g Coyres €y, f(2))
output f*

Ly, f*(z)) will be small for (z,y) ~ p, if S is representative of p (e.g. "i.i.d.")
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What can go wrong?

Problem 1: oversights
Example: voice control model f: X — )
- X: audio signal,
- Y = {start, stop}
What, if the input signal is neither "start" nor "stop"?
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What can go wrong?

"hanana"

Example: voice control model f: X — )
X audio signal,
Y = {start,stop}
What, if the input signal is neither "start" nor "stop"?

Example:
object recognition model f : X — ) trained on data from 2016
What, if in 2017 the input image shows a fidget spinner?

Out-of-Distribution Data — active field of research 11/ 40



Adversarial Machine Learning

What else can go wrong? future data might depend on the model we trained.

T WORRY ABOUT | WHATS TO STOP SOMECNE
SELF-DRMNG (AR, | FROM PAINTING FRKE LINES
SAFETY FERTURES, | ON THE ROAD OR DROPPING
A CUTOUT OF A PEDESTRIAN
ONTO A HIGHURY, TO MAKE

CARS SWERVE AND (RASH?
Real-world systems interact with an

environment that might adapt to it or

even exploit its weaknesses. ? %?

Image: xkcd.com
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Adversarial Examples

human:

model:

[I. Goodfellow, J. Shlens, C. Szegedy: "Explaining and Harnessing Adversarial Examples". ICLR 2015]
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model: zebra
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human: zebra zebra

model: zebra toaster

[I. Goodfellow, J. Shlens, C. Szegedy: "Explaining and Harnessing Adversarial Examples". ICLR 2015]
13 /49



Adversarial Examples

difference

human: zebra zebra

model: zebra toaster
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Adversarial Examples

difference

20x magpnified

human: zebra zebra

model: zebra toaster

[I. Goodfellow, J. Shlens, C. Szegedy: "Explaining and Harnessing Adversarial Examples". ICLR 2015]
13 /49



Adversarial Examples

difference

20x magpnified

human: zebra zebra

model: zebra toaster

"'Adversarial Example"

[I. Goodfellow, J. Shlens, C. Szegedy: "Explaining and Harnessing Adversarial Examples". ICLR 2015]
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Adversarial Examples

What are adversarial examples?

For a model f: X — Y let z € X be a correctly classified input. An input 2’ € X is called
adversarial example if x and 2’ "look indistinguiable" to a human, but f classifies 2’
incorrectly.
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Adversarial Examples

What are adversarial examples?

For a model f: X — Y let z € X be a correctly classified input. An input 2’ € X is called
adversarial example if x and 2’ "look indistinguiable" to a human, but f classifies 2’
incorrectly.

"Indistinguishable" is not checkable by computer, so one relies on proxies:

z < 2’ small transformation
here: 2 deg rotation

14 /49



Generating adversarial examples?

Observation 1:
simply adding random noise does not suffice
perturbation need to be tailored to the model

Observation 2:
model f is differentiable with respect to its input
by gradient descent we can find a perturbation that maximally changes model output

Algorithm Adversarial Example by Gradient Descent
init: 2’ <— z with f(z) >0
repeat
¥ 2 —nV.f(x)
until f(2') <0

not surprising that algorithm produces z’
surprising that for most models, 1 can be tiny and very few steps suffice

15 /49



How to prevent adversarial examples?

Idea: for trained model f, create adversarial examples, add to the training set and retrain.

Problem: does not work, new adversarial images emerge

Idea: minimize robustified training error ~ f* <+ I}ll]l__l Z max {(y, f(z'))
€

Problem: can't be solved exactly, approximations protect only against some attacks

Robustness-by-design

Idea: make sure that model has small Lipschitz constant, such that 2’ ~ = = f(z/)




lllustration: Learning with Lipschitz constraints

Illustration: training data in 1D
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lllustration: Learning with Lipschitz constraints

Reasonable expectation what a model should learn
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Actually learned model with adversarial examples (stylized)
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lllustration: Learning with Lipschitz constraints

Learned model with minimal Lipschitz constant, L
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T: — S
| .

L large L small

Lipschitz constant: maximal slope of the function L = max M
e Jo—d]

Also, maximal factor by which perturbations can be expanded

| f(z) — flx+e)| < Lje| for any z and any e.
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L large L small

Lipschitz constant: maximal slope of the function L = max
! ”.’L’ — SC/H

Also, maximal factor by which perturbations can be expanded

| f(z) — flx+e)| < Lje| for any z and any e.

If we know a model’s Lipschitz constant, we can quantify its robustness.

I (@) = @)
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Almost-Orthogonal Layers for
Efficient General-Purpose
Lipschitz Networks

Bernd Prach (ISTA)

[Bernd Prach, CHL. "Almost-Orthogonal Layers for Efficient General-Purpose Lipschitz Networks", ECCV 2022]
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Lipschitz networks

output 0
Reminder: neural networks consist of layers (ST T
Fla) = FO(FEDCL D (FD(@)) ) Seeee
it (e
z LSS ST+ T )
fO@) = (Wi +b) fori=1,....L [STRTSTRTST ST

. QOOOOOE
L
Observation 1: Lip(f) < [] Lip(f")
=1

Observation 2: Lip(f D) < [Wi|op for o(t) = max{0,t} (ReLU) and many others,

L
Conclusion: Lin(f) < [T1IWillop
=1
Idea: Can we learn networks with guaranteed small ||, for { =1,...,L?

20/ 49



Almost-Orthogonal Layers (AOL) (e. prach, chL. 2022)

Observation: for any matrix W € R™*™ it holds

IWDllop <1

N

n —
for a diagonal rescaling matrix D = diag(D41, ..., Dy,) with entries D; = (Z |WTW\Z-j)
j=1
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Almost-Orthogonal Layers (AOL) (e. prach, chL. 2022)

Observation: for any matrix W € R™*™ it holds

IWDllop <1

N

n —
for a diagonal rescaling matrix D = diag(D41, ..., Dy,) with entries D; = (Z |WTW\Z-j)
j=1
New network architecture:

fx) = fOFEDC O D(@)))) with fO(2) = oy(WiDiz +b;) forl=1,...,L
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Experimental Result (CIFAR-10, more in paper)

Method Standard Certified Robust Accuracy
Accuracy e:% e:% e:% e=1
Standard CNN | 83.4% | 0% 0% 0% 0%
BCOP Large (Li et al., 2019) 72.2% 583% - - -
GloRo 6C2F (Leino et al., 2021) 77.0% 58.4% - - -
Cayley Large (Trockman et al., 2021) | 75.3% 59.2% - - -
SOC-20 (Singla et al., 2021) 76.4% 61.9% - - -
SOC-25 (from (Yu et al., 2022)) - 60.2% 43.7% 28.6% -
ECO-25 (Yu et al., 2022) 75.7% 66.1% 55.6% 453% -
SOC-15 (from (Singla et al., 2022)) 76.4% 63.0% 485% 355% -
AOL-XL | 725% | 65.1% 57.1%  49.8%  24.2%
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The Quest for Robustness

Training Time
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‘IHEWRGE TECH - REVIEWS - SCIENCE . ENTERTAINMENT - MORE

MICROSOFT '\ WEB \ TLOR

Twitter taught Microsoft's Al chatbot to
be a ramst asshole in less than a day

By James Vincent | Mar 24, 2016, 6:43am EDT

%‘ TayTweets ol m
CZ= World News | f g hate n s, |

wish we could put them all in a concentration
AI Chatbot Shut Down After camp with kisss and be done with the lot
Learning to Talk Like a Racist

Asshole

Imitating humans, the Korean chatbot Luda was found to be racist and homophobic.




Common problems of real-world training data:
MNIST  CIFAR-10 CIFAR-100 Caltech-256 ImageNet QuickDraw

ok 4

given: 5 given: cat givén: lobster given: ewer i given: tiger
La bel errors corrected: 3 corrected: frog corrected: crab corrected: teapot corrected: black stork corrected: eye

Lazy/incompetent annotators

Scientists rename human genes to stop
Microsoft Excel from misreading them as

Data entry errors (manual or software) dates
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Dealing with label noise or outliers

Idea: train with a robust loss functions

per-sample robustness across-samples robustness
‘“ L 0w S et (@)
- . * 4+ min -lo et (@]
. !/ feF t & ;
saturating loss /¢ robust aggregation (for ¢t < 0)

Shortcoming: harder to optimize, helps only against certain problems, can introduce bias

Overall: no perfect solutions, active field of research
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What, if a fraction of the training data can change arbitrarily?

Before attack After attack

Observation: A small number of inconsistent examples can cause high error on future data.

[B. Biggio, B. Nelson, P. Laskov: "Poisoning attacks against support vector machines", ICML 2012]
Image: [P. W. Koh, J. Steinhardt, P. Liang. "Stronger Data Poisoning Attacks Break Data Sanitization Defenses", ML 2021]
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What, if a fraction of the training data can change arbitrarily?

Before attack After attack

Observation: Arbitrary decisions can be triggered in specific regions of the input space.

[S. Goldwasser, M. P. Kim, V. Vaikuntanathan, O. Zamir. "Stronger Data Poisoning Attacks Break Data Sanitization Defenses", FOCS 2022]
Image: adapted from [P. W. Koh, J. Steinhardt, P. Liang. "Stronger Data Poisoning Attacks Break Data Sanitization Defenses", ML 2021]
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Adversarial Training Data: Backdoor Injection

E Face
(& ... Person 1
¥ Recognition
System
Person 2

-
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Adversarial Training Data: Backdoor Injection

Physical Key .
o2 -

Poisoned |:> Elon
Veom Musk

Recognition
System

Person 1

X

4

Manipulated training data can introduce undetectable unwanted model behavior.

Wrong Keys

@ Person 2

Images based on: [X. Chen, C. Liu, B. Li, K. Lu, D. Song. "Targeted Backdoor Attacks on Deep Learning Systems Using Data Poisoning", arXiv:1712.055%g|/49



Adversarial Training Data: How to prevent?

Can a system defend itself against arbitrarily changed training data?
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Adversarial Training Data: How to prevent?

Can a system defend itself against arbitrarily changed training data? No universal solution!

Formal setting:

data distribution p(z, y), original (clean) training set S "< p
"adversary" can change a fraction a < % of datapoints in S
resulting dataset S’ is given to a learning algorithm

There exists no algorithm that could guarantee
er(f) <
(f) < T

even if there exists a model f* € F with er(f*) = 0.

«

But: possible to overcome this if we're given data from multiple sources!

[M. Kearns, M. Li. "Learning in the Presence of Malicious Errors", SIAM Journal on Computing, 1993]
30/ 49



Robust Learning from Unreliable
or Manipulated Data Sources

Nikola Elias Frantar Dan Alistarh
Konstantinov (ISTA) (ISTA)
(ETH Zurich)

[N. Konstantinov, CHL. "Fairness-aware PAC Learning from Corrupted Data", JMLR 2022]

[E. lofinova, N. Konstantinov, CHL. "FLEA: Provably Robust Fair Multisource Learning from Unreliable Training Data", TMLR 2022]
[N. Konstantinov, E. Frantar, D. Alistarh, CHL. "On the Sample Complexity of Adversarial Multi-Source PAC Learning", ICML 2020]
[N. Konstantinov, CHL. "Robust Learning from Untrusted Sources", ICML 2019]
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Learning from Multiple Sources

Modern machine learning systems are often trained on data collected from many different
sources.

o

Q&I&ﬂ
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Modern machine learning systems are often trained on data collected from many different
sources.

tens of different online resources (Wikipedia, Twitter, Reddit, ...)
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Modern machine learning systems are often trained on data collected from many different

sources.

oqat\ \\
< NNV

8\

hundreds of different hospitals or medical labs
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Learning from Multiple Sources

Modern machine learning systems are often trained on data collected from many different
sources.

S (

G) N

millions or billions of user devices
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Learning from Multiple Sources

Ideally, all sources are all representative of the correct data distribution ("i.i.d.")

- - - data
sources

| MERGESOURCES|

S

classifier
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Learning from Multiple Sources

What, if some sources are not reliable, e.g. biased, noisy or manipulated?

— 3~ 3 3 £~ gata
sources

| MERGESOURCES|

ERIEEN

manipulated classifier
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Learning from Multiple Sources

Goal: identify unreliable sources and suppress them.

— 3~ 3 3 £~ gata
sources

[
‘ FILTERSOURCES> Eﬁ
e

reliable classifier

38/ 49



Our Contribution: Robust Multi-Source Learning

Algorithm FILTERSOURCES
input data sources S1,..., Sy, distance dist, threshold 6
T <+ 0 /] set of trusted sources
fori=1,...,N do
dij < dI'St(SZ', Sj) forj=1,...,N
if [{j:di; <0} > |5] then
T+ T Ui}
end if
end for
output 7'

Open choices:
distance measure dist

threshold 6 (nOt discussed, SEE€ [Konstantinov, CHL. ICML 2020])

39/49



Robust Multi-Source Learning: Algorithm

All datasets clean
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Robust Multi-Source Learning: Algorithm
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Robust Multi-Source Learning: Algorithm

All datasets clean — all datasets included — same as (optimal) naive algorithm

40/ 49



Robust Multi-Source Learning: Algorithm
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Robust Multi-Source Learning: Algorithm
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Some datasets obviously manipulated — manipulated datasets excluded.
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Robust Multi-Source Learning: Algorithm

O

v

Some datasets manipulated in a consistent way
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Robust Multi-Source Learning: Algorithm

Some datasets manipulated in a consistent way — manipulated datasets excluded.
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Robust Multi-Source Learning: Algorithm

v

Some datasets manipulated to look like originals
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Robust Multi-Source Learning: Algorithm

Some datasets manipulated to look like originals — all datasets included.

43 /49



Robust Multi-Source Learning: Algorithm

what properties does the distance measure dist need?
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Robust Multi-Source Learning: Algorithm

what properties does the distance measure dist need?

1) if S and S’ are sampled from the same distribution = dist(.S, S’) should be small

— 'clean’ datasets will get grouped together (eventually, given enough data).

2) if dist(S,S") is small = er(S") ~ er(9)

— if manipulated datasets pass the filter they won't hurt the learning.

many candidate distances do not fulfill both conditions simultaneously:

geometric: average Euclidean distance, Chamfer distance, Haussdorf distance, ...
probabilistic: Wasserstein distance, total variation, Kullback-Leibler divergence, ...

(labeled) discrepancy distance does fulfill both conditions!
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Robust Multi-Source Learning: Discrepancy Distance

For a set of classifiers 7 and datasets S;, S}, define

disc(S;, S5) = T ‘ersi(f) = ersj(f)‘ -

discrepancy is maximal amount any classifier, f € F, can disagree between 5;, 5

for binary classification, discrepancy can be computed by training a classifier itself:
for one dataset, flip all labels to their opposites
create training set S by merging the resulting datasets
train a classifier f* < minyerg(f)
disc(S;,55) + 1—2erg(f)
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Robust Multi-Source Learning: Discrepancy Distance

4
@ datasetl
dataset 2
34
@
2
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24 @ +
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-4 -3 -2 -1 0 1 2 3 4

Two (dissimilar) datasets, S7, S2
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Robust Multi-Source Learning: Discrepancy Distance
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@© datasetl
dataset 2
34
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Flip signs of Sy
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Robust Multi-Source Learning: Discrepancy Distance

dataset 1
dataset 2

+
+
+ + +
+ +
+ +
+ + . + + +
a e a + +
-2 -1 0 1

Merge both datasets
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Robust Multi-Source Learning: Discrepancy Distance

dataset 1
dataset 2

5 +

+

+ ++ + o @
1
- e *
----_;;L + e # +
= N

01 e SN n ity

- S

Classifier has small training error — large discrepancy
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Discrepancy illustration

@ datasetl
dataset 2
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Two (similar) datasets, S, 52
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Discrepancy illustration
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Discrepancy illustration

dataset 1
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Merge both datasets
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Discrepancy illustration

' dataset 1
' dataset 2
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No classifier has small training error — small discrepancy
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Discrepancy illustration
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Robust Multi-Source Learning: Final Result

Theorem [N. Konstantinov, E. Frantar, D. Alistarh, CHL. ICML 2020]

Let S1,...,Sn are training sets of size m, out of which at most N — k can be
arbitrarily manipulated (so k datasets are not manipulated). Let o = % < %
Let f* be the result of the robust multi-source learning algorithm. Then,
~/ 1 1
er(f*) < miner O — — ),
() < miner(f) + (Mﬂx\/m)

— 0 for m — oo

(O-notation hides constants and logarithmic factors)

km is the number of "clean" samples — \/ﬁ is the "normal" speed of learning
aﬁ is a slow-down due to a-manipulation
lower bounds exists that show that O(aﬁ) slowdown is unavoidable

48 /49



Summary: Robust Machine Learning

Machine learning systems won't become trustworthy until they become robust!

Many robustness problems emerge when training or prediction-time data are unreliable:

out-of-distribution data

adversarial examples

distribution shift
label noise, outliers
data poisoning

backdoor injection

Some kind of stochastic data problems
can be addressed.

Adversarial data problems are harder,
sometimes unsolvable.

If we want trustworthy systems, data
quality is crucial.
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