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Institute of Science and Technology Austria (ISTA)
• public research institute, opened in 2009
• located in outskirts of Vienna

Focus on curiosity-driven basic research
• avoiding boundaries between disciplines
• current 75 research groups

– Computer Science, Mathematics,
Physics, Astronomy, Chemistry, Biology,
Neuroscience, Earth and Climate Sciences

• ELLIS unit since 2019

We’re hiring! (on all levels)
• interns, PhD students, postdocs
• faculty (tenure-track or tenured), . . .

More information: chl@ist.ac.at or https://cvml.ist.ac.at
2 / 49

chl@ist.ac.at
https://cvml.ist.ac.at


Trustworthy Machine Learning

3 / 49



Image: OpenAI
4 / 49



Image: pixabay
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Today’s ML systems:
- powerful, but
- not trustworthy

Image: Disney
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The Quest for Robustness
Prediction Time
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Machine Learning is a way of telling computers what to do

Classical Software Development
Task: create a routine f : X → Y,
• Example: sorting

Given: formal specification
• ∀x ∈ X : f(x) = permutation(x)

• ∀x ∈ X : entries of f(x) increasing
Solution:
• developer comes up with an

algorithm and implements it
Quality control:
• code reviews
• test cases
• formal verification against specs

Machine Learning
Task: create a routine f : X → Y,
• Example: machine translation

Given: training set of examples
• "Good morning" → "Guten Morgen"
• "Let’s go!" → "Auf geht’s!", etc.

Solution:
• developer sets up a parametrized routine
• "training": parameters are numerically

optimized to reproduce examples
Quality control:
• test cases (examples that were not used

for training)
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Textbook Machine Learning

Goal: find a model f : X → Y that works well on future data

• "works well": quality measure ℓ(y, f(x)) (=loss function)
• "future data": (x, y) ∼ p(x, y) for some data distribution p

Method: minimize training loss

Algorithm Standard Machine Learning
input training set S,

f∗ ←minf∈F erS(f) for erS(f) = 1
|S|

∑
(x,y)∈S ℓ(y, f(x))

output f∗

Observation (in theory and practice)
ℓ(y, f∗(x)) will be small for (x, y) ∼ p, if S is representative of p (e.g. "i.i.d.")

Unfortunately, this is hardly ever the case for real-world problems.

10 / 49



Textbook Machine Learning

Goal: find a model f : X → Y that works well on future data

• "works well": quality measure ℓ(y, f(x)) (=loss function)
• "future data": (x, y) ∼ p(x, y) for some data distribution p

Method: minimize training loss

Algorithm Standard Machine Learning
input training set S,

f∗ ←minf∈F erS(f) for erS(f) = 1
|S|

∑
(x,y)∈S ℓ(y, f(x))

output f∗

Observation (in theory and practice)
ℓ(y, f∗(x)) will be small for (x, y) ∼ p, if S is representative of p (e.g. "i.i.d.")

Unfortunately, this is hardly ever the case for real-world problems.

10 / 49



Textbook Machine Learning

Goal: find a model f : X → Y that works well on future data

• "works well": quality measure ℓ(y, f(x)) (=loss function)
• "future data": (x, y) ∼ p(x, y) for some data distribution p

Method: minimize training loss

Algorithm Standard Machine Learning
input training set S,

f∗ ←minf∈F erS(f) for erS(f) = 1
|S|

∑
(x,y)∈S ℓ(y, f(x))

output f∗

Observation (in theory and practice)
ℓ(y, f∗(x)) will be small for (x, y) ∼ p, if S is representative of p (e.g. "i.i.d.")

Unfortunately, this is hardly ever the case for real-world problems.

10 / 49



Textbook Machine Learning

Goal: find a model f : X → Y that works well on future data

• "works well": quality measure ℓ(y, f(x)) (=loss function)
• "future data": (x, y) ∼ p(x, y) for some data distribution p

Method: minimize training loss

Algorithm Standard Machine Learning
input training set S,

f∗ ←minf∈F erS(f) for erS(f) = 1
|S|

∑
(x,y)∈S ℓ(y, f(x))

output f∗

Observation (in theory and practice)
ℓ(y, f∗(x)) will be small for (x, y) ∼ p, if S is representative of p (e.g. "i.i.d.")

Unfortunately, this is hardly ever the case for real-world problems.

10 / 49



Textbook Machine Learning

Goal: find a model f : X → Y that works well on future data

• "works well": quality measure ℓ(y, f(x)) (=loss function)
• "future data": (x, y) ∼ p(x, y) for some data distribution p

Method: minimize training loss

Algorithm Standard Machine Learning
input training set S,

f∗ ←minf∈F erS(f) for erS(f) = 1
|S|

∑
(x,y)∈S ℓ(y, f(x))

output f∗

Observation (in theory and practice)
ℓ(y, f∗(x)) will be small for (x, y) ∼ p, if S is representative of p (e.g. "i.i.d.")

Unfortunately, this is hardly ever the case for real-world problems.
10 / 49



What can go wrong?

Problem 1: oversights

Example: voice control model f : X → Y
• X : audio signal,
• Y = {start, stop}

What, if the input signal is neither "start" nor "stop"?

Problem 2: the world is dynamic

Example:
• object recognition model f : X → Y trained on data from 2016

What, if in 2017 the input image shows a fidget spinner?

Out-of-Distribution Data → active field of research
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Adversarial Machine Learning

What else can go wrong? future data might depend on the model we trained.

Real-world systems interact with an
environment that might adapt to it or
even exploit its weaknesses.

Image: xkcd.com
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Adversarial Examples
image 1

image 2 difference 20× magnified

human:

zebra zebra

model:

zebra toaster

"Adversarial Example"

[I. Goodfellow, J. Shlens, C. Szegedy: "Explaining and Harnessing Adversarial Examples". ICLR 2015]
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Adversarial Examples

What are adversarial examples?

Definition (not formal, but catches the essence)
For a model f : X → Y let x ∈ X be a correctly classified input. An input x′ ∈ X is called
adversarial example if x and x′ "look indistinguiable" to a human, but f classifies x′

incorrectly.

"Indistinguishable" is not checkable by computer, so one relies on proxies:

∥x− x′∥Lp ≤ ϵ x↔ x′ small transformation
here: 2 deg rotation
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Generating adversarial examples?

Observation 1:
• simply adding random noise does not suffice
• perturbation need to be tailored to the model

Observation 2:
• model f is differentiable with respect to its input
• by gradient descent we can find a perturbation that maximally changes model output

Algorithm Adversarial Example by Gradient Descent
init: x′ ← x with f(x) > 0
repeat

x′ ← x′ − η∇xf(x)
until f(x′) < 0

• not surprising that algorithm produces x′

• surprising that for most models, η can be tiny and very few steps suffice
15 / 49



How to prevent adversarial examples?

Idea: fix by training set expansion
Idea: for trained model f , create adversarial examples, add to the training set and retrain.

Problem: does not work, new adversarial images emerge

Robust (adversarial) optimization
Idea: minimize robustified training error f∗ ← min

f∈F

∑
(x,y)∈S

max
∥x′−x∥≤ϵ

ℓ(y, f(x′))

Problem: can’t be solved exactly, approximations protect only against some attacks

Robustness-by-design
Idea: make sure that model has small Lipschitz constant, such that x′ ≈ x⇒ f(x′) ≈ f(x).

16 / 49



Illustration: Learning with Lipschitz constraints

Illustration: training data in 1D
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Illustration: Learning with Lipschitz constraints

Reasonable expectation what a model should learn
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Illustration: Learning with Lipschitz constraints

Actually learned model with adversarial examples (stylized)
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Illustration: Learning with Lipschitz constraints

Learned model with minimal Lipschitz constant, L
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L large L small

Lipschitz constant: maximal slope of the function L = max
x,x′

∥f(x)− f(x′)∥
∥x− x′∥

.

Also, maximal factor by which perturbations can be expanded

∥f(x)− f(x + ϵ)∥ ≤ L∥ϵ∥ for any x and any ϵ.

If we know a model’s Lipschitz constant, we can quantify its robustness.
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Almost-Orthogonal Layers for
Efficient General-Purpose
Lipschitz Networks

Bernd Prach (ISTA)

[Bernd Prach, CHL. "Almost-Orthogonal Layers for Efficient General-Purpose Lipschitz Networks", ECCV 2022]
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Lipschitz networks

Reminder: neural networks consist of layers
f(x) = f (L)(f (L−1)(. . . f (2)(f (1)(x) ) ) )

with
f (l)(x) = σl(Wlx + bl) for l = 1, . . . , L

input

output

Observation 1: Lip(f) ≤
L∏

l=1
Lip(f (l))

Observation 2: Lip(f (l)) ≤ ∥Wl∥op for σ(t) = max{0, t} (ReLU) and many others,

Conclusion: Lip(f) ≤
L∏

l=1
∥Wl∥op

Idea: Can we learn networks with guaranteed small ∥Wl∥op for l = 1, . . . , L?
20 / 49



Almost-Orthogonal Layers (AOL) [B. Prach, CHL. 2022]

Observation: for any matrix W ∈ Rn×m, it holds

∥WD∥op ≤ 1

for a diagonal rescaling matrix D = diag(D1, . . . , Dm) with entries Di =
( n∑

j=1
|W ⊤W |ij

)− 1
2

New network architecture:

f(x) = f (L)(f (L−1)(. . . f (2)(f (1)(x) ) ) ) with f (l)(x) = σl(WlDlx + bl) for l = 1, . . . , L

Guaranteed to fulfill Lip(f) ≤ 1 → more robust to adversarial examples.
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Experimental Result (CIFAR-10, more in paper)

Method Standard Certified Robust Accuracy
Accuracy ϵ = 36

255 ϵ = 72
255 ϵ = 108

255 ϵ = 1

Standard CNN 83.4% 0% 0% 0% 0%

BCOP Large (Li et al ., 2019) 72.2% 58.3% - - -
GloRo 6C2F (Leino et al ., 2021) 77.0% 58.4% - - -
Cayley Large (Trockman et al ., 2021) 75.3% 59.2% - - -
SOC-20 (Singla et al ., 2021) 76.4% 61.9% - - -
SOC-25 (from (Yu et al ., 2022)) - 60.2% 43.7% 28.6% -
ECO-25 (Yu et al., 2022) 75.7% 66.1% 55.6% 45.3% -
SOC-15 (from (Singla et al., 2022)) 76.4% 63.0% 48.5% 35.5% -

AOL-XL 72.5% 65.1% 57.1% 49.8% 24.2%

We have a long way to go.
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The Quest for Robustness
Training Time
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Dealing with label noise or outliers

Common problems of real-world training data:

Label errors

Lazy/incompetent annotators

Data entry errors (manual or software)
25 / 49



Dealing with label noise or outliers

Idea: train with a robust loss functions

per-sample robustness across-samples robustness

 0
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f(x)

→

 0

 2
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g(x)

f∗ ← min
f∈F

1
t

log
n∑

i=1
etℓ(yi,f(x′

i))

saturating loss ℓ robust aggregation (for t < 0)

Shortcoming: harder to optimize, helps only against certain problems, can introduce bias

Overall: no perfect solutions, active field of research
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Adversarial Training Data: Data Poisoning

What, if a fraction of the training data can change arbitrarily?

Observation: A small number of inconsistent examples can cause high error on future data.

[B. Biggio, B. Nelson, P. Laskov: "Poisoning attacks against support vector machines", ICML 2012]
Image: [P. W. Koh, J. Steinhardt, P. Liang. "Stronger Data Poisoning Attacks Break Data Sanitization Defenses", ML 2021]
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Adversarial Training Data: Data Poisoning

What, if a fraction of the training data can change arbitrarily?

Observation: Arbitrary decisions can be triggered in specific regions of the input space.

[S. Goldwasser, M. P. Kim, V. Vaikuntanathan, O. Zamir. "Stronger Data Poisoning Attacks Break Data Sanitization Defenses", FOCS 2022]
Image: adapted from [P. W. Koh, J. Steinhardt, P. Liang. "Stronger Data Poisoning Attacks Break Data Sanitization Defenses", ML 2021]
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Adversarial Training Data: Backdoor Injection

Example: face recognition

Manipulated training data can introduce undetectable unwanted model behavior.
Images based on: [X. Chen, C. Liu, B. Li, K. Lu, D. Song. "Targeted Backdoor Attacks on Deep Learning Systems Using Data Poisoning", arXiv:1712.05526]
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Adversarial Training Data: How to prevent?

Can a system defend itself against arbitrarily changed training data?

No universal solution!

Formal setting:
• data distribution p(x, y), original (clean) training set S

i.i.d.∼ p

• "adversary" can change a fraction α < 1
2 of datapoints in S

• resulting dataset S′ is given to a learning algorithm

Theorem: [Kearns&Li, 1993]

There exists no algorithm that could guarantee

er(f) <
α

1− α

even if there exists a model f∗ ∈ F with er(f∗) = 0.

But: possible to overcome this if we’re given data from multiple sources!

[M. Kearns, M. Li. "Learning in the Presence of Malicious Errors", SIAM Journal on Computing, 1993]
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Robust Learning from Unreliable
or Manipulated Data Sources

Nikola
Konstantinov
(ETH Zurich)

Elias Frantar
(ISTA)

Dan Alistarh
(ISTA)

[N. Konstantinov, CHL. "Fairness-aware PAC Learning from Corrupted Data", JMLR 2022]
[E. Iofinova, N. Konstantinov, CHL. "FLEA: Provably Robust Fair Multisource Learning from Unreliable Training Data", TMLR 2022]
[N. Konstantinov, E. Frantar, D. Alistarh, CHL. "On the Sample Complexity of Adversarial Multi-Source PAC Learning", ICML 2020]
[N. Konstantinov, CHL. "Robust Learning from Untrusted Sources", ICML 2019]
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Learning from Multiple Sources

Modern machine learning systems are often trained on data collected from many different
sources.
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Learning from Multiple Sources

Modern machine learning systems are often trained on data collected from many different
sources.

tens of different online resources (Wikipedia, Twitter, Reddit, . . . )
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Learning from Multiple Sources

Modern machine learning systems are often trained on data collected from many different
sources.

hundreds of different hospitals or medical labs
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Learning from Multiple Sources

Modern machine learning systems are often trained on data collected from many different
sources.

millions or billions of user devices
35 / 49



Learning from Multiple Sources

Ideally, all sources are all representative of the correct data distribution ("i.i.d.")

data 
sources

training

classifier

MERGESOURCES
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Learning from Multiple Sources

What, if some sources are not reliable, e.g. biased, noisy or manipulated?

data 
sources

training

manipulated classifier

MERGESOURCES
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Learning from Multiple Sources

Goal: identify unreliable sources and suppress them.

data 
sources

training

reliable classifier

FILTERSOURCES
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Our Contribution: Robust Multi-Source Learning

Algorithm FilterSources
input data sources S1, . . . , SN , distance dist, threshold θ

T ← ∅ // set of trusted sources
for i = 1, . . . , N do

dij ← dist(Si, Sj) for j = 1, . . . , N
if

∣∣{j : dij < θ}
∣∣ ≥ ⌊N

2 ⌋ then
T ← T ∪ {i}

end if
end for

output T

Open choices:
• distance measure dist
• threshold θ (not discussed, see [Konstantinov, CHL. ICML 2020])
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Robust Multi-Source Learning: Algorithm

All datasets clean

→ all datasets included → same as (optimal) naive algorithm
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Robust Multi-Source Learning: Algorithm

Some datasets obviously manipulated

→ manipulated datasets excluded.
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Robust Multi-Source Learning: Algorithm

Some datasets manipulated in a consistent way

→ manipulated datasets excluded.

42 / 49



Robust Multi-Source Learning: Algorithm
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Robust Multi-Source Learning: Algorithm

Some datasets manipulated to look like originals

→ all datasets included.
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Robust Multi-Source Learning: Algorithm

Some datasets manipulated to look like originals → all datasets included.
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Robust Multi-Source Learning: Algorithm

Analysis: what properties does the distance measure dist need?

1) if S and S′ are sampled from the same distribution ⇒ dist(S, S′) should be small

→ ’clean’ datasets will get grouped together (eventually, given enough data).

2) if dist(S, S′) is small ⇒ er(S′) ≈ er(S)

→ if manipulated datasets pass the filter they won’t hurt the learning.

Observation:
• many candidate distances do not fulfill both conditions simultaneously:

– geometric: average Euclidean distance, Chamfer distance, Haussdorf distance, . . .
– probabilistic: Wasserstein distance, total variation, Kullback-Leibler divergence, . . .

• (labeled) discrepancy distance does fulfill both conditions!
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• (labeled) discrepancy distance does fulfill both conditions!
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Robust Multi-Source Learning: Discrepancy Distance

(Labeled) Discrepancy Distance [Mansour et al . 2009]

For a set of classifiers F and datasets Si, Sj , define

disc(Si, Sj) = max
f∈F

∣∣∣erSi(f)− erSj (f)
∣∣∣ .

• discrepancy is maximal amount any classifier, f ∈ F , can disagree between Si, Sj

• for binary classification, discrepancy can be computed by training a classifier itself:
– for one dataset, flip all labels to their opposites
– create training set S̃ by merging the resulting datasets
– train a classifier f∗ ←minf erS̃(f)
– disc(Si, Sj) ← 1− 2 erS̃(f∗)
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Robust Multi-Source Learning: Discrepancy Distance

Two (dissimilar) datasets, S1, S2
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Robust Multi-Source Learning: Discrepancy Distance

Flip signs of S2
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Robust Multi-Source Learning: Discrepancy Distance

Merge both datasets
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Robust Multi-Source Learning: Discrepancy Distance

Classifier has small training error → large discrepancy
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Discrepancy illustration

Two (similar) datasets, S1, S2
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Discrepancy illustration

Flip signs of S2
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Discrepancy illustration

Merge both datasets
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Discrepancy illustration

No classifier has small training error → small discrepancy
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Robust Multi-Source Learning: Final Result

Theorem [N. Konstantinov, E. Frantar, D. Alistarh, CHL. ICML 2020]

Let S1, . . . , SN are training sets of size m, out of which at most N − k can be
arbitrarily manipulated (so k datasets are not manipulated). Let α = N−k

N < 1
2 .

Let f∗ be the result of the robust multi-source learning algorithm. Then,

er(f∗) ≤min
f∈F

er(f) + Õ
( 1√

km
+ α

1√
m

)
︸ ︷︷ ︸

→ 0 for m → ∞

,

(Õ-notation hides constants and logarithmic factors)

Discussion:
• km is the number of "clean" samples → 1√

km
is the "normal" speed of learning

• α 1√
m

is a slow-down due to α-manipulation
• lower bounds exists that show that O(α 1√

m
) slowdown is unavoidable
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Summary: Robust Machine Learning

Machine learning systems won’t become trustworthy until they become robust!

Many robustness problems emerge when training or prediction-time data are unreliable:

Prediction time
• out-of-distribution data
• adversarial examples

Training time

• distribution shift
• label noise, outliers
• data poisoning
• backdoor injection

• Some kind of stochastic data problems
can be addressed.

• Adversarial data problems are harder,
sometimes unsolvable.

• If we want trustworthy systems, data
quality is crucial.

Thank you!
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