Robust Learning from Multiple Sources

Christoph H. Lampert IST Austria (Institute of Science and Technology Austria), Vienna

Institute of Science and Technology

IST Austria (Institute of Science and Technology Austria)

- ▶ institute for **basic research**, opened in 2009
- Iocated in outskirts of Vienna

Research at IST Austria

- curiosity-driven
- ► focus on interdisciplinarity
 - Computer Science, Mathematics, Physics, Chemistry, Neuroscience, Biology
- ELLIS unit since 2019

We're hiring! (on all levels)

- interns, PhD students, postdocs,
- ▶ faculty (tenure-track or tenured),

More information: chl@ist.ac.at, or https://cvml.ist.ac.at

Machine Learning Theory

- Transfer Learning
- Lifelong Learning/ Meta-learning

- Robust Learning
- Theory of Deep Learning

Models/Algorithms

- Zero-shot Learning
- Continual Learning

- Weakly-supervised Learning
- Trustworthy/Robust Learning

Learning for Computer Vision

- Scene Understanding
- Generative Models

- Abstract Reasoning
- Semantic Representations

Machine Learning Theory

- Transfer Learning
- Lifelong Learning/ Meta-learning

- Robust Learning
- Theory of Deep Learning

Models/Algorithms

- Zero-shot Learning
- Continual Learning

- Weakly-supervised Learning
- Trustworthy/Robust Learning

Learning for Computer Vision

- Scene Understanding
- Generative Models

- Abstract Reasoning
- Semantic Representations

Overview

Refresher of PAC Learning

Learning From Untrusted Sources

Slides available at: http://cvml.ist.ac.at

Crowdsourcing

Using data from multiple labs

Collecting data from online sources

Collecting data from online sources

How much can be learned even if some data is corrupted or manipulated?

Refresher: Supervised Learning

Setting:

- Inputs: $x \in \mathcal{X}$, e.g. strings, images, vectors, . . .
- Outputs: $y \in \mathcal{Y}$. For simplicity, we use $\mathcal{Y} = \{\pm 1\}$. (binary classification)
- Probability distribution: p(x, y) over $\mathcal{X} imes \mathcal{Y}$, unknown to the learner
- ▶ Loss function: $\ell : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$. For simplicity, we use 0/1-loss: $\ell(y, \bar{y}) = \llbracket y \neq \bar{y} \rrbracket$

Abstract Goal:

• find a prediction function, $f: \mathcal{X} \to \mathcal{Y}$, such that the expected number of errors

$$\mathrm{er}(h) = \mathbb{E}_{(x,y)\sim p} \left(\llbracket f(x) \neq y \rrbracket \right) = \mathrm{Pr}_{(x,y)\sim p} \{ f(x) \neq y \}$$

on *future data* is small.

Learning from data:

- training data: $S = \{(x_1, y_1), \dots, (x_m, y_m)\} \stackrel{i.i.d.}{\sim} p$
- model class: $\mathcal{H} = \{h : \mathcal{X} \to \mathcal{Y}\}$, e.g.
 - $\mathcal{H} =$ "all linear classifiers", $\mathcal{H} =$ "all neural networks of a fixed architecture", ...
- $\blacktriangleright \text{ learning algorithm } \mathcal{L}: \mathbb{P}(\mathcal{X} \times \mathcal{Y}) \to \mathcal{H}, \qquad \qquad \mathbb{P}(\cdot) = \text{power set}$
 - \blacktriangleright input: a training set, $S \subset \mathcal{X} imes \mathcal{Y}$,
 - output: a trained model $\mathcal{L}(S) \in \mathcal{H}$ (= prediction function).

Learning from data:

- training data: $S = \{(x_1, y_1), \dots, (x_m, y_m)\} \stackrel{i.i.d.}{\sim} p$
- model class: $\mathcal{H} = \{h : \mathcal{X} \to \mathcal{Y}\}$, e.g.
 - $\mathcal{H} =$ "all linear classifiers", $\mathcal{H} =$ "all neural networks of a fixed architecture", ...
- $\blacktriangleright \text{ learning algorithm } \mathcal{L}: \mathbb{P}(\mathcal{X} \times \mathcal{Y}) \to \mathcal{H}, \qquad \qquad \mathbb{P}(\cdot) = \text{power set}$
 - \blacktriangleright input: a training set, $S \subset \mathcal{X} imes \mathcal{Y}$,
 - ▶ output: a trained model $\mathcal{L}(S) \in \mathcal{H}$ (= prediction function).

Central question in statistical learning theory:

Is there a universal learning algorithm, such that: $\operatorname{er}(\mathcal{L}(S)) \xrightarrow{|S| \to \infty} \min_{h \in \mathcal{H}} \operatorname{er}(h)$?

Learning from data:

- training data: $S = \{(x_1, y_1), \dots, (x_m, y_m)\} \stackrel{i.i.d.}{\sim} p$
- model class: $\mathcal{H} = \{h : \mathcal{X} \to \mathcal{Y}\}$, e.g.
 - $\mathcal{H} =$ "all linear classifiers", $\mathcal{H} =$ "all neural networks of a fixed architecture", ...
- $\blacktriangleright \text{ learning algorithm } \mathcal{L}: \mathbb{P}(\mathcal{X} \times \mathcal{Y}) \to \mathcal{H}, \qquad \qquad \mathbb{P}(\cdot) = \text{power set}$
 - input: a training set, $S \subset \mathcal{X} imes \mathcal{Y}$,
 - ▶ output: a trained model $\mathcal{L}(S) \in \mathcal{H}$ (= prediction function).

Central question in statistical learning theory:

Is there a universal learning algorithm, such that: $\operatorname{er}(\mathcal{L}(S)) \xrightarrow{|S| \to \infty} \min_{h \in \mathcal{H}} \operatorname{er}(h)$?

Classic result: If and only if $VC(H) < \infty$: empirical risk minimization (ERM) works

$$\mathcal{L}(S) \leftarrow \operatorname*{argmin}_{h \in \mathcal{H}} \widehat{\operatorname{er}}(h) \quad \text{for } \widehat{\operatorname{er}}(h) := \frac{1}{m} \sum_{(x,y) \in S} \llbracket f(x) \neq y \rrbracket.$$

Learning from unreliable/malicious data:

- training set: $S = \{(x_1, y_1), \dots, (x_m, y_m)\}$
- \blacktriangleright but: data has issues: some of the data points might not really be samples from p
 - e.g. sensor problems, transmission errors, numeric problems, sloppy annotators, online trolls, annotator bias, translation issues, adversarial examples, ...

Problem: Robust Learning

Learning from unreliable/malicious data:

- training set: $S = \{(x_1, y_1), \dots, (x_m, y_m)\}$
- \blacktriangleright but: data has issues: some of the data points might not really be samples from p
 - e.g. sensor problems, transmission errors, numeric problems, sloppy annotators, online trolls, annotator bias, translation issues, adversarial examples, . . .
- \blacktriangleright formally: adversary ${\cal A}$ that can manipulate a fraction α of the dataset
 - \blacktriangleright input: dataset S
 - output: dataset S' with $\lceil (1-\alpha)m\rceil$ points are unchanged and $\lfloor \alpha m \rfloor$ are arbitrary

Question: Is ERM still be a universally good learning strategy?

Learning from unreliable/malicious data:

- training set: $S = \{(x_1, y_1), \ldots, (x_m, y_m)\}$
- \blacktriangleright but: data has issues: some of the data points might not really be samples from p
 - e.g. sensor problems, transmission errors, numeric problems, sloppy annotators, online trolls, annotator bias, translation issues, adversarial examples, ...
- \blacktriangleright formally: adversary ${\cal A}$ that can manipulate a fraction α of the dataset
 - \blacktriangleright input: dataset S
 - output: dataset S' with $\lceil (1-\alpha)m\rceil$ points are unchanged and $\lfloor \alpha m \rfloor$ are arbitrary

Question: Is ERM still be a universally good learning strategy?

Classic Result: no! [Kerns&Li, 1993]

<u>No</u> learning algorithm can always guarantee an error less than $\frac{\alpha}{1-\alpha}$ on future data!

If all sources are i.i.d. samples from the correct data distribution

▶ naive strategy "merge all datasets and minimize training error" is guaranteed to work.

What, if some sources are not reliable?

What, if some sources are not reliable?

- ▶ 2/5 of data malicious: naive strategy can be worse than random guessing! er $\geq 66\%$.
- ▶ 1/10 of data malicious: er $\ge 11\%$. Still pretty bad!

What, if some sources are not reliable?

- ▶ 2/5 of data malicious: naive strategy can be worse than random guessing! er $\geq 66\%$.
- ▶ 1/10 of data malicious: er $\ge 11\%$. Still pretty bad!

Is there a better algorithm? Is there a universal one?

Robust Learning from Unreliable or Malicious Sources

Nikola Konstantinov

Elias Frantar

Dan Alistarh

Disclaimer: "These results have been modified from their original form. They have been edited to fit the screen and the allotted time slot."

[N. Konstantinov, E. Frantar, D. Alistarh, CHL. "On the Sample Complexity of Adversarial Multi-Source PAC Learning", ICML 2020] [N. Konstantinov, CHL. "Robust Learning from Untrusted Sources", ICML 2019]

- multiple training sets S_1, S_2, \ldots, S_N
 - each $S_i = \{(x_1^i, y_1^i), \dots, (x_m^i, y_m^i)\} \stackrel{i.i.d.}{\sim} p$
- ▶ multi-source learning algorithm $\mathcal{L} : (\mathcal{X} \times \mathcal{Y})^{N \times m} \to \mathcal{H}$
 - input: training sets, S_1, S_2, \ldots, S_N
 - ▶ output: one hypothesis $\mathcal{L}(S_1, \ldots, S_N) \in \mathcal{H}$ (= a trained model).

Learning from Multiple Unreliable/Malicious Sources

- multiple training sets S_1, S_2, \ldots, S_N
 - each $S_i = \{(x_1^i, y_1^i), \dots, (x_m^i, y_m^i)\} \overset{i.i.d.}{\sim} p$
- $\blacktriangleright \text{ multi-source learning algorithm } \mathcal{L}: (\mathcal{X} \times \mathcal{Y})^{N \times m} \rightarrow \mathcal{H}$
 - ▶ input: training sets, $S'_1, S'_2, \ldots, S'_N = \mathcal{A}(S_1, \ldots, S_N)$
 - ▶ output: one hypothesis $\mathcal{L}(S'_1, S'_2, \dots, S'_N) \in \mathcal{H}$ (= a trained model).
- \blacktriangleright adversary \mathcal{A}
 - \blacktriangleright input: data sets S_1,\ldots,S_N
 - ▶ output: data sets S'_1, \ldots, S'_N , of which $\lceil (1 - \alpha)N \rceil$ are identical to before and $\lfloor \alpha N \rfloor$ are arbitrary
 - the adversary knows the training algorithm
 - ▶ two variants: fixed subset of datasets that can be perturbed, or adversary can chose

Learning from Multiple Unreliable/Malicious Sources

- multiple training sets S_1, S_2, \ldots, S_N
 - each $S_i = \{(x_1^i, y_1^i), \dots, (x_m^i, y_m^i)\} \overset{i.i.d.}{\sim} p$
- ▶ multi-source learning algorithm $\mathcal{L} : (\mathcal{X} \times \mathcal{Y})^{N \times m} \to \mathcal{H}$
 - input: training sets, $S_1', S_2', \dots, S_N' = \mathcal{A}(S_1, \dots, S_N)$
 - ▶ output: one hypothesis $\mathcal{L}(S'_1, S'_2, \dots, S'_N) \in \mathcal{H}$ (= a trained model).
- \blacktriangleright adversary \mathcal{A}
 - \blacktriangleright input: data sets S_1,\ldots,S_N
 - ▶ output: data sets S'_1, \ldots, S'_N , of which $\lceil (1 - \alpha)N \rceil$ are identical to before and $\lfloor \alpha N \rfloor$ are arbitrary
 - the adversary knows the training algorithm
 - ▶ two variants: fixed subset of datasets that can be perturbed, or adversary can chose

Is there a universal learning algorithm, such that: $\operatorname{er}(\mathcal{L}(S'_1,\ldots,S'_N)) \xrightarrow{m \to \infty} \min_{h \in \mathcal{H}} \operatorname{er}(h)$?

- no universal algorithm: minimum guaranteable error is $\frac{\alpha}{1-\alpha}$ [Kearns and Li, 1993]
- ▶ identical to our situation when each dataset consists of a single point, m = 1⇒ only $N \to \infty$ will probably not be enough to learn arbitrarily well

- ▶ no universal algorithm: minimum guaranteable error is $\frac{\alpha}{1-\alpha}$ [Kearns and Li, 1993]
- ▶ identical to our situation when each dataset consists of a single point, m = 1⇒ only $N \to \infty$ will probably not be enough to learn arbitrarily well
- Collaborative learning (multiple parties learn one model each)
 - universal learning algorithm exists [Blum et al., 2017], [Qiao, 2018]

- ▶ no universal algorithm: minimum guaranteable error is $\frac{\alpha}{1-\alpha}$ [Kearns and Li, 1993]
- ▶ identical to our situation when each dataset consists of a single point, m = 1⇒ only $N \to \infty$ will probably not be enough to learn arbitrarily well
- Collaborative learning (multiple parties learn one model each)
 - ► universal learning algorithm exists [Blum et al., 2017], [Qiao, 2018]

Density estimation from untrusted batches

▶ possible, but not the same as our setting [Qiao and Valiant, 2018],[Jain and Orlitsky, 2020]

- ▶ no universal algorithm: minimum guaranteable error is $\frac{\alpha}{1-\alpha}$ [Kearns and Li, 1993]
- ▶ identical to our situation when each dataset consists of a single point, m = 1⇒ only $N \to \infty$ will probably not be enough to learn arbitrarily well

Collaborative learning (multiple parties learn one model each)

► universal learning algorithm exists [Blum et al., 2017], [Qiao, 2018]

Density estimation from untrusted batches

▶ possible, but not the same as our setting [Qiao and Valiant, 2018],[Jain and Orlitsky, 2020]

Byzantine-robust distributed optimization

- ► specific solutions for gradient-based optimization [Yin et al., 2018], [Alistarh et al., 2018]
- ▶ results focus on convergence analysis under convexity/smoothness assumptions

Theorem [N. Konstantinov, E. Frantar, D. Alistarh, CHL. ICML 2020]

There exists a learning algorithm, \mathcal{L} , such that with high probability:

$$\operatorname{er}(\mathcal{L}(S'_1,\ldots,S'_N)) \leq \min_{h \in \mathcal{H}} \operatorname{er}(h) + \underbrace{\widetilde{\mathcal{O}}\left(\frac{1}{\sqrt{(1-\alpha)Nm}} + \alpha \frac{1}{\sqrt{m}}\right)}_{\rightarrow 0 \text{ for } m = |S| \rightarrow \infty},$$

with
$$S'_1, \ldots, S'_N = \mathcal{A}(S_1, \ldots, S_N)$$
 for any adversary \mathcal{A} with $\alpha < \frac{1}{2}$

 $(\mathcal{O}$ -notation hides constant and logarithmic factors)

Question: why is learning easier from multiple sources than from a single source?

Answer: it's not. But the task for the adversary is harder!

- ▶ single source: no restrictions how to manipulate the data
- multi-source: manipulation must adhere to the source structure

Algorithm idea: exploit law of large numbers

- majority of datasets are unperturbed
- \blacktriangleright for $m \rightarrow \infty$ these start to look more and more similar
- ▶ we can identify (at least) the unperturbed datasets
- ▶ we perform ERM only on those

Robust multi-source learning algorithm:

- ▶ Step 1) identify which sources to trust
 - compute all pairwise distance d_{ij} between datasets S'_1, \ldots, S'_N (with a suitable distance measure d)
 - ► for any *i*: if $d_{ij} < \theta$ for at least $\lfloor \frac{N}{2} \rfloor$ values of $j \neq i$, then $T \leftarrow T \cup \{i\}$ (with a suitable threshold θ)
- Step 2) create a new dataset \tilde{S} by merging data from all sources S_i with $i \in T$
- Step 3) minimize training error on \tilde{S}

Open choices:

- ► distance measure *d* (discussed later)
- threshold θ (not discussed, see paper)

Robust Multi-Source Learning: Algorithm

All datasets clean \rightarrow all datasets included \rightarrow same as (optimal) naive algorithm

Some datasets manipulated

Some datasets manipulated \rightarrow manipulated datasets excluded.

Some datasets manipulated in a consistent way

Some datasets manipulated in a consistent way \rightarrow manipulated datasets excluded.

Robust Multi-Source Learning: Algorithm

Some datasets manipulated to look like originals

Robust Multi-Source Learning: Algorithm

Some datasets manipulated to look like originals $\rightarrow \underline{all}$ datasets included.

Analysis: what properties does the distance measure d need?

Analysis: what properties does the distance measure d need?

- 1) S and S' are sampled from the same distribution $\Rightarrow d(S, S')$ should be small (at least, if enough samples are available)
- \rightarrow 'clean' datasets will eventually get grouped together.

Analysis: what properties does the distance measure d need?

- 1) S and S' are sampled from the same distribution $\Rightarrow d(S, S')$ should be small (at least, if enough samples are available)
- \rightarrow 'clean' datasets will eventually get grouped together.
 - 2) d(S, S') is small $\Rightarrow \mathcal{L}(S') \approx \mathcal{L}(S)$
- ightarrow if manipulated datasets are groups with the clean ones, they don't hurt the learning.

Analysis: what properties does the distance measure d need?

- 1) S and S' are sampled from the same distribution $\Rightarrow d(S, S')$ should be small (at least, if enough samples are available)
- \rightarrow 'clean' datasets will eventually get grouped together.

2) d(S, S') is small $\Rightarrow \mathcal{L}(S') \approx \mathcal{L}(S)$

ightarrow if manipulated datasets are groups with the clean ones, they don't hurt the learning.

Observation:

- many candidate distances do not fulfill both conditions simultaneously:
 - ▶ geometric: average Euclidean distance, Chamfer distance, Haussdorf distance, ...
 - ▶ probabilistic: Wasserstein distance, total variation, Kullback-Leibler divergence, ...
- discrepancy distance does fulfill the conditions!

Discrepancy Distance [Mansour et al. 2009] For a set of classifiers \mathcal{H} and datasets S_i, S_j , define $\operatorname{disc}(S_i, S_j) = \max_{h \in \mathcal{H}} \left| \widehat{\operatorname{er}}_{S_i}(h) - \widehat{\operatorname{er}}_{S_j}(h) \right|.$

• maximal amount any classifier, $h \in \mathcal{H}$, can disagree between S_i, S_j

- ► for binary classification, discrepancy can be computed by training a classifier:
 - $S_j^{\pm} \leftarrow S_j$ with all ± 1 labels flipped to their opposites
 - $\blacktriangleright \tilde{S} \leftarrow S_i \cup S_j^{\pm}$
 - disc $(S_i, S_j) \leftarrow 1 2 \min_{h \in \mathcal{H}} \widehat{er}_{\tilde{S}}(h)$ (minimal training error of any $h \in \mathcal{H}$ on \tilde{S})

Robust Multi-Source Learning: Discrepancy Distance

Robust Multi-Source Learning: Discrepancy Distance

Robust Multi-Source Learning: Discrepancy Distance

Merge both datasets

Classifier with small training error \rightarrow large discrepancy

Merge both datasets

No classifier with small training error \rightarrow small discrepancy

Observation: discrepancy distance has both property we need:

1) Datasets from the same distribution (eventually) gets grouped together

 \blacktriangleright if S_i and S_j are sampled from the same distribution, then

$$\operatorname{disc}(S_i, S_j) \to 0 \quad \text{for} \quad |S_i|, |S_j| \to \infty$$

- 2) Datasets that are grouped together do not hurt the learning (much) Assume:
 - training set $S_{trn} \stackrel{i.i.d.}{\sim} p$
 - arbitrary set S', potentially manipulated but with $\operatorname{disc}(S_{\operatorname{trn}},S') \leq \theta$
 - test set $S_{\text{tst}} \stackrel{i.i.d.}{\sim} p$

Then, for every $h \in \mathcal{H}$: $\widehat{\operatorname{er}}_{S_{\mathsf{tst}}}(h) \leq \widehat{\operatorname{er}}_{S'}(h) + \underbrace{\operatorname{disc}(S_{\mathsf{trn}}, S')}_{\leq \theta} + \underbrace{\operatorname{disc}(S_{\mathsf{trn}}, S_{\mathsf{tst}})}_{\mathsf{small by prop. 1}}$

Theorem [N. Konstantinov, E. Frantar, D. Alistarh, CHL. ICML 2020]

Let S_1, \ldots, S_N are training sets of size m, out of which at most N - k can be arbitrarily manipulated (so k datasets are <u>not</u> manipulated). Denote $\alpha = \frac{N-k}{N}$. Let h^* be the result of the robust multi-source learning algorithm. Then

$$\operatorname{er}(h^*) \leq \min_{h \in \mathcal{H}} \operatorname{er}(h) + \underbrace{\widetilde{\mathcal{O}}\left(\frac{1}{\sqrt{km}} + \alpha \frac{1}{\sqrt{m}}\right)}_{\rightarrow 0 \text{ for } m \rightarrow \infty},$$

 $(\mathcal{O}$ -notation hides constant and logarithmic factors)

Discussion:

- ▶ km is the number of "clean" samples $\rightarrow \frac{1}{\sqrt{km}}$ is the "normal" speed of learning
- $\alpha \frac{1}{\sqrt{m}}$ is a slow-down due to α -manipulation
- lower bounds exists that show that $O(\alpha \frac{1}{\sqrt{m}})$ slowdown is unavoidable

- ► Learning from multiple unreliable sources now commonplace
- ► Can be studied formally: learning with an adversary of a certain power
- ► Group structure enables statistical learnability, even against a strong adversary
- ► Unfortunately: no statement about computational efficiency

Thanks to...

My research group and collaborators:

son Niko Konstantinov

Alex Peste

Dan Alistarh

Mary Phuong

F

Bernd Prach

Amélie Royer

Elias Frantar

Funding Sources:

Institute of Science and Technology

- D. Alistarh, Z. Allen-Zhu, and J. Li. Byzantine stochastic gradient descent. In NeurIPS, 2018.
- A. Blum, N. Haghtalab, A. D. Procaccia, and M. Qiao. Collaborative pac learning. In NIPS. 2017.
- A. Jain and A. Orlitsky. Optimal robust learning of discrete distributions from batches. In ICML, 2020.
- M. Kearns and M. Li. Learning in the presence of malicious errors. In SIAM Journal on Computing, 1993.
- N. Konstantinov and C. H. Lampert. Robust learning from untrusted sources. In ICML, 2019.
- N. Konstantinov, E. Frantar, D. Alistarh, and C. H. Lampert. On the sample complexity of adversarial multi-source PAC learning. In *ICML*, 2020.
- M. Qiao. Do outliers ruin collaboration? In ICML, 2018.
- M. Qiao and G. Valiant. Learning discrete distributions from untrusted batches. In ITCS, 2018.
- D. Yin, Y. Chen, K. Ramchandran, and P. Bartlett. Byzantine-robust distributed learning: Towards optimal statistical rates. In *ICML*, 2018.