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Schedule

Overview

Refresher of PAC Learning

Learning From Untrusted Sources

Slides available at: http://cvml.ist.ac.at
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Learning from untrusted sources

Crowdsourcing
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Learning from untrusted sources

Using data from multiple labs
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Learning from untrusted sources

Collecting data from online sources

How much can be learned even if some data is corrupted or manipulated?
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Refresher: Supervised Learning
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Refresher: Supervised Learning

Setting:

I Inputs: x ∈ X , e.g. strings, images, vectors, . . .

I Outputs: y ∈ Y . For simplicity, we use Y = {±1}. (binary classi�cation)

I Probability distribution: p(x, y) over X × Y , unknown to the learner

I Loss function: ` : Y × Y → R. For simplicty, we use 0/1-loss: `(y, ȳ) = Jy 6= ȳK

Abstract Goal:

I �nd a prediction function, f : X → Y , such that the expected number of errors

er(h) = E(x,y)∼p
(
Jf(x) 6= yK

)
= Pr(x,y)∼p{f(x) 6= y}

on future data is small.
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Refresher: Supervised Learning

Learning from data:

I training data: S = {(x1, y1), . . . , (xm, ym)} i.i.d.∼ p

I model class: H = {h : X → Y}, e.g.
I H = "all linear classi�ers", H = "all neural networks of a �xed architecture", . . .

I learning algorithm L : P(X × Y)→ H, P(·) = power set
I input: a training set, S ⊂ X × Y,
I output: a trained model L(S) ∈ H (= prediction function).

Central question in statistical learning theory:

Is there a universal learning algorithm, such that: er(L(S))
|S|→∞→ min

h∈H
er(h) ?

Classic result: If and only if VC(H) <∞: empirical risk minimization (ERM) works

L(S)← argmin
h∈H

êr(h) for êr(h) :=
1

m

∑
(x,y)∈S

Jf(x) 6= yK.
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Problem: Robust Learning

Learning from unreliable/malicious data:

I training set: S = {(x1, y1), . . . , (xm, ym)}
I but: data has issues: some of the data points might not really be samples from p

I e.g. sensor problems, transmission errors, numeric problems, sloppy annotators,

online trolls, annotator bias, translation issues, adversarial examples, . . .

I formally: adversary A that can manipulate a fraction α of the dataset
I input: dataset S
I output: dataset S′ with d(1− α)me points are unchanged and bαmc are arbitrary

Question: Is ERM still be a universally good learning strategy?

Classic Result: no! [Kerns&Li, 1993]

No learning algorithm can always guarantee an error less than α
1−α on future data!

[M. Kearns, M. Li. "Learning in the presence of malicious errors". SIAM Journal on Computing, 1993]
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Learning from Multiple Sources
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Learning from Multiple Sources

If all sources are i.i.d. samples from the correct data distribution

I naive strategy "merge all datasets and minimize training error" is guaranteed to work.
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Learning from Multiple Sources

What, if some sources are not reliable?

I 2/5 of data malicious: naive strategy can be worse than random guessing! er ≥ 66%.
I 1/10 of data malicious: er ≥ 11%. Still pretty bad!

Is there a better algorithm? Is there a universal one?
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Robust Learning

from Unreliable or

Malicious Sources Nikola
Konstantinov

Elias
Frantar

Dan
Alistarh

Disclaimer: "These results have been modi�ed from their original form. They have been edited to �t the screen and the allotted time slot."

[N. Konstantinov, E. Frantar, D. Alistarh, CHL. "On the Sample Complexity of Adversarial Multi-Source PAC Learning", ICML 2020]
[N. Konstantinov, CHL. "Robust Learning from Untrusted Sources", ICML 2019] 13 / 30



Robust Multi-Source Learning

Learning from Multiple Sources

I multiple training sets S1, S2, . . . , SN
I each Si = {(xi1, yi1), . . . , (xim, yim)}

i.i.d.∼ p

I multi-source learning algorithm L : (X × Y)N×m → H
I input: training sets, S1, S2, . . . , SN
I output: one hypothesis L(S1, . . . , SN ) ∈ H (= a trained model).

I adversary A
I input: data sets S1, . . . , SN
I output: data sets S′1, . . . , S

′
N ,

of which d(1− α)Ne are identical to before and bαNc are arbitrary

I the adversary knows the training algorithm
I two variants: �xed subset of datasets that can be perturbed, or adversary can chose

Is there a universal learning algorithm, such that: er(L(S ′1, . . . , S
′
N))

m→∞→ min
h∈H

er(h) ?
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Robust Multi-Source Learning: Related Work

Robust learning from a single dataset

I no universal algorithm: minimum guaranteable error is α
1−α [Kearns and Li, 1993]

I identical to our situation when each dataset consists of a single point, m = 1
⇒ only N →∞ will probably not be enough to learn arbitrarily well

Collaborative learning (multiple parties learn one model each)

I universal learning algorithm exists [Blum et al., 2017], [Qiao, 2018]

Density estimation from untrusted batches

I possible, but not the same as our setting [Qiao and Valiant, 2018],[Jain and Orlitsky, 2020]

Byzantine-robust distributed optimization

I speci�c solutions for gradient-based optimization [Yin et al., 2018], [Alistarh et al., 2018]

I results focus on convergence analysis under convexity/smoothness assumptions
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Robust Multi-Source Learning: Our Result

Theorem [N. Konstantinov, E. Frantar, D. Alistarh, CHL. ICML 2020]

There exists a learning algorithm, L, such that with high probability:

er(L(S ′1, . . . , S
′
N) ) ≤ min

h∈H
er(h) + Õ

( 1√
(1− α)Nm

+ α
1√
m

)
︸ ︷︷ ︸

→ 0 for m = |S| → ∞

,

with S ′1, . . . , S
′
N = A(S1, . . . , SN) for any adversary A with α < 1

2
.

(Õ-notation hides constant and logarithmic factors)
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Robust Multi-Source Learning: Big Picture

Question: why is learning easier from multiple sources than from a single source?

Answer: it's not. But the task for the adversary is harder!

I single source: no restrictions how to manipulate the data

I multi-source: manipulation must adhere to the source structure

Algorithm idea: exploit law of large numbers

I majority of datasets are unperturbed

I for m→∞ these start to look more and more similar

I we can identify (at least) the unperturbed datasets

I we perform ERM only on those
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Robust Multi-Source Learning: Algorithm

Robust multi-source learning algorithm:

I Step 1) identify which sources to trust

I compute all pairwise distance dij between datasets S′1, . . . , S
′
N

(with a suitable distance measure d)

I for any i: if dij < θ for at least bN2 c values of j 6= i, then T ← T ∪ {i}
(with a suitable threshold θ)

I Step 2) create a new dataset S̃ by merging data from all sources Si with i ∈ T
I Step 3) minimize training error on S̃

Open choices:

I distance measure d (discussed later)
I threshold θ (not discussed, see paper)
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Robust Multi-Source Learning: Algorithm

All datasets clean

→ all datasets included → same as (optimal) naive algorithm
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Robust Multi-Source Learning: Algorithm

Some datasets manipulated

→ manipulated datasets excluded.
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Robust Multi-Source Learning: Algorithm

Some datasets manipulated → manipulated datasets excluded.
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Robust Multi-Source Learning: Algorithm

Some datasets manipulated in a consistent way

→ manipulated datasets excluded.
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Robust Multi-Source Learning: Algorithm

Some datasets manipulated in a consistent way → manipulated datasets excluded.
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Robust Multi-Source Learning: Algorithm

Some datasets manipulated to look like originals

→ all datasets included.
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Robust Multi-Source Learning: Algorithm

Some datasets manipulated to look like originals → all datasets included.
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Robust Multi-Source Learning: Algorithm

Analysis: what properties does the distance measure d need?

1) S and S ′ are sampled from the same distribution ⇒ d(S, S ′) should be small
(at least, if enough samples are available)

→ 'clean' datasets will eventually get grouped together.

2) d(S, S ′) is small ⇒ L(S ′) ≈ L(S)

→ if manipulated datasets are groups with the clean ones, they don't hurt the learning.

Observation:
I many candidate distances do not ful�ll both conditions simultaneously:

I geometric: average Euclidean distance, Chamfer distance, Haussdorf distance, . . .
I probabilistic: Wasserstein distance, total variation, Kullback-Leibler divergence, . . .

I discrepancy distance does ful�ll the conditions!
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Robust Multi-Source Learning: Discrepancy Distance

Discrepancy Distance [Mansour et al. 2009]

For a set of classi�ers H and datasets Si, Sj, de�ne

disc(Si, Sj) = max
h∈H

∣∣êrSi
(h)− êrSj

(h)
∣∣ .

I maximal amount any classi�er, h ∈ H, can disagree between Si, Sj

I for binary classi�cation, discrepancy can be computed by training a classi�er:
I S±j ← Sj with all ±1 labels �ipped to their opposites

I S̃ ← Si ∪ S±j
I disc(Si, Sj) ← 1− 2minh∈H êrS̃(h) (minimal training error of any h ∈ H on S̃)
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Robust Multi-Source Learning: Discrepancy Distance

Two datasets, Si, Sj
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Robust Multi-Source Learning: Discrepancy Distance

Flip signs of Sj
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Robust Multi-Source Learning: Discrepancy Distance

Merge both datasets
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Robust Multi-Source Learning: Discrepancy Distance

Classi�er with small training error → large discrepancy
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Discrepancy illustration

Two datasets, Si, Sj

26 / 30



Discrepancy illustration

Flip signs of Sj
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Discrepancy illustration

Merge both datasets
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Discrepancy illustration

No classi�er with small training error → small discrepancy
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Robust Multi-Source Learning: Algorithm

Observation: discrepancy distance has both property we need:

1) Datasets from the same distribution (eventually) gets grouped together
I if Si and Sj are sampled from the same distribution, then

disc(Si, Sj)→ 0 for |Si|, |Sj | → ∞

2) Datasets that are grouped together do not hurt the learning (much)

Assume:
I training set Strn

i.i.d.∼ p
I arbitrary set S′, potentially manipulated but with disc(Strn, S

′) ≤ θ
I test set Stst

i.i.d.∼ p

Then, for every h ∈ H: êrStst(h) ≤ êrS′(h) + disc(Strn, S
′)︸ ︷︷ ︸

≤θ

+ disc(Strn, Stst)︸ ︷︷ ︸
small by prop. 1)
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Robust Multi-Source Learning: Final Result

Theorem [N. Konstantinov, E. Frantar, D. Alistarh, CHL. ICML 2020]

Let S1, . . . , SN are training sets of size m, out of which at most N − k can be
arbitrarily manipulated (so k datasets are not manipulated). Denote α = N−k

N
.

Let h∗ be the result of the robust multi-source learning algorithm. Then

er(h∗) ≤ min
h∈H

er(h) + Õ
( 1√

km
+ α

1√
m

)
︸ ︷︷ ︸

→ 0 for m→∞

,

(Õ-notation hides constant and logarithmic factors)

Discussion:
I km is the number of "clean" samples → 1√

km
is the "normal" speed of learning

I α 1√
m

is a slow-down due to α-manipulation

I lower bounds exists that show that O(α 1√
m

) slowdown is unavoidable 28 / 30



Summary

I Learning from multiple unreliable sources now commonplace

I Can be studied formally: learning with an adversary of a certain power

I Group structure enables statistical learnability, even against a strong adversary

I Unfortunately: no statement about computational e�ciency
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