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1. Introduction

Over the past half a dozen years, many aspects of
multidimensional algorithms and data structures have
been investigated. This is best illustrated by the recent
bibliographies of Edelsbrunner and van Leeuwen [8,
9] which contain over 300 entries.

In many cases, collections of geometrical objects in
two or higher dimensions are subjected to queries,
where each query is itself a geometrical object. The
answer of such a query provides information con-
cerning the query object in relation to the collection
of objects available.

In this paper we demonstrate that a number of
such problems which are usually dealt with separately
are special cases of a single general problem. By pre-
senting an efficient (static and dynamic) solution for
this general case — which involves the intersection of
certain simple geometric objects — we provide a uni-
fied solution to many problems considered before and
to problems not explicitly examined in earlier
papers.

More specifically, we consider the intersection of
what we call orthogonal objects. An orthogonal ob-
ject of dimension d is the Cartesian product of d
intervals (each of which may reduce to a single value),
one on each coordinate-axis. Thus, typical orthogonal
objects are points, and objects such as line segments,
rectangles, cubes, etc., provided all edges are axis-
parallel.

We claim that a large variety of problems dealt
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with in the literature can be reduced to what we call
orthogonal intersection searching. Orthogonal inter-
section searching involves a collection of orthogonal
objects and a sequence of queries, where each query
is also an orthogonal object; the desired answer is the
set of objects in the given collection intersecting the
query object. (We say that two orthogonal objects
intersect if they have at least one point in common.)

Historically, the first problem of this kind is the
range searching problem. It involves a set of points in
the plane. Each query asks for all points that lie
within a specified orthogonal rectangle. Bentley and
Friedman [2] present a survey of practical algorithms
solving this problem. More sophisticated algorithms
are offered by Bentley and Maurer [3], Bentley [1],
Lueker [11,12], and Willard [20].

The inverse range searching problem involves a set
of planar orthogonal rectangles. Each query asks for
all rectangles that contain a specified query point.
Vaishnavi [17] designed structures based on the seg-
ment tree, consult Leeuwen and Wood [10], for this
task.

Given vertical and horizontal line segments, the
line segment intersection searching problem asks for
all segments that intersect a vertical or horizontal
query segment. This problem was recently investigated
by Vaishnavi and Wood [19]. The related problem that
asks for all intersecting pairs of a set of vertical and
horizontal line segments was considered before by
Bentley and Ottmann [4].

The rectangle intersection searching problem
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involves a set of orthogonal rectangles and asks for all
rectangles that intersect an additional one. This prob-
lem was considered by Edelsbrunner [6], who applied
his results to the enumeration of all intersecting pairs
of a given set. Earlier work on the latter issue can be
found in Bentley and Wood [5], Vaishnavi [16],
Vaishnavi, Kriegel and Wood [18], and Six and Wood
[14,15].

The above problems occur, directly or indirectly,
in a variety of applications such as VLSI design tech-
niques, computer graphics, algorithms for data-base
queries, and others. The interested reader is referred
to the papers quoted for further background informa-
tion.

It should be clear that all of the above problems
can be generalized to more than two dimensions. We
have mentioned their planar instances in order to aid
the geometric intuition of the reader.

The first step towards a unified approach to all
these related problems was undertaken by
Edelsbrunner [7]. He introduced the notion of ortho-
gonal objects and developed structures that are based
on results due to Six and Wood [14,15], Willard [21],
and Edelsbrunner [6].

Like most multidimensional searching problems,
orthogonal intersection searching comes in a static
and a dynamic variety. In the static case the collec-

tion of orthogonal objects remains unchanged through-

out the sequence of queries, while in the dynamic
case the collection of orthogonal objects can be up-
dated inbetween queries by inserting and deleting
individual objects.

The time needed to perform an update or a query
is usually measured in worst-case or in average com-
plexity. If an algorithm performs a command (i.e. a
query or update) in time f(n) even in the worst of all
possible cases then the command has worst-case com-
plexity f(n) (with respect to that algorithm), where n
denotes the actual size of the problem (in most cases,
n denotes the current number of objects stored). A
command has average complexity f(N) (with respect
to an algorithm) if a sequence C of IC| commands is
executed in at most |CIf(N) time, where N denotes
the maximal number of objects in the initially empty
set.

The next section of this paper presents efficient
static and dynamic solutions for orthogonal intersec-
tion searching. It has to be emphasized that this
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paper, for the first time, considers the searching prob-
lem with potentially inhomogeneous sets of orthogo-
nal objects. The reader is assumed to have a working
knowledge of the techniques contained in the above
mentioned references, since the main contribution of
this paper is a clever combination of a variety of tech-
niques and data structures. The final section of this
paper shows how the results can also be applied to the
determination of all intersecting pairs of a given set of
objects.

2. The theorem

Theorem. Let S be an arbitrary collection of n ortho-
gonal objects in d-dimensional space, for d no less
than 2. Let x denote an arbitrary orthogonal query
object and let A(S, x) denote the set of t objects of S
that intersect x.

There exists a static data structure which allows
one to locate and report the objects of A(S, x) in
0O(log?~!n + t) time and requires O(n log’n) space
and preprocessing.

Further, the same problem can be solved with a
dynamic data structure that allows for a query to be
answered in O(log®n + t) time and requires O(n log®n)
space and O(log®n) time for an update.

All bounds are given in worst-case complexity.

Before we present the proof of the above theorem
by exhibiting efficient data structures supporting
intersection queries involving arbitrary (in general
inhomogeneous) sets of orthogonal objects, one
remark is in order: It is possible to improve the space
requirements of the above structures by a factor of
log n. However, this increases the query time of the
static structure by the same factor, and affects the
dynamic structure either by increasing the bound for
performing an update by a factor of log n, or by
weakening the original O(log?n) worst-case complex-
ity of the update time to O(log?N) average complex-
ity.

Proof. For simplicity, we confine our attention to the
2-dimensional space. Extension to three and higher
dimensions can then be obtained by straightforward
generalizations.

Let x and y denote two 2-dimensional orthogonal
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Fig. 1. Four orthogonal objects.

objects. Either x contains the left bottom point of y,
or the left border line of x intersects the bottom
border line of y, or the bottom border line of x inter-
sects the left border line of y, or the left bottom
point of x is contained in y. Note that exactly one of
these cases occurs, unless x does not intersect y. Ob-
serve further that this is also true if degenerated rec-
tangles like vertical or horizontal line segments or
even points are involved.

In what now follows, we will establish a data struc-
ture for each of the four types of intersection.

These structures are composed of three basic types
of trees, two of which are the outcome of recent
research on 1-dimensional intersection searching. The
common binary leaf search tree (called range tree in
this paper) storing n values in linear space is employed
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Fig. 2. The four types of intersection.
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to answer 1-dimensional range queries (which in fact
are intervals) in O(log n + t) time. The inverse problem,
i.e. given a set of intervals — report those which con-
tain a query value, is supported by the segment tree.
Of(n log n) space is required for n intervals and a query
is answered in O(log n + t) time. The third basic type

is called the interval tree which stores n intervals in
linear space and supports the enumeration of those
which intersect a query interval in O(log n + t) time.

A certain kind of combination of these three basic
types of trees is employed to yield structures that
handle the four instances of 2-dimensional orthogonal
intersection searching listed above. We are going to
demonstrate the specific combination for the segment
tree and the range tree.

The specific combination is used to create what we
call the segment—range tree which stores horizontal
line segments as follows: The projections of the line
segments onto the x-axis are stored in a segment tree.
Each node of this tree corresponds to a set of line
segments and gets attached to the range tree storing
the projections of these line segments onto the y-axis.
In a similar fashion the range—range tree, the range—
segment tree and the segment—segment tree are ob-
tained. (Note that the range—segment tree may be
replaced by the segment—range tree by interchanging
the coordinates.)

These four structures solve our four basic intersec-
tion problems with query time O(log®n + t) each. The
segment—segment tree reports all rectangles con-
taining a query point, the segment—range tree enu-
merates all horizontal (respectively vertical) line seg-
ments that intersect a vertical (respectively horizontal)
query segment, and the range—range tree reports all
points inside a query rectangle. These structures
can be constructed in O(n log?n) time and require
O(n log®n) space.

Let us summarize what we have obtained so far: a
data structure is exhibited that solves the 2-dimen-
sional orthogonal intersection searching problem with
O(n log® n) preprocessing and space, and with
O(log?n + t) query time. Next, a few modifications
assure that the bounds stated in the theorem are
achieved.

For the static case, the segment—segment tree, the
two instances of the segment—range tree, and the
range—range tree are improved by adding additional
pointers that save a factor O(log n) query time and
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leave the other bounds unchanged. (This approach is
called using a layered tree in the literature.)

This proves the first part of the theorem con-
cerning the static solution of the orthogonal intersec-
tion searching problem.

The mentioned improvement of the space require-
ments accompanied by an increase in query time is ob-
tained by replacing the pair of the segment—segment
and segment—range tree by the segment—interval tree
and by replacing the pair of the range—segment and
range—range tree by the range—interval tree. It should
be noted that the task supported by a pair of segment
and range trees (namely interval intersection searching)
is accommodated by a single interval tree.

Concerning dynamic environments, the segment—
segment, the two instances of the segment—range,
and the range—range tree are replaced by their dy-
namic relatives that are based on the trees of bounded
balance introduced by Nievergelt and Reingold [13].

The dynamic relatives of the four trees achieve the
same bounds for space and query time as the static
trees (but not the layered static trees) by simultane-
ously allowing updates to be performed in O(log?n)
time in the worst case.

The saving of a factor O(log n) space is again
attained by replacing the four trees by the dynamic
relatives of the segment—interval tree and the range—
interval tree. The update time deteriorates either to
O(log®n) in the worst case or to O(log? N) on the
average. Nevertheless, we do not know whether there
exist strategies that realize the above replacement
without affecting the time needed to perform an up-
date.

This proves the second part of the theorem and the
second part of the remark.

3. Applications and conclusions

In the main section of this paper a method that
treats arbitrary and potentially inhomogeneous sets of
orthogonal objects in multidimensional space with
only one algorithm is given. In the past, all special
cases were handled separately, leading to a large num-
ber of seemingly unrelated papers. Our algorithm not
only clarifies and unifies the situation, it also can be
used for problems not dealt with previously. On the
other hand, for special sets of objects, minor improve-
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ments on our algorithm may exist.

These improvements may be based, for instance, on
the observation that all basic intersection searching
problems (except for the enumeration of all rectangles
containing a point) that take part in the 2-dimensional
solution are supported by O(n log n) space structures.
Hence, if there exists a dimension where all the objects
cover only a single value rather than a proper interval
the space requirements can be lowered to O(n log n).
(In this case, the problem is solved by dividing into
only two basic problems.) Note that the same is true
in three and higher dimensions.

So far, we have only considered orthogonal inter-
section searching. In certain applications one is inter-
ested in all intersecting pairs of a given set of orthogo-
nal objects.

This problem can be solved by sweeping the d-
dimensional space with a (d — 1)-dimensional hyper-
plane normal to the x-axis from left to right. Asso-
ciated with this hyperplane is the structure that sup-
ports dynamic (d — 1)-dimensional orthogonal inter-
section searching with O(n log%~2n) space,

O(logd_ln + t) query time, and O(log®~IN) average
update time. The task is then accomplished by exe-
cuting a sequence of O(n) insertions, intersection
queries, and deletions leading to a O(n log®~'n) time
and O(n log?~?n) space solution.

Concluding, we want to emphasize once more that
the approach described in this paper offers a clear and
unified way to deal with a variety of tasks that were
considered as separate problems in the past.

A great challenge for future research is the uniform
description of non-orthogonal intersection problems.
However, many open questions concerning orthogonal
intersection also remain. In particular it remains to be
shown whether asymptotically better solutions than
the one presented exist.

References

[1] J.L. Bentley, Multidimensional divide-and-conquer,
Comm. ACM 23 (1980) 214-229.

[2] J.L. Bentley and J.H. Friedman, Data structures for
range searching, ACM Comput. Surveys 11 (1979)
397-409.

[3] ].L. Bentley and H.A. Maurer, Efficient worst-case data
structures for range searching, Acta Inform. 13 (1980)
155-168.



Volume 13, numbers 4, 5

[4] J.L. Bentley and Th. Ottmann, Algorithms for reporting
and counting geometric intersections, IEEE Trans.
Comput. 28 (1979) 643 -647.

[5] J.L. Bentley and D. Wood, An optimal worst-case algo-
rithm for reporting intersections on rectangles, IEEE
Trans. Comput. 29 (1980) 571-577.

[6] H. Edelsbrunner, A new approach to rectangle intersec-
tions, Technical University of Graz, Institut fiir Infor-
mationsverarbeitung (1980). Reports 47 and 50.

[7] H. Edelsbrunner, Dynamic data structures for orthogo-
nal intersectionqueries, Technical University of Graz,
Institut fiir Informationsverarbeitung (1980). Report
59.

[8] H. Edelsbrunner and J. van Leeuwen, Multidimensional
algorithms and data structures (Bibliography), Bull.
EATCS 11(1980) 46—74.

[9] H. Edelsbrunner and J. van Leeuwen, Supplement to
‘Multidimensional algorithms and data structures (Biblio-
graphy)’, Bull. EATCS 13 (1981) 79-85.

[10] J. van Leeuwen and D. Wood, The measure problem for
rectangular ranges in d-space, University of Utrecht,
Department of Computer Science (1979). Report
RUU-CS-79-6.

[11] G. Lueker, A data structure for orthogonal range queries,
Proc. of the 15th FOCS Symposium (1978) 28—34.

[12] G. Lueker, A transformation for adding range restriction
capability to dynamic data structures for decomposable
searching problems, University of California, Irvine,

INFORMATION PROCESSING LETTERS

End 1981

Department of Information and Computer Science
(1979). Report 129.

[13] J. Nievergelt and E.M. Reingold, Binary search trees of
bounded balance, SIAM J. Comput. 2 (1973) 33—43.

[14] H.-W. Six and D. Wood, The rectangle intersection prob-
lem revisited, BIT 20 (1980) 426 —-433.

[15] H.-W. Six and D. Wood, Counting and reporting inter-
sections of d-ranges, McMaster University, Unit for Com-
puter Science (1980). Report 80-CS-6.

[16] V.K. Vaishnavi, Optimal worst-case algorithms for rec-
tangle intersection and batched range searching prob-
lems, McMaster University, Unit for Computer Science
(1979). Report 79-CS-12.

[17] VK. Vaishnavi, Computing point enclosures, Concordia
University, Computer Science Department (1980).

[18] V.K. Vaishnavi, H.P. Kriegel and D. Wood, Space and
time optimal algorithms for a class of rectangle intersec-
tion problems, Inform. Sci. 21 (1980) 59-67.

[19] V.K. Vaishnavi and D. Wood, Rettilinear line segment
intersection, layered segment trees and dynamization,
McMaster University, Unit for Computer Science (1980).
Report 80-CS-8.

[20] D.E. Willard, New data structures for orthogonal queries,
Comm. ACM, to appear.

[21] D.E. Willard, An introduction to super-B-trees, Univer-
sity of Iowa, Department of Computer Science (1979).
Report 79-01.



! . L =11 ’ Yoa LA '
ANy B Ly L | U By Y0 ylla
Okl S 1 S ettt iy T8 SRR TSR -m*..—r.m-'.-':,_i‘} i
L AT O i : SR AP P e
: ' T e ALY

2% SIS

Y I

STl ey I

Aliing % it I ST .-(-'\.,,‘-i-ﬂ"\:'p_ e TR

] I RN 4 L 1MegR L ACINEP A

P
AFAEA TG Wiy l'.l"nri;'lé . L

j i sl I¥i"]'e"‘wl‘:‘ ||;_1,
o -‘}
bl “”‘“*I y

Ak LI Ay
st
Tg® T T
LT N‘- Y .1_‘
S Y, LT |
i f ’. 3
o g Y i i[ltti‘ -
g "'I ;| o . J
. A Y " 0 h § (P, 4#7_,_-1!]
e o e g LR AT 1-'\,‘ Wl




