Theoretical Computer Science 16 (1981) 329-336
North-Holland Publishing Company

NOTE

A SPACE-OPTIMAL SOLUTION OF GENERAL REGION
LOCATION

H. EDELSBRUNNER and H.A. MAURER

Institut fiir Informarionsverarbeitung, Technical University of Graz, A-8010 Graz, Austria

Communicated by M. Nivat
Received June 1980
Revised February 1981

Abstract. In 1979 Kirkpatrick obtained a practically feasible algorithm for planar region location
working in linear space and logarithmic time, provided the regions are bounded by straight line
segments. No algorithm requiring only linear space and log-polynomial time was known, so far, for
general planar region location, i.e. for the case where regions are bounded by curves more
complicated than straight line segments. As main result of this paper such an algorithm is
presented.

1. Infroduction and preliminaries

The central notion in this paper is that of a region: A region R is a simply

connected, closed and bounded subset of the Euclidean plane such that
(i) any line parallel to the y-axis intersects R in at most two points or is a tangent
line, and

(i) there are algorithms /, r and a such that

(a) [yields in O(1) steps a left endpoint of R which we denote by I[(R);

(b) ryields in O(1) steps a right endpoint of R which we denote by r(R);

(c) if p is any point whose x-coordinate is between the x-coordinates of /(R) and
r(R), then a(R, p) yields in O(1) time ‘below’, “in’, or ‘above’, depending on whether
p is below, in, or above R.

Typical regions are triangles, rectangles, convex polygons with a bounded number
of edges, circles, segments of circles, etc.

In our definition of region and throughout this paper we choose the y-axis as
prefered axis. Everything to be said is of course also true if x- and y-axis are
consistently interchanged. Our aim in this paper is to develop a data structure which
allows us to preprocess a collection of n non-overlapping regions such that the region
location problem (or region location query) for an arbitrary point p can be answered

0304-3975/81/0000-0000/$02.75 © 1981 North-Holland

330 H. Edelsbrunner, H.A. Maurer

efficiently, i.e. the region to which p belongs (if it exists) can be determined
efficiently.

The region location problem has attracted considerable attention in the past since
it occurs as subproblem of many important questions, such as e.g.

(a) the post-office problem (also called nearest neighbor problem), see e.g. Knuth
[7], Shamos [13], and Maurer and Ottmann [11],

(b) the near neighbor problem see e.g. Bentley and Maurer[1], and Preparata[12]
and

(c) the contour problem, see Lipski, Preparata [9].

A first solution to the region location problem was obtained by Dobkin and Lipton
[2] using a ‘slab technique’, requiring O(n”) space and O(n°) preprocessing, but
requiring only O(log n) time for queries.

For regions bounded by straight-line segments a space-optimal (i.e. O(n) space)
solution with O(log” n) query time was given by Lee and Preparata in [8]. This was
improved by ingenious methods to O(log n) query time by Lipton and Tarjan[10]. A
practically feasible method with same space and time bounds was finally developed
by Kirkpatrick [6]. This result essentially setties the region location problem for
polygonal regions. However, none of the techniques mentioned above (except for
the initial ‘slab technique’) carries over to arbitrary regions.

The best solution so far for the general region location problem is due to Preparata
[12], who obtains, via a clever refinement of the ‘slab technique’, an algorithm
running in O(log n) time and requiring O(n log n) space. Preparata’s algorithm has
two significant drawbacks:

(1) it is quite complicated and not easy to implement, and

(i1) it uses more than O(n) space.

This paper introduces a space-optimal algorithm for the region location probiem,
the only linear space algorithm with ‘reasonable’ (i.e. polynomial in log) query time
known to date.

Our algorithm is applicable to a number of special region location problems. It can
be carried over to dynamic situations by using any of a variety of known dynamiza-
tion methods that dynamize by splitting the static data structure (these methods are
also applicable to Preparata’s and Kirkpatrick’s methods), or by balancing the
structure. The latter method yields the best known solution for dynamic rectangle
location (i.e. the regions are all non-overlapping rectilinearly-oriented rectangles).
We discuss these dynamization aspects at the end of this paper.

Before starting our technical sections, a few notational remarks are convenient.

For a point p, p. and p, denote its x- and y-coordinate, respectively. Thus, for a
region R, the left endpoint g of R is the point with coordinates /[(R), and /(R),, i.e.
g =(l(R), I(R),).

A region R, is below a region R; (and R, is above R,) if a line [parallel to the
y-axis exists which intersects both R, and R; and, along [, R, is below R (R isabove
R;). Observe that if R, and R are non-overiapping. and R is below R, along a line /
paraliel to the y-axis, then R, is below R, along each such line.

Space-optimal solution of general region location 331

2. A space-optimal solution

In this section we reduce the region location problem in two steps to a simpler
problem which we term ‘low-point” problem. Using an efficient algorithm for the
low-point problem we obtain a space-optimal solution for the region location
problem for n non-overlapping regions: Using O(n) space, O(n log) preprocessing
time and 0{10g3 n) time for answering a query is shown to suffice.

We first require the notion of n skewered regions: We call n non-overlapping
regions skewered if there is a line (the skewer) parallel to the y-axis meeting each of
the regions. (Note the similarity to the structure in [3].) The skewered-regions
problem is the region location problem for n skewered regions. Its significance for
the (general) region location problem is due to the following result.

Lemma 2.1. If A’ is an algorithm which solves the region location problem involving n
skewered regions with preprocessing P'(n) = f1(n) n log n, storage S'(n) = f2(n)n and
query time Q'(n) (where f, and > are strictly positive, non-decreasing funcrions), then
an algorithm A for the region problem involving n regions can be obtained with
preprocessing P(n)=O(P'(n)), storage S(n)=0(S'(n)) and query time O(n)=
O(Q'(n) log n).

Proof. Let C be a collection of n non-overlapping regions and let Z =
{l(R):|R in C}u{r(R),|R in C} be the set of all endpoints of regions in C. We will
assume that Z consists of 2n distinct values which we list, in ascending order, as
Z=ay,as,...,0a, Letm=3%a,+a,.,) and let g be the line x =m. Let

C;={R in C|R is to the left of £},
C>={R in C|g intersects R},
C:=1{R in C|R is to the right of g}.

The skewer tree for C is a tree with root W whose value is m, whose left subtree is
the skewer tree for C, and whose right subtree is the skewer tree for Cs. Further C», a
set of skewered regions (suitably preprocessed for skewered-region queries using
algorithm A') is also associated with W. Observe that |C,| < 3n, |Cs| <3n,and |Gy < n.

To answer a region location query for a point ¢ using such a skewer tree we carry
out a skewered-region query for g in C; requiring time O(Q'(n)); in addition, we
carry out aregion location query for g in the region tree corresponding to either C; or
C; depending on whether g, < m or q, > m. Evidently, Q(n) = Q(n)+O(Q'(n)), i.e.
Q(n)=0(Q'(n) log n). We clearly have P(n) = O(n log n) + P(n), where P(n) is the
time required for the preprocessing of the skewered regions. Since no region is
skewered twice we have

P(ﬂ)g b3 P'(n;)<fi(n)logn vd n;
ny+agtotn=n ny+na+etn=n

=< fi(n)n log n,

consequently P(n)=O(P'(n)) which completes the proof.

332 H. Edelsbrunner, H.A. Maurer

We next introduce an auxiliary problem, the low-point problem. We show in
Lemma 2.2 how solutions to that problem lead to solutions for the skewered-regions
problem and hence, by Lemma 2.1, to the region problem. By exhibiting in Lemma
2.3 a space efficient algorithm for the low-point problem we obtain as Theorem 2.4
the space efficient algorithm for the region problem mentioned earlier.

Consider a set P of n points in the plane. For convenience, we assume that all
x-coordinates and all y-coordinates are distinct. A low-point query consists of a
point g and yields as answer that point of P with minimal y-coordinate which is to the
left and above ¢ (if such a point exists). Fig. 1 illustrates that for P ={py, pa, ..., ps}
and g as shown, p; is the desired point.

The next lemma establishes the connection between the low-point and the
skewered-regions problem.

Lemma 2.2. Any algorithm A" for the low-point problem involving n points with query
time Q"(n), preprocessing time P"(n) = fi(n)n log n and storage requirement S"(n) =
faln)n gives rise to an algorithm A' for the skewered-regions problem involving n
regions with query time Q'(n) = O(Q"(n) log n), preprocessing time P'(n)=0O(P"(n))
and storage requirement S'(n)=0(8"(n)). (As in Lemma 2.1 f, and f> are strictly
positive, non-decreasing functions.)

Proof. Consider a set C of n regions skewered by a line g and sorted as R;,
R;, ..., R, such that R, is below R;,; fori=1,2,...,n—1. Let pi,p5,...,p, be
the left endpoints of the regions R4, R, . .., R,, respectively. Let [be a line parallel
to the y-axis passing through the leftmost of the points pi, p5, ..., ph. (See Fig. 2(a)
for an example.)

To understand our algorithm, consider a line h parallel to the x-axis above R,
(indicated as dashed line in Fig. 2(a)) and imagine each region R, extended to the left
up to the line # as follows: through the left endpoint p; of the region R; draw a line
upward and parallel to the y-axis until the line either meets the bottom curve of some
region or until it meets the line 4. (The lines at issue are indicated as dashed lines in

Space-optimal solution of general region location 333

s A
- - @
R
Rg ; Pg
"\——.
Py
\
N
g - - - -8
Ps
Ry
@
N
Py
S - - - - — = K]
Q' n,
R, e
e ¥
e
R, 7
R1 1
| eV
—
& b
Fig. 2.

Fig. 2(a).) In this way we have associated with each region R; a curve ¢; bounding that
region from below (indicated solidly in Fig. 2(a) for R3) such that a point g above ¢;
cannot occur in any region R; with j smaller than i.

Consider now a set of n points defined by P ={p; = (x;, i)|x; is x-coordinate of p/,
for i ranging from 1 to n}. The set of points corresponding to p}, p5, . . ., ps of Fig.
2(a)is shown in Fig. 2(b). Observe that the y-coordinates of p} is smaller than the one
of p4 but the situation is the other way round for p, and ps.

Consider the set P preprocessed for an algorithm A for low-point queries in P. We
are now ready to describe how we locate a point g = (q,, q,) between the lines /, h, and
g amongtheregions Ry, R, ..., R,.(The cases that g is left of [, right of g, or above h
are either trivial or treated analogously.) At each stage we will try to locate g among
the regions R;, R;.1,..., R; (initially / is equal to 1 and j is equal to n). We let
m =3(i +7) and consider the relative position of g with respect to R,,. Two cases are
distinguished:

Case 1: q isto theright of p;, (the left endpoint of R,,). We test whether g isin R,,,
(in which case we are finished), whether g is below R,,, (in which case we continue our
location algorithm for the regions Ry, R,, ..., R,,_1), or whether g is above R,, (in
which case the location algorithm is continued for the regions R 41, Rp+2s « « - s R}).

334 H. Edelsbrunner, H.A. Maurer

Case 2: q isto the left of p,,. In this case ¢ cannot be in R,,.. If it occurs at all in one
of the regions, it must occur either

(a) inoneof R, R5,...,Rm_1 01

(b) inone of Ry+1s Rsas. o« s R

To determine which of (a) or (b) holds, we check whether g occurs below ¢, or not.
(In Fig. 2(a) q is checked against c3.) If R, is the lowest region above R,, extending
further left than g (in the example of Fig. 2(a) k is equal to 6), then ¢ is below ¢,, iff g
is below R,. Thus it remains to determine the value k. But this can be done by
performing a low-point query for ¢’ = (g, m) in P yielding a point p; (and hence the
desired region Ry) in O(Q"(n)) steps by assumption.

Since Cases 1 and 2 together are carried out at most log n times (after log n steps
we have at most one region left), and since Case 1 requires O(1) steps and Case 2
requires O(Q"(n)) steps, we have Q'(n) = O(Q"(n) log n) as desired. The bounds for
P'(n) and §'(n) are clearly as stated which completes the proof.

We now present a space efficient algorithm for the low-point query and, by Lemma
2.2, for the skewered-region query.

Lemma 2.3. A set P of n points can be preprocessed in time P"(n)=O(n log n) into a
data structure of size §"(n) = O(n), such that each low-point query can be carried out in
O(log n) steps.

Proof. Asbefore, we assume that all x-coordinates and all y -coordinates are distinct
and strictly positive. Our algorithm is obtained by combining the ‘locus approach’
(i.e. the idea of regions of constant answer) with the polygon location algorithm of
Kirkpatrick [6].

Consider the set of n points P sorted is ascending order by y-coordinate,
P=pi, pa,...,pn Let R be an axis-parallel rectangle containing all of P. Associate,
for i ranging from 1 to #, to each point p; a region M; as follows:

M, is that part of R below and to the right of p; whichisnot yetin M; U MU~ - - U
M;_,. Observe that each M; is defined by two half-rays starting at p;, each producing
exactly one new intersection point. Thus, after carrying out the described process for
P1, P2, - - - » Pns We have a straight-line subdivision of R with exactly 4 +3n vertices.

The situation is depicted for 6 points in Fig. 3.

The crucial observation is that a point g is in M; if and only if the low-point
query for q yields as answer p;. Thus, to solve a low-point query for ¢ we just have
to carry out a polygon location algorithm in the straight-line subdivision of R
given by the 4+ 3n points. By the algorithm of Kirkpatrick [6], this can be done in
O(log n) steps using O(n) space and O(n logn) preprocessing which completes
the proof.

We now have obtained the main theorem of this paper.

Space-optimal solution of general region location 335

Fig. 3.

Theorem 2.4. Region location in a collection of n non-overlapping regions can be
carried out in time Q(n)=O(log’ n), using a data structure requiring O(n log n)
preprocessing and O(n) space.

Proof. Combine Lemma 2.1, Lemma 2.2, and Lemma 2.3.

3. Remarks and applications

In the preceding section, a new data structure supporting general region location in
the plane has been introduced. The significance of this problem (and therefore of the
structure) stems from the reduction of a number of geometric problems to certain
types of region location.

Our solution is well suited for practical situations, since it requires only linear
space and is quite simply implemented. We would like to mention briefly one type of
region location that occurs as subproblem for computing the contour of a set of
vertical and horizontal line segments which was investigated by Lipski and Preparata
[9].

Given a set of non-overlapping rectilinearly-oriented rectangles as set of regions,
determine the rectangle a query point is in. Since the regions are known to be
rectangles, the reduction to the low-point problem (see Lemma 2.2) is not necessary
which saves a factor log n in time for answering a query.

Hence, we have a solution for the static rectangle location problem with linear
space and O(log” n) query time. Another advantage of working without the low-

336 H. Edelsbrunner, H A. Maurer

point structure is the possibility to dynamize by balancing the skewer tree. A similar
approach as undertaken by Edelsbrunner [4] who used a method developed by
Willard [14]showing that balancing yields a dynamic solution with time O(log” n) for
insertion, deletion, and answering a query.

This is the best solution for dynamic rectangle location known to date. Dynamiza-
tion methods that split the static structure in a number of smaller structures imply an
additional factor log n in the query time which makes them less interesting in this
situation.

Additional applications can be found in Edelsbrunner and Maurer [5] which is an
earlier and fuller version of this paper.

References

(1] J.L. Bentley and H.A. Maurer, A note on Euclidean near neighbor searching in the plane,
Information Processing Lett. 8 (1979) 133-136.
[2] D.P. Dobkin and R.J. Lipton, Multidimensional searching problems, SIAM J. Comput. 5 (1976)
181-186.
[3] H. Edelsbrunner, A new approach to rectangle intersections, submitted for publication.
[4] H. Edelsbrunner, Dynamic data structures for orthogonal intersection queries, Technical University
of Graz, Institut fiir Informationsverarbeitung, Report 59 (1980).
[5] H. Edelsbrunner and H.A. Maurer, On region location in the plane, Technical University of Graz,
Institut fiir Informationsverarbeitung, Report 52 (1980).
[6] D.G. Kirkpatrick, Optimal search in planar subdivisions, University of British Columbia, Depart-
ment of Computer Science (1979).
[7] D.E. Knuth, The Art of Computer Programming. Vol. III, Sorting and Searching (Addison-Wesley,
Reading, MA, 1973).
[8] D.T. Lee and F.P. Preparata, Location of a point in a planar subdivision and its applications, STAM J.
Comput. 6 (1977) 594-606.
[9] W. Lipski, Jr. and F.P. Preparata, Segments, rectangles, contours, J. Algorithms 2 (1981) 63-76.
[10] R.I. Lipton and R.E. Tarjan, Applications of a planar separator theorem, Proc. 18th Annual FOCS
Symposium (1977) 162-170.
[11] H.A. Maurer and T.A. Ottmann, Manipulating a set of points-a survey, in: M. Nagl and H.-J.
Schneider, Eds., Applied Computer Science 13 (Carl Hanser, Munich, 1979) 9-29.
[12] F.P. Preparata, A new approach to planar, point location, University of Illinois at Urbana-
Champaign, Coordinated Science Laboratory, Report R-829 (1978).
[13] M.L Shamos, Geometric complexity, Proc. 7th Annual ACM Symposium on Theory of Computing
(1975) 224-233.
[14] D.E. Willard, An introduction to super-B-trees, University of Iowa, Department of Computer
Science (1979).

