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1. Introduction

Recent developments concerning intersection
searching involving special kinds of geometric objects
have motivated us to investigate intersection search-
ing with general polygons in the plane. The papers of
Edelsbrunner [10] and Edelsbrunner and Maurer [12]
can be seen as concluding a long period in which
various special cases of essentially one problem were
examined, namely, the intersection searching problem
for orthogonal objects. A geometric object is called
orthogonal, if every one of its edges are parallel to
one of the coordinate axes. Two objects are said to
intersect if they have at least one point in common.
Special cases of intersection searching for orthogonal
objects considered prior to [10] and [12] include
problems such as the range searching problem (e.g.
Bentley and Maurer [2], Bentley [1], Willard [21],
and others), the line intersection searching problem
with vertical and horizontal line segments (e.g.
Vaishnavi and Wood [20]), and the inverse range
searching problem (e.g. Vaishnavi [19]). The paper
of Bentley and Wood [4] initiated a series of papers
concerning orthogonal rectangle intersection, the
most important of which are due to Six and Wood
[17,18]. Edelsbrunner [8,9] gave the ingredients for
a uniform treatment of orthogonal intersection
searching.

The successful treatment of general orthogonal
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objects in [10] and [12] suggested a general treatment
of geometric intersections involving simple polygons
with a bounded number of edges, leading to what we
call the polygon intersection searching problem: Given
a set of simple plane polygons with a bounded num-
ber of edges and a query polygon of the same type,
determine all polygons intersecting the query object.
Fig. 1 illustrates this problem be depicting eight
simple polygons, each of which consists of at most
five edges. (Notice that degenerate polygons such as
points are also allowed.) The query polygon consists
of four edges and intersects four of the eight objects.
As will be explained in more detail in the next
section, the polygon intersection searching problem
can be solved by reducing it to three simpler search-
ing problems which are of independent interest. The
first of these involves a set of polygons (again with a
bounded number of edges as will be assumed through-
out the paper) and asks for the identification of all
polygons containing a specified query point. The
second asks for all line segments of a given set which
intersect a given query line segment. The third,
finally, requires the determination of all points of a
set which lie in a given query polygon. These prob-
lems are generalizations of their counterparts in
orthogonal object searching, namely of the inverse
range searching problem, of the rectilinear line seg-
ment intersection searching problem, and of the
range searching problem.
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Fig. 1. Polygon intersection searching.

The main result is the following: Let S denote a
set of n simple polygons in the plane such that each
polygon is bounded by at most a constant number
of edges. A polygon intersection query asks for the t
polygons in S that intersect the query polygon which
is again a simple polygon in the plane bounded by at
most a constant number of edges. With suitable pre-
processing, such a polygon intersection query can be
answered in time O(log n + t).

This result is obtained by transforming several
subproblems by means of a geometric transform to
planar point location searching which can be defined
as follows: Suppose we have a subdivision of the
plane defined by n straight-line edges which do not
intersect except possibly at their endpoints. A point
location query asks for the region of the subdivision
a given query point is in. This problem has been
thoroughly examined in the past. Dobkin and Lipton
[7] were the first to obtain a solution that answers a
query in time O(log n). However, their method is
based on a rather space consuming data structure.
Preparata [15] refined their method and reduced the
space requirements to O(n log n) without worsening
the query time. Finally, Kirkpatrick [13] presented a
solution optimal in time and space, i.e. the data struc-
ture requires O(n) space and allows the determination
of the region a given point is in in O(log n) time. Only
a few problems remain open in this area and are those
mainly involving arbitrary regions, as considered by
Edelsbrunner and Maurer [11].

In the next section, the main theorem is estab-
lished. Before doing so, the three subproblems are
examined to which the main result can be reduced.
Finally, the contribution of this paper is discussed and
some directions for further research are pointed out.
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2. Polygon intersection searching

We are interested in finding a fast solution for the
polygon intersection searching problem. We will show
that this problem (and hence many simpler problems)
can be solved in a time proportional to the logarithm
of the number of polygons involved plus the time to
write the answer. Unfortunately, our method will be
rather costly in space and preprocessing time. The
polygons considered are assumed to be simple (i.e.,
the edges of one polygon do not intersect except
possibly at their endpoints, and each edge intersects
its two ‘neighbor’ edges only) and bounded by at
most a constant number, say K, edges.

Suppose a set of points, lines, and polygons is
given. We determine the objects which intersect a
query polygon by solving three subproblems:

(1) given a point, determine all the polygons it is
n,

(2) given a line segment, determine all the line seg-
ments it intersects,

(3) given a polygon, determine all the points it
contains,

We are done if we can show that each one of these
subproblems can be solved in O(log n + t) time, while
the methods report the same polygon intersection no
more than a constant number of times.

The following three theorems will be devoted to
the above three subproblems. They are obtained by
transforming the respective problems to planar point
location searching,

We are especially interested in solutions that allow
a point location query to be answered in O(log n)
time.

Since our structures will require much space any-
way, any of the methods due to Dobkin and Lipton
[7], Preparata [15], or Kirkpatrick [13] will serve in
the subsequent discussion.

Theorem 1. Given a set of n simple polygons in the
plane with a bounded number of edges, there is a data
structure such that the t polygons that contain a given
point can be located and reported in O(log n +1t)
time.,

Proof. We will reduce this problem to planar point
location searching.
The n polygons together consist of at most Kn
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edges. The collection of edges establishes a straight-
line subdivision of the plane. Each region of this sub-
division is covered by some of the original polygons.
Our intention is to precompute for each region of the
subdivision the set of covering polygons. To deter-
mine all the polygons a point is in, it is sufficient to
determine the region it lies in. The polygons covering
this region will be precisely the polygons that enclose
the point and must be reported.

Observe that the subdivision consists of O(n + )
vertices, where s denotes the number of intersections
occurring among the various edges. A single edge can
intersect at most K(n — 1) edges, hence, s is bounded
above by K?n(n — 1). This implies that the subdivi-
sion comprises no more than O(n + s) regions, each
of which has to be assigned the list of all covering
polygons.

The subdivision can be set up in O(n log n + s log n)
time (see Nievergelt and Preparata [14]), and all the
lists of covering polygons can be assigned in addi-
tional O(n + sn) time, using O(n + sn) space. Any of
the structures developed by Dobkin, Lipton [7],
Preparata [15], and Kirkpatrick [13] will serve to
establish the final structure which allows a query to
be answered in O(log n + t) time.

In order to solve the subproblems (2) and (3), we
need a geometric transform T to reduce them to
planar point location searching as well. One such
transform, T, proposed in Brown [5] transforms a
point p with Cartesian coordinates (a, b) into the line
Tp of points (x, y) satisfying y = ax + b. Conversely,
a line € described by y = kx + d is transformed into
the point T with coordinates (—k, d).

Lemma 1. Let £ be a non-vertical line in the plane and
let ¢ denote the halfplane above £, and £~ the half-
plane below €. If a point p with coordinates (a, b) is
in € then Ty is in Tp, and if p is in € then Ty is in T;',.

This lemma can be established by straightforward
calculation. We leave the details to the reader. Since
lines parallel to the y axis must be treated separately,
we mention a possibility to deal with such lines. First,
we assume that the left halfplane of such a vertical
line v lies ‘above’ it and that the right halfplane lies
‘below’ it. Let v be specified by the equation x = c.
Due to our assumption, v resembles the line satisfying
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y = mx — cm, for a sufficiently large m, and thus we
transform v into the point T, with coordinates (—m,
—cm). If p denotes an arbitrary point with coordinates
(a,b), then p is in v* if a is less than ¢, and p is in v~

if a is greater than c. Conversely, Ty is in Tj, if (—m,
—cm) lies above y = ax + b, which implies that a is
greater than c. Analogously, if a is less than ¢, then T,
isin Tp.

Theorem 2. Given a set of n line segments in the plane,
there is a data structure such that those t line seg-
ments that intersect a given query line segment can be
located and reported in O(log n + t) time.

Proof. Let s denote the number of intersections
among the n line segments. First, the n segments are
cut into pieces such that no pair of these pieces inter-
sects except possibly at their endpoints. As can be
readily seen, s is bounded above by n(n — 1). The
cutting process results in a set of n + 2s new line seg-
ments with 2n + 4s endpoints. Transform the end-
points into lines by means of the transform T. This
gives a planar subdivision comprising O((n + 5)?)
regions.

Let 2 denote the query line segment and let € be
part of the line L specified by the equation y = kx +d.
All original line segments whose endpoints lie in differ-
ent halfplanes L* and L~ intersect L and thus poten-
tially intersect £. In order to obtain these line seg-
ments, we transform L into Ty, = {—k, d) and look for
the region of the subdivision Ty is in. This region
uniquely determines the original segments intersectins
113

Since we consider sets of non-intersecting line seg-
ments, the segments intersecting L are totally ordered
w.r.t. their intersections with L. Note that Lemma 1
implies that this total order does not change for any
M with Ty in the same region as Ty . Thus, the totally
ordered set of line segments may be preprocessed for
each region and those t of them which intersect £ can
be determined by binary search. The time needed to
answer a query is therefore O(log n + t), using a struc-
ture requiring O(n(n + 5)? ) space and time to con-
struct.

Similarly, the third subproblem is solved with the
techniques of geometric transformation and planar
point location searching. However, before discussing
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the actual problem of determining the points lying in
a specified polygon, we focus on a more elementary
problem.

Lemma 2. Given n points and a halfplane, there is a
data structure that permits us to locate and report
those t points that lie in the halfplane in time
O(log n +1).

Proof. As was previously carried out, the given points
are transformed by means of T into lines to establish
a planar subdivision. The line £ bounding the given
halfplane is transformed into the point Ty and the
region to which Ty belongs is determined. The lines
above the region correspond to original points in €,
and the lines below the region correspond to points
in €7, If we associate with each region two lists con-
taining the points corresponding to lines above and
below the region, respectively, O(log n) time for
locating the desired points suffices. The data struc-
ture requires O(n*) space and time to construct,
since the subdivision comprises O(n?) regions, to
each of which two linear lists (with at most n points
each) are associated.

Theorem 3. Given n points in the plane, there is a
data structure that permits us to locate and report
those t points that lie in a specified simple polygon
that is bounded by at most a constant number of
edges in time O(log n + t).

Proof. Note that the query polygon comprises at
most K edges, and hence, can be decomposed in O(1)
time into K — 2 disjoint triangles. The problem is
solved by determining for each constituent triangle
the points that lie in it.

Once more, the n points are transformed by
means of T into n lines to establish a subdivision of
the plane consisting of r = O(n?) regions R;, with i
ranging from 1 tor. A query triangle is interpreted as
the intersection of three halfplanes. A query asking
for those points that lie in a specified triangle is
called a triangular range query. Such a query can thus
be accomplished by, first, transforming the three lines
bordering the halfplanes into three points, and second,
searching for the regions of the subdivision the three
points lie in. The triple of regions obtained uniquely
determines the set of original points in the triangle.
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In the preprocessing phase, a three-dimensional
array A(i, j, k) (with i, j, and k ranging from 1 to 1) is
set up. A triple of regions R;, R;, Ry corresponds to
the element A(l, j, k) of the array. The 1* = O(n®)
elements of the array that correspond to triples of
regions each contain the answer. Since each answer
may comprise up to n of the original points, the above
structure requires O(n”) space and time to construct.
A query can be answered in time O(log n + t), where
t denotes the number of points inside the query tri-
angle.

We now demonstrate how the general problem can
be treated by solving several instances of the three
subproblems, thus proving our Main Theorem.

Main Theorem. Suppose n simple polygons in the
plane, bounded by at most a constant number of
edges, are given. With suitable preprocessing, each
polygon intersection query can be answered in time
O(log n + t), where t denotes the number of polygons
that intersect the query polygon which is of the same
type as the other polygons.

Proof. Let p be any point in the interior of the query
polygon. The solution to subproblem (1) can be
used to report the polygons that enclose this point,
including all polygons which enclose the query poly-
gon. The solution to subproblem (2) can be used to
report all occurring edge intersections. This enables
us to report those polygons which intersect the query
polygon by at least one edge. A point in the interior
of each polygon is chosen and checked to see if it is
in the interior of the query polygon. If it is, the asso-
ciated polygon potentially lies entirely in the query
polygon. Hence, the solution to subproblem (3) is
used to detect those polygons that lie entirely within
the query polygon.

A polygon that intersects the query polygon will
be detected potentially once with subproblem (1), no
more than K2 times with subproblem (2) and poten-
tially once with subproblem (3). Hence, the reduction
method reports one and the same polygon intersec-
tion at most K? + 2 times.

The reason for restricting our polygons to com-
prise at most a constant number of edges has become
obvious in the proof of the above Main Theorem: One
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and the same intersection could be reported too
often, otherwise. Additionally, we would be forced to
measure the required resources in terms of the total
number of edges (which is proportional to the num-
ber of polygons in our cases) instead of the number
of polygons.

Let us now demonstrate how multiple answers (i.e.
one and the same intersecting polygon is reported
more than once but at most a constant number of
times) can be avoided without affecting the stated
complexities. A bit-vector with a bit for each stored
polygon is used. We assume that prior to a polygon
query each bit equals 0. Now instead of reporting
each polygon immediately after having detected it,
we just mark the intersection by setting the appropri-
ate bit to 1. After having marked the occurring inter-
sections, the indicated polygons are reported and the
associated bits are reset to 0.

A challenging task is the reduction of space
requirements with or without increasing the time
needed to answer a query. Note that, first of all, space
reductions for the triangular range searching problem
would improve the space requirements for polygon
intersection searching. However, the problems con-
sidered in Theorem 1 and 2 are of independent inter-
est and it seems worthwhile to think about space
reductions in these cases as well.

Note that our methods, as presented, fail to deter-
mine the number of polygons intersecting a query
polygon. This rather unusual effect occurs due fo the
fact that one intersection is in general reported more
than once (but at most a constant number of times).
Although the method described in the last section
cannot determine the number of intersections, it can
be modified to do so. The main problem has been
reduced to three subproblems which solve the main
problem via independent processing. By performing
the subproblems dependently (as is done above for
the triangular range searching problem), we can deter-
mine the number of intersections in O(log n) time.
However, the space requirements are even worse than
for the structures that report intersections.

3. Discussion

We have shown that O(log n + t) time suffices to
answer a polygon intersection query involving n sim-
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ple (and potentially non-convex) polygons with a
bounded number of edges, where t denotes the num-
ber of polygons intersecting the query polygon, pro-
vided the polygons are stored in a proper data struc-
ture. The result has been obtained by reducing the
problem to three simpler searching problems which
are of independent interest. The three subproblems
are solved by means of a geometric transform intro-
duced by Brown [5] and by solutions of the point
location searching problem.

Perhaps the most urgent question is to decrease the
prohibitive space requirements of our data structures.
This may also be of interest for the design of dynamic
structures supporting polygonal intersection search-
ing.

Finally, we would like to draw attention to an
interesting phenomenon occurring in ‘non-orthogonal®
geometric intersection searching. Shamos and Hoey
[16] were the first to consider the problem of deter-
mining whether a set of line segments in the plane is
free of intersections or not. Bentley and Ottmann [3]
generalized their algorithm to report all intersecting
pairs of such a set in O(n log n + s log n) time and
O(n +s) space, where s denotes the number of inter-
sections occurring among the line segments.
Recently, Brown [6] improved this algorithm to use
only O(n) space. Anyway, in the formula for the
time-complexity the number of intersections occurs
implicitly with the number of line segments. In other
words, the algorithms cannot apparently manage in
time dependent only on the input size plus time linear
in the output size. The same situation appeared in
Nievergelt and Preparata [14] who succeeded in
cleaning up the case of the intersection of two con-
vex subdivisions of the plane, but were not able to do
so for the general case.

The same phenomenon occurs with the searching
problems considered in this paper. The time- and
space-bounds grow with the number of intersections
among the objects of the set. It seems worthwhile to
investigate this phenomenon in ‘non-orthogonal’
intersection more closely.
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