GRAPHICS IN FLATLAND:
A CASE STUDY

Herbert Edelsbrunner, Mark H. Overmars and
Derick Wood

ABSTRACT

Usually in computer graphics, a two-dimensional view of a set of three-
dimensional objects is considered. In this article we reduce the dimen-
sionality by one in each case. In other words we study what, for obvious
reasons, we call Flatland graphics.

This forms the beginning of a mathematical investigation of computer
graphics and, at the same time, provides uniform solutions for a number of
computational geometry problems. In particular we study the maintenance
of a view during insertion and deletion of objects and the *‘frame-to-frame”’
coherence while walking around a set of objects. Both parallel and per-
spective projections are considered.

Our major concern is convex objects that are simple—in a sense, made
precise in this article. However, we will close this article by discussing some
possible extensions to nonconvex objects and/or to higher dimensions.

Advances in Computing Research, Volume 1, pages 35-59
Copyright © 1983 by JAI Press Inc.

All rights of reproduction in any form reserved.

ISBN: 0-89232-356-6

35

36 H. EDELSBRUNNER, M. H. OVERMARS, and D. WOOD

The investigation also serves to demonstrate a number of tools that have
been developed recently in the context of computational geometry. For
example, dynamization and searching.

1. INTRODUCTION

An important and fundamental algorithmic problem in computer graphics
is the following: given a set of objects in three-dimensional space, compute
the view from some fixed direction or point, that is, compute the picture
one sees looking from the direction or point. The main issue is to eliminate
all parts of the objects that cannot be seen (i.e., that lie behind some othe*
object). It is a generalization of the hidden line problem in which objects
have straight line edges. The problem has numerous applications in areas
such as picture processing and the development of movies (see, for ex-
ample, [15]).

Notwithstanding the problem’s importance, there have been few at-
tempts in the literature to investigate it theoretically (see [22]). It is only
recently that such investigations have begun to make their appearance
(for example, [4, 10, 20, 24, 25]).

We simplify the preceding problem conceptually by only considering
graphics in “‘Flatland.”” Flatland is a two-dimensional world, described
by Edwin A Abbott in his book Flatland: A Romance of Many Dimensions
[1], with objects like line segments, convex polygons, and circles as in-
habitants. We study the generalized hidden line problem in Flatland for
three reasons:

1. The results and algorithms are interesting in their own right because
of their relation to other planar geometric problems.

2. A number of three-dimensional graphics problems are for the main
part twe-dimensional, for example, walking in a maze.

3. The results possibly lay a foundation and show directions for further
research on the corresponding problems in three- and higher-di-
mensional space (see Section 6).

Some aspects of the hidden line problem in Flatland have already been
studied. Shamos [21] and Lee and Preparata [13] consider the problem
of computing the kernel of a simple polygon, that is, the region inside the
polygon from which the whole polygon is visible. Shamos [21] and El-
Gindy and Avis [8] treat the problem of computing the view of a simple
polygon from some interior point in O(#n) time. Freeman and Loutrel [9]

Graphics in Flatland 37

consider the more general case in which the point of view may also be
outside the polygon, but their algorithm appears to run in O(x?) time. Avis
and Toussaint [3] define the notion of visibility from an edge of a polygon
and give an O(n) algorithm for solving the problem. All of these results
only deal with the case in which there is a single polygon. In this article
we consider the much more general setting of the ‘*hidden line”’ problem
in which we have a set of simple objects. We assume that these objects
do not intersect, but we allow them to touch. Hence *‘larger’’ objects can
be decomposed into simple objects (a simple polygon is in general not a
simple object).

We consider the two standard types of views in Flatland. The first type
's the view from some direction, a parallel view. In this case, the view
-onsists of a line on which the parts of the objects that are visible from
the direction are projected (Figure 1). (The reader is advised to look along
the paper from the direction of view). For the sake of clarity we number
the objects in the set from 1 to n (the total number of objects in the set).
The second type of view is the view from a point, a perspective view. In
this case the view consists of a circle on which the parts of the objects
we can see from the given point are projected (Figure 2). Perspective
views correspond to our natural way of seeing, although we are only able
to see part of the perspective projection.

direction of

4
6 \view

Figure 1. A parallel view of a set of objects.

38 H. EDELSBRUNNER, M. H. OVERMARS, and D. WOOD

8 i
-
-~
e
5 -
-~
o g
o ///
A LN
\ e o
% ////’,/
> e .
\ e order of view:
4

P A 0,1,4,0,8,0,6.

), . (0 stands for an open
point of view

place.)

Figure 2. A perspective view of a set of objects.

Definition. A simple object is a bounded convex object such that

1. Any parallel or perspective view of it can be computed in constant
time.

2. If the views of two simple objects overlap, then constant time suf-
fices to decide which one of the two objects can be seen entirely.

3. The up to four common tangents of two simple objects can be com-
puted in constant time.

Two objects that touch each other (i.e., objects whose boundaries overlap
but do not cross) are by definition nonintersecting. Typical examples of
simple objects are line segments, disks, and convex polygons with a
bounded number of edges. In the sequel, objects are assumed to be simple
and sets of objects are assumed to contain only nonintersecting objects
(see Figures 1 and 2, which both display a set of eight nonintersecting
simple objects).

We first will consider parallel views. In Section 2 we will show that
parallel views of a set of n objects can be computed in O(n log #) time,
using a divide-and-conquer technique. It is also shown that known dy-
namization techniques can be applied for maintaining the view from some
fixed direction at the cost of O(n) time per insertion or deletion of an
object.

Graphics in Flatland 39

An important related problem is the problem of maintaining the view
while **walking around’’ the set of objects. So, starting with the view from
some starting direction, we want to maintain it while “‘walking’’ in a
counterclockwise direction, say. Of course, with each new direction the
relative size of the parts of the objects one sees changes, but the order
in which one sees these parts only changes when a “‘critical’’ direction
is crossed. In Section 3 we will give methods for maintaining this order
of objects while walking around the set.

In Section 4 we will consider the searching variant of the problem of
computing a view: given a set of objects, preprocess them in such a way
that views from different directions can be computed efficiently. The
problem was recently treated by Fuchs, Kedem, and Naylor [10]. We will

sllow a completely different approach to obtain trade-offs between query
time, preprocessing time, and storage required.

In Section 5 we will examine perspective views. It is shown that the
method for computing and maintaining a view, as described in Section 2,
carries over. Restricted versions of the walking around problem and the
searching variant will be considered as well.

Finally, in Section 6, we will discuss how nonconvex objects might be
included, and also we will discuss the problems raised by moving to higher
dimensions.

2. COMPUTING AND MAINTAINING A
PARALLEL VIEW

A parallel view of a set of objects consists of a partition of a line. Each
part of the line corresponds to an object in the set or to a place where
one can look through the set (from the direction of view). See Figure 3
for some different parallel views of the same set of objects. To each part
of the line we assign the number of the corresponding object. If the part
corresponds to a place where one can look through the set we assign 0

) it. It is possible that different parts of the line correspond to the same
object, and hence, are assigned the same number (see, for example, view
3 of Figure 3). A partition point corresponds to a leftmost point of an
object (Figure 4A) or a rightmost point of an object (Figure 4B), with
respect to the direction of view. (A part of the line might consist of one
point if it corresponds to a line segment in the direction of view. In this
case we treat it as a double partition point).

LEMMA 1. The parallel view of a set of n objects from a fixed direction
consists of at most 2n + 1 parts, that is, has at most 2n partition points.

Proor. We show that one can assign left and right end points of objects
to partition points in a unique way. In Case 1 we assign the corresponding

40 H. EDELSBRUNNER, M. H. OVERMARS, and D. WOOD

2

& 5
view 2

Figure 3. Three different parallel views of the same set of objects.

left end point to the partition point; in Case 2 we assign the corresponding
right end point. As the number of left and right end points is bounded by
2n, there are at most 2n partition points and hence at most 2n + 1 parts.
This completes the argument. [J

For computing the view of a set of objects from a fixed direction we
will use a divide-and-conquer technique.

Figure 4. Two partition points: (A) at the leftmost point of an object
(Case 1) and (B) at the rightmost point of an object (Case 2).

Graphics in Flatland 41
LEMMA 2. Given a fixed direction and a set of objects V = {x,, . . . ,
Xn}. The view of V can be computed in O(n) time from the views of A =

{xi, ..., x}and B = {x;11, . .., x,}, forany 1 =i <n.

Proor. Let the parts of the view of A from left to right be numbered

do, @i, . . . , ax and let the partition points in between the py, . . . , p.
Similarly, let the parts of the view of B be numbered ao’, i/, . . ., a/,
and let the partition points in between the p,’, . . . , p/. One easily verifies

that partition points of V = A U B are partition points of A or B and that
if at some location in the view of A U B object O is visible, then it is
visible at that location in the view of A or in the view of B (see Figure 5
for an example). We will compute the view during one simultaneous walk

ong the lists for the views of A and B. At each partition point of both
views we check whether or not this point is also a partition point of the
total view. As a result of the definition of a simple object (condition 2)
this checking can be done in constant time, which immediately implies
the assertion. This completes the argument. O

Lemma 2 provides the conquer step we need.

THEOREM 1. Given a set of n objects and a direction, one can compute
the parallel view from the given direction in O(n log n) time, and this is
optimal in the worst case.

Proor. To compute the view of the set of objects V, we split V into
two equal-sized subsets, compute the views of the two subsets recursively
in the same way, and merge the answers using Lemma 2. Besides the

view view view of
of A of B A B
) 0 0 0r
% 5 5
{" l'"h\ g 7 ?L
\5"‘ . /]
1 el
iy 2 5 5
v 8 8 : gl =
@ = J 0
i -
- q a
-..-—\"' 1 ‘] _ 1 1 1
= i 1D
=i \ F.r 0 6 6

Figure 5. Three views of a set of objects from a fixed direction.

42 H. EDELSBRUNNER, M. H. OVERMARS, and D. WOOD

recursive calls, this method takes O(n) time. Hence, the total time T(n)
needed is given by the following recurrence:

T(n) = 2T(n/2) + O(n)

It is well known that the solution of this recurrence is T(n) = O(n log n).

Because computing the view can also be used to sort n real numbers,
the obtained bound is also optimal in the worst case. This completes the
argument. [J

This solves the problem of computing the view of a set of objects from
a given direction.

A second problem is the problem of maintaining the view from a fixed
direction while objects are inserted into and deleted from the set. W
assume that the set will be updated in such a way that objects never
intersect. Overmars [17] considered the following class of problems, which
are defined for finite sets of objects and hence are called set problems.

Definition. [17] A set problem P is called O(n)-order decomposable if
there exists an ordering ORD and a function [such that for each set {a;,
..., dpn}, ordered according to ORD

P(ai, . .., as,) = O[P(ay, ..., a), P@i+1, . . ., Gn)]

for all i with 1 = i < n, where [takes O(n) time to compute.

Using for ORD any ordering we like and using for [J the merging step
described in the proof of Lemma 2, it follows from Lemma 2 that the
problem of computing the view is O(n)-order decomposable. Using the
dynamization method known for O(n)-order decomposable set problems
[17], we obtain the following result:

THEOREM 2. Given a fixed direction, one can maintain the view of a
set of objects from that direction at the cost of O(n) time per insertic
and deletion of an object, where n is the cardinality of the set.

The disadvantage of O(n log n) space required by this method can be
remedied using a technique attributable to Gowda and Kirkpatrick [11].
It reduces the space to O(n loglog n) without changing the update time
bounds.

When we are not interested in the view after each update but only want
to maintain the set of objects in such a way that the view can be computed
efficiently when needed, we can apply another dynamization technique.
This technique was originally described for so-called searching problems,
that is, a set V of objects is to be stored such that questions dependent

Graphics in Flatland 43

on V and on some query object needed for the formulation of the question
can be answered efficiently. For those problems, Overmars [18] defines
the following subclass:

Definition. [18] A searching problem P is called O(n)-decomposable
if there exists a function [J such that for all sets A and B with A N B =
& and for each query object x

P(x, AN B) = 0O[P(x, A), P(x, B)]

where [takes at most O(n) time to compute when the sets contain n
objects.

O(n)-decomposability is an extension of the concept of decomposa-
bility for searching problems as defined by Bentley [5]. As a consequence
of Lemma 2, the problem of computing the view from a fixed direction
is O(n)-decomposable. (The problem at hand can be considered to be a
searching problem for which the questions do not depend on some query
object.) Applying known transformations on structures for O(n)-decom-
posable searching problems [5, 18] to the structure used in Theorem 2 we
obtain the following result:

THEOREM 3. Given some fixed direction, one can maintain a set of
objects at the cost of O(log? n) time per insertion and O(n) time per dele-
tion such that at any moment one can compute the view from the given
direction in O(n) time.

Using the techniques from [11], the amount of storage required can be
bounded by O(n loglog n).

3. COMPUTING ALL PARALLEL VIEWS
(“WALKING AROUND THE SET”)

Problems in computer graphics often require that the view of a set of
objects be maintained while walking around the set. So, we start with the
view from some starting direction; and we want to maintain the view while
changing the direction counterclockwise, say, until we again reach the
starting direction. Of course, with each new direction, the relative size
of the parts of the objects we can see is different, and hence it is unlikely
that there are truly efficient ways of maintaining the actual view while
walking around the set. But the order in which we see parts of the objects
only changes at some critical directions. Hubschman and Zucker [12] have
considered frame-to-frame coherence for convex objects in three-dimen-
sional space.

A4 H. EDELSBRUNNER, M. H. OVERMARS, and D. WOOD

Definition. Scanning the view of a set of objects from some fixed
direction from left to right, we get a list of at most 2n + 1 numbers ranging
from 0 to n that gives the order in which we see parts of the objects. This
list is called the visibility list of the set from the direction.

Clearly, given a view one can construct the corresponding visibility list
in O(k) time, where k is the length of the list. We will show that one can
maintain the visibility list of the set efficiently, while walking around. It
is important that we are able to compute the view corresponding to a
visibility list and an appropriate direction efficiently.

LemMma 3. Given a visibility list for some direction, one can compute
the view from this direction in O(k) time, where k is the length of the lis.

Proor. Let the visibility list be a4, . . . , a;. Hence, we have to locate
the partition point between each pair a;, a;., of parts of the view line. If
a; = 0, then the partition point is the projection of the leftmost point of
a;+1 on the line. Similarly, if a;., = 0, then the partition point is the
projection of the rightmost point of a; on the line. (They cannot both be
0.) Otherwise we compute the view of a; and a;,,. This takes constant
time by definition. In this view there is exactly one point where a; , ; starts
replacing a;. This point is the partition point we searched for. Hence,
each partition point takes constant time to compute, and, hence, the total
time needed is bounded by O(k). This completes the argument. O

Hence, at each moment while walking around the set, one can obtain
the view in O(k) time. The visibility list of a set of objects only changes
when we pass some critical direction.

Definition. Given two objects A and B, a critical direction of A and
B is a direction in which the visibility list of A and B changes.

See Figure 6 for an example of the critical directions two simple objects
A and B can have. Those directions are given by the up to four common
tangents of the two objects. In between the critical directions, the visibility
lists are given. By condition 3 of the definition of a simple object, the
critical directions for two such objects can be computed in constant time.

LemMa 4. Two simple objects have at most eight critical directions.

The proof is obvious since the at most four common tangents of two
convex objects define, at most, eight directions.

Graphics in Flatland 45

l 0BOAO

? 0A0BO

Figure 6. Possible critical directions for two simple objects, A and B.

LemMA 5. Given a set of n objects, there are at most 4n(n — 1) critical
directions.

PrOOF. There are n(n — 1)/2 pairs of objects. Each pair of objects
gives rise to at most eight critical directions, which completes the argu-
ment. [

See Figure 7 for an example of all critical directions of a set of three
objects.

The following lemma shows that the visibility list of the total set only
changes when passing a critical direction of some pair of objects in the
set.

46 H. EDELSBRUNNER, M. H. OVERMARS, and D. WOOD

Iy |

il

Figure 7. All critical directions of a set of three objects.

LemMa 6. Given two directions of view o and B. If there is no critical
direction in between o and B, then the visibility lists from both directions
are the same.

Proor. If the visibility list from o is not equal to the visibility list frow.
B, then there are two objects A and B such that the visibility list from o
restricted to A and B is not equal to the visibility list from B restricted to
A and B. Hence, there must be a critical direction of A and B in between
o and B. This contradicts the assumption and completes the argument. [

To be able to maintain the visibility list while walking around the set
of objects, we have to represent the list in such a way that the ‘‘update”
necessary when passing critical directions can be made efficiently.

LeEmMMA 7. One can represent a visibility list in such a way that the
updates needed when passing a critical direction can be made in O(log k)
time, where k is the size of the list.

Graphics in Flatland 47

Proor. We store the k elements of the visibility list in a dictionary
D, which allows us to locate in O(log k) time the element C of the visibility
list with the following properties: given a direction for which the visibility
list is correct and a point p in the view from this direction, then p lies in
an interval of the view that corresponds to C. In addition to this, the
dictionary D accommodates in O(log k) time changes that are necessary
when a critical direction is passed. (D can be implemented as an AVL-
tree storing the elements of the visibility list in its inner nodes. The nodes
are also maintained in a doubly linked list that allows us to determine in
constant time the predecessor or successor in the symmetric order.)

For convenience, we will interchangably use D to denote the dictionary
that stores a visibility list as well as the visibility list itself. We assume

iat, with each critical direction, we are given the two objects A and B
of which it is a critical direction. Examining the view of A and B before
and after the critical direction, we determine how their view changes and
where the new or disappearing partition point p lies in the view from the
critical direction. We will locate the object C in the visibility list stored
in the dictionary D such that p lies in an interval corresponding to C.
Examining the view of A, B, and C (C is possibly A or B), we can find
out in constant time what change in the visibility list needs to be made
(if necessary). This change consists of the insertion or deletion of one
object. This clearly takes at most O(log k) time, which completes the
argument. [J

(If two or more critical directions are the same, we treat them sepa-
rately.) The structure clearly requires O(k) storage.

LemMa 8. All critical directions of a set of n objects, in order of oc-
currence, can be computed in O(n? log n) time.

Proor. We start with object 1 and compute all its critical directions

ith the other objects. This can be done in O(n) time. Next, we compute
all critical directions between object 2 and the objects 3, . . . , n, between
object 3 and objects 4, . . . , n, and so forth. This takes a total of O(xn?)
time. Ordering the O(n?) critical directions takes O(n? log n) time, which
completes the argument. O

Lemmas 7 and 8 lead to the following solution for the problem of walking
around a set of objects:

THEOREM 4. Given a set of n objects, one can maintain the visibility
list while walking around the objects in a total of O(n? log n) time using
0(n?) space.

48 H. EDELSBRUNNER, M. H. OVERMARS, and D. WOOD

Proor. We first compute the view from the starting direction and
represent the corresponding visibility list in a dictionary D as described
in the proof of Lemma 7. This takes a total of O(n log n) time. Next we
compute all critical directions ordered counterclockwise from the starting
direction. This takes O(n? log n) time according to Lemma 8. Passing each
next critical line takes O(log k) = O(log n) time for updating the visibility
list, according to Lemma 7. As there are O(n?) critical lines to pass when
walking around, this takes a total of O(n” log n) time. The asserted time
bound follows. Because we have to store all O(n?) critical directions, we
need O(n?) storage. This completes the argument. O

Although the method presented is fast, the required amount of storage
is rather large. We will now describe a method that takes more time bt
uses only linear storage. (The same amount of storage has also been
achieved for a special case of our problem by van Leeuwen and Mehlhorn
[23]. They considered the walking around problem for a simple polygon
and obtained an O(n log n) time and O(n) space algorithm where n denotes
the number of vertices of the polygon.)

Again we start with computing the view from the starting direction and
representing the corresponding visibility list in a dictionary D. Next, for
each object i we compute the critical direction d; of i with some other
object such that (1) i lies behind the other object where the change in
view from d; occurs (this is needed to prevent a direction from being
reported more than once), and (2) d; lies nearest to the starting direction.
This takes O(n?) time (Figure 8). We know that the first critical direction
we have to pass must be among the n directions d,, . . . , d,. We store
these directions in order of occurrence in a priority queue Q, such that
the first critical direction is the first element of Q. Let this direction be
d;. To pass this direction we (1) delete d; from Q, (2) perform the appro-
priate update in the visibility list D, (3) compute the new d;, and (4) insert
this new d; into Q. Steps 1, 2, and 4 take O(log n) time (see, for example
[2]) and step 3 takes O(n) time. Hence, passing a critical direction tak.
O(n) time. One easily verifies that in this way the next critical direction
to be passed is always the first element in Q.

THEOREM 5. Given a set of n objects, one can maintain the visibility
list while walking around the set in a total of O(n®) time using O(n) storage.

Proor. Both Q and D have size O(n), and, hence, the amount of
storage required is O(n). The preprocessing takes O(n?) time. The crossing
of a critical direction takes O(n) time, and, as there are O(n?) critical
directions, the total amount of time needed is O(n*). This completes the
argument. [J

Graphics in Flatland 49

starting |
direction} |72

Figure 8. Three critical directions of a set of three objects.

The method just described is only one example of a whole class of
methods for walking around the set of objects, yielding different trade-
offs between the run time and the amount of storage required.

THEOREM 6. Given a set of n objects, for each function f(n), with 1
= f(n) = nflog n, there exists a method Jfor maintaining the visibility list
while walking around the set in a total of O[r*/f(n)] time using of O[nf(n)]
Storage.

Proor. After computing the visibility list D for the starting direction,
we compute for each object i the first f(n) critical directions e
d/™ between i and other objects after the starting direction, where i lies
behind the other object at the place of the change. This takes O(n) time
per object and hence a total of O(n?) time. Storing the nf(n) critical di-
rections in a priority queue Q takes Olnf(n) log n] time. We know that
the first direction in Q is the first critical direction we have to pass. Passing
this direction consists of deleting it from Q and updating the visibility list
D. When we pass a d/", then we also compute the new dl,...,df"™
and insert them into Q. In this way, O clearly always contains the first
critical direction. For each object i, we pass at most O[n/f(n)] times a
d/™. Hence, the total amount of time needed for passing all critical di-

50 H. EDELSBRUNNER, M. H. OVERMARS, and D. WOOD

rections is bounded by O(n? log n) time for updating D and deleting and
inserting directions in Q and O[n*/f(n)] time for computing critical di-
rections. As 1 =< f(n) = n/log n, we can estimate these costs by O[n*/f(n)].
The amount of storage required for D and Q is clearly bounded by
O[nf(n)]. This completes the argument. [J

For example, one can obtain a total run time of O(n* log n) using only
O(n?/log n) storage (cf. Theorem 4).

There are a number of problems that can be solved using the walking
around algorithm described in Theorem 6, for example, the shadow prob-
lem attributable to Preparata [19].

COROLLARY 1. Given a set of n objects, for each function f(n) with
< f(n) < nllog n, there exists a method to compute all directions in which
the shadows of the objects do not overlap, i.e., in which all objects can
be seen separately, in O[n3/f(n)] time using O[nf(n)] storage.

Proor. We use the method of Theorem 6 for walking around the set.
With the dictionary D, which contains the visibility list, we maintain the
information whether or not the objects can be seen separately. By a proper
choice of D, this information can be maintained at a cost of O(log n) time
per crossing a critical direction. The assertion follows. [l

A second example is the stabbing problem [7]. In [6], the general topic
of transversals is discussed.

COROLLARY 2. Given a set of n objects, for each function f(n) with 1
< f(n) < nllog n, there exists a method for computing a line that intersects
all objects when it exists) in O[n*/f(n)] time using O|[nf(n)] storage.

ProoF. One easily verifies that, if there is such a line with directi
d and if d, = d = d- are the two nearest critical directions, then there is
such a line with any direction between d; and d,. There is such a line
with direction d if and only if the views of all objects from d overlap at
some point. Whether there is such a point can be maintained in D at the
cost of O(log n) time per crossing a critical direction. Details are left to
the interested reader. [J

Other problems that can be solved by these methods are, for example,
(1) give all directions in which the view contains holes (places where you
can look through the set); (2) give all directions in which the view is
connected; and (3) give all directions in which you can see only one object.

Graphics in Flatland 51
4. SEARCHING FOR THE PARALLEL VIEW

In this section we treat the searching variant of the problem of computing
a view: preprocess the set of objects in such a way that views from dif-
ferent directions can be computed efficiently. Hence, the directions are
query objects of the searching problem.

TaroOREM 7. Given a set of n objects, for each function f(n), with 1
= f(n) = n, there exists a method of preprocessing the set in time
O[n? log n + n/f(n)] using O[n*/f(n)] storage, such that the views from
different directions can be computed in O[f(n) log n + k] time, where k
i~ the number of objects in the view.

Proor. We will show how to preprocess the set such that one can
obtain the visibility list from any direction efficiently. Computing the view
afterward takes O(k) time according to Lemma 3.

In the preprocessing phase, we compute all critical directions between
each pair of objects in the set, order them, and store them in a dictionary
D. We also assume that constant time suffices to determine the prede-
cessor and the successor of a given critical direction in D. Let d, be the
first direction in D. We compute the view from dy and store the corre-
sponding visibility list in a structure Dy, which we connect with dy. Our
goal is to build a visibility list after each f(n) critical directions. To build
the second visibility list D, connected to dy,, we first copy the list Dy
and perform the appropriate updates on it while we walk from dj to dy).
In general, to build the visibility list D; that has to be associated with
difem, We first copy D;_; and then update the copy while walking from
dii — 17 10 dify. The building of D;in this way takes O(n) time for copying
and O[f(n) log n] time for performing the updates. Hence, the building
of all O[n%/f(n)] visibility lists takes O[n’/f(n) + n* log n] time. As the
~amputation of the critical directions and the building of D take

«n? log n) time, the bound on the preprocessing time follows. As D takes
O(n?) storage and each of the O[n?/f(n)] visibility lists takes O(n) storage,
the total amount of storage needed is O[n*> + n®/f(n)] = O[n’/f(n)] be-
cause f(n) =< n.

To perform a query with direction d to compute the visibility list of the
set from d, we search with d in D for the direction d; nearest to and before
d. Next we walk along the list of critical directions until we find a direction
with an associated visibility list D;. On D; we perform the necessary up-
dates while walking back to d;. D; now contains the visibility list from d.
We copy it and afterward we make all updates to restore it to its proper
form at d;s.,y. The searching with d in D takes O(log n) time. D; can be
at most f(n) directions away from d;, and hence the locating and updating

52 H. EDELSBRUNNER, M. H. OVERMARS, and D. WOOD

of D; takes O[f(n) log n] time. Copying D; takes O(k) time. Undoing the
actions we performed on D; also takes O[f(n) log n] time. The bound for
the query time follows, which completes the argument. [

Since k = O(n), we consider f(n) = n/log n as a reasonable choice. It
yields a data structure that takes O(n? log n) time to construct and uses
O(n? log n) storage such that the views from different directions can be
computed in O(n) time. If we only want to ask some questions about the
view or visibility list, there is in general neither any need to compute the
view itself nor to copy the structure D;. We can answer the question using
the updated D;, after which we undo the actions. In this case the O(k) in
the query time need not be paid.

According to Lemma 2 the problem of searching for the view is an O(.
decomposable searching problem. Using known results for O(n)-decom-
posable searching problems, we get the following result.

THEOREM 8. For a set of n objects in the plane, there exists a data
structure that requires O(n* log n) storage, O(n log n) time per insertion,
and O(n) time for computing the view from a specified direction.

5. PERSPECTIVE VIEWS

The perspective view of a set of objects (i.e., the view from some fixed
point) consists of a partition of a circle. Each circle segment corresponds
to a part of an object that one can see from the fixed point or to a place
where one can look through the set. See Figure 9 for some examples of

@Hn el 8
b S _ o Z-gview
Fos st e WY

///’6// -__0

\\|IJ
\\lf

~ 013
\\k\ﬁ%_
\“‘5 view 2

Figure 9. Perspective views of the same set of objects from different
viewpoints.

Graphics in Flatland 53

perspective views of the same set of objects from different viewpoints.
One easily verifies that a perspective view contains at most 2n partition
points and hence at most 2 parts. In this section, we will list a few results
for computing perspective views. Proofs and details will be omitted be-
cause the methods are very similar to those described in Sections 3 and
4 for parallel views.

LEMMA 9. Given a fixed point and a set of objects V = {x,, . . . , x.}.
The view of V from that point can be computed in O(n) time from the
views of A = {x1, ..., x}and B = {xjs1, ..., xa}, forall 1 =i<n.

THEOREM 9. Given a set of n objects and a fixed point, one can com-
te the view from that point in O(n log n) time.

THEOREM 10. Given a fixed point, one can maintain the view of a set
of objects from that point at a cost of O(n) time per insertion and deletion
of an object, where n is the cardinality of the set.

THEOREM 11. Given a fixed point, one can maintain a set of objects
at a cost of O(log* n) time per insertion and O(n) time per deletion such
that at any moment one can compute the view from the given point in
O(n) time.

To adapt the ideas of walking around the set of objects to the case of
perspective views, we need an analog of the notion of the visibility list.

Definition. Given a perspective view, the corresponding visibility
cycle is the cyclic list of the numbers of the objects one can see (0 for a
place where one can look through the set) in order of occurrence.

Clearly, the visibility cycle of a circular view can be computed in O(k)
time from the view, where k is the length of the list; and given the visibility
cycle, the corresponding view from a point for which the cycle is correct
can also be computed in O(k) time.

We generalize the notion of walking around in the following way: given
some connected curve, called rour, through the plane (see Figure 10), we
want to maintain the visibility cycle while the point of view walks along
the tour. We assume that a tour is simple in the sense that it crosses any
line only a constant number of times and that the intersections with a
given line can be computed in constant time. A tour is also assumed to
intersect no object in the set. For example, a tour might be a circle, a
line, or the boundary of some object in the set.

54 H. EDELSBRUNNER, M. H. OVERMARS, and D. WOOD

O a tour
O o~

Figure 10. A connected curve, called tour, through a plane.

Definition. Given two objects A and B, a critical line of A and B is
a line, the crossing of which somewhere causes a change in the visibility
cycle.

The critical lines of two simple objects are exactly their common tangents.
There are at most four critical lines for any two simple objects and these
lines can be computed in constant time. One easily verifies that, while
walking along a tour, the visibility cycle does not change as long as we
do not cross a critical line of some pair of objects.

THEOREM 12. Given a set of n objects and a tour. For each function
f(n), with 1 < f(n) =< nllog n, there exists a method of maintaining 1
visibility cycle while walking with the viewpoint along the tour in a total
of O[n* + ke,nlf(n)], time, using O[nf(n)] storage, where k., is the total
number of crossings between the tour and the critical lines of objects in
the set.

Proor. The method is quite similar to the method described in the
proof of Theorem 6. We first compute the visibility cycle from the starting
point. One can represent this cycle in a dictionary D such that the updates
needed when crossing a critical line can be performed in O(log n) time.
Next, for each object i we compute the first f(n) points of intersection

pi', ..., p/™ between the tour and critical lines of i and other objects

Graphics in Flatland 55

where i lies behind the other object at the place the view changes. Those
nf(n) intersection points are stored in a priority queue Q. The topmost
point in Q is the first point on the tour where we cross a critical line.
Crossing such a line consists of deleting the point from Q and performing
the necessary updates on the visibility cycle in D. This takes O(log n)
time. When we cross a p/" (for some i) we have to compute the next
pi's ..., p/™ and insert them into Q. This takes a total of O[n +
f(n) log n] time. Clearly, Q always contains the first intersection with a
critical line, While walking along the tour we cross k., critical lines, which
takes O(k., log n) time. Moreover, we have to compute O[k../f(n)] times
new intersection points (when passing a p/“"), which takes a total of
Mk.nlf(n) + k. log n] time. Hence, the total amount of time needed is
. wunded by O[k.n/f(n) + n*] because 1 = f(n) < nflog n, which com-
pletes the argument. [

Preprocessing the set of objects in such a way that views from different
points can be computed efficiently gives rise to tremendous problems. As
stated earlier, the visibility cycle might change when the point of view
crosses a critical line. There are O(n?) critical lines and hence there are
O(n*) regions with possibly different visibility cycles. Preprocessing the
set in a similar way to that for parallel views as described in Section 4
would hence take ((n*) storage and Q(n* log n) preprocessing time in the
worst case.

We will consider a more restricted version of the searching problem.
Given a set of objects and a tour, preprocess the set in such a way that
the view from any point on the tour can be computed efficiently. The
method for solving this problem is very similar to the method described
in the proof of Theorem 7. We first compute all points of intersection of
the tour with critical lines. We order those points and store them in a
dictionary D. Next, we compute the visibility cycles from the starting

int and after each f(rn) intersection points in the same way as described
in the proof of Theorem 7. To search for the view from some point on
the tour we search for the point in D, walk along the list of intersection
points to the nearest visibility cycle, walk back while updating the visi-
bility cycle, compute the view from the point using the updated visibility
cycle, and restore afterward the visibility cycle in its original form. This
leads to:

THEOREM 13. Given a set of n objects and a tour, for each function
f(n), with I = f(n) < n, there exists a method of preprocessing the set
of objects in time O[n* + k., logn + k.n/f(n)] using Olk.nlf(n) + n]
space such that the view from any point on the tour can be computed in

56 H. EDELSBRUNNER, M. H. OVERMARS, and D. WOOD

Olf(n) log n + k] time, where ke, is the number of crossings between
critical lines and the tour and k is the length of the view.

Using the fact that the searching problem is O(n) decomposable, we
get the following dynamic solution (choosing f(n) = nflog n):

THEOREM 14. For a set of n objects and a tour, there exists a data
structure that requires O(k., log n + n) space, O(n + k., log nln) time
per insertion, and O(n) time for computing the view from a specified point
on the tour.

6. CONCLUDING REMARKS

In this article we have provided a general setting for solving a number of
computational geometry problems in the plane. In particular we have
considered the frame-to-frame coherence problem for one-dimensional
views of two-dimensional scenes, namely, in Flatland graphics. In this
setting the objects are assumed to be convex, bounded, nonintersecting,
and stationary. Either the whole scene is rotated in the plane while the
viewpoint is fixed or a walk-around or prespecified tour of the scene is
taken when the scene is fixed. For these equivalent scenarios we are able
to demonstrate a time-space trade-off for computing and updating the
visibility status of the objects. These results hold for the parallel and
perspective projections.

Our results, while setting a number of questions, raise even more. These
can be split, somewhat arbitrarily, into ‘‘pure’’ computational geometry
questions and computer graphics questions. We will discuss them in this
order.

In Corollary 1 we have provided an O(n? log n) time algorithm for the
shadow problem. This problem arises in the article by Lee and Preparata
[14], who consider the shortest path between two points in the presen
of line segment obstacles. If there is a ‘‘shadow direction,” then they
have an O(n log n) time algorithm; whereas when no such direction is
known, they have an O(n* log n) time algorithm. Thus, solving the shadow
problem in substantially less than O(n? log n) time ensures a better al-
gorithm for the shortest path problem when a shadow direction exists.
Can the shadow problem be solved in O(n log n) or even O(n?) time? Is
the shadow problem simpler than the obstacle problem, that is, computing
the shortest path?

There are also questions of optimality with respect to Theorem 4. Is
n? log n also a lower bound for the time needed to compute a walk-
around? It seems that this should be reducible to the sorting of n? ele-
ments.

Graphics in Flatland 57

Turning to computer graphics-oriented questions, perhaps the first ob-
vious question is whether general two-dimensional objects can be dealt
with rather than only convex ones. If we relax the convexity condition,
then Lemma 1 no longer holds as stated. For example, the objects given
in Figure 11 exhibit the difficulties that now arise. Intuitively, the new
difficulties stem from the fact that A may hide part of B while B again
may hide part of A. However, these difficulties can be overcome as fol-
lows: the view of an object O is no longer a single interval but a sequence
of intervals whose end points correspond to extreme points of O with
respect to the given direction (see the new view of A in Figure 11).

Obviously, we have to reformulate the definition of a simple object
such that the intervals that are the view of a simple object can be computed

constant time. By the same method also the perspective view can now
be handled efficiently.

Similarly, the walking around algorithms can be adapted to nonconvex
objects. Note that now two simple objects may give rise to more than
four critical lines [resp. directions].

Second, we have shown that addition and removal of objects can be
dealt with using dynamization methods. However, can moving objects be
integrated into our framework? This appears to be difficult to achieve,
since even moving points in the plane are nontrivial (see [16]).

Third, because we have claimed that this forms the beginning of a math-
ematical theory of computer graphics, how can these methods and tech-
niques be extended into three and more dimensions? Recently, Hubsch-
man and Zucker [12] have considered the frame-to-frame coherence

A
B
A ., View of A
e B view of B
s i A B A view of A and B
- A A new view of A

Figure 11. Views of two-dimensional objects.

58 H. EDELSBRUNNER, M. H. OVERMARS, and D. WOOD

problem for three-dimensional scenes consisting of stationary, bounded,
convex, nonintersecting polyhedra. They make use of critical planes as
part of their characterization of how the view changes during rotation.
From their five characterizing criteria, they derive an algorithm to gen-
erate successive frames of an “‘animation’” sequence. Although they pre-
sent no complexity analysis at all, they demonstrate that the techniques
we have used should be extendable to three and more dimensions, albeit
with greatly increasing time and space requirements. One would expect
this problem to be simpler for wire frames than for solid polyhedra, but
we have no results at this time.

Of course, the hidden line problem of Flatland becomes the hidden
surface problem for three-dimensional scenes. In the spirit of this article
we are primarily interested in knowing which polyhedra are visible
some extend rather then the precise specification of visible surfaces.
There are two possible approaches, at least. On the one hand, because
polyhedra have polygonal faces, this reduces to knowing which faces are
visible to some extend. From this point of view, the three-dimensional
scene becomes a collection of stationary, bounded, convex, and nonin-
tersecting two-dimensional objects arbitrarily oriented in three-dimen-
sional space. On the other hand, if the three-dimensional objects are ar-
bitrary, as our two-dimensional ones are, then such a decomposition
cannot, in general, be achieved. Following the development in the present
article, we need to consider “‘simple’’ objects once more.

Which of these two approaches is the more reasonable remains to be
seen, but it should be clear that in both cases many interesting questions
are raised.

Finally let us state how we see the contents of this article in relation
to the research that is done on computer graphics questions. The present
research is mainly experimental, and its concerns are:

how to deal adequately with arbitrary shapes

how to tint, texture, color, and shade such objects
how to represent scenes composed of such objects
how to animate, rotate, and update such scenes

The results in this article can only be considered as the first step toward
answering such questions. Whether or not an adequate mathematical the-

ory of present-day computer graphics can be constructed remains to be
seen.

ACKNOWLEDGMENTS

H.E. was supported by the Fonds zur Foerderung der wissenschaftlichen For-
schung. M.H.O. was supported by the Netherlands Organization for the Ad-

Graphics in Flatland 59

vancement of Pure Research (ZWO). D.W. was supported by the Natural Sciences
and Engineering Research Council of Canada, grant A-7700.

19.
20.

21
22,
23

24.
23

REFERENCES

Abbott EA: Flatland. A Romance of Many Dimensions, ed. 2. Dover Publications,
1884.

Aho AV, Hopcroft JE, Ullman JD: The Design and Analysis of Computer Aglorithms.
Addison-Wesley, Reading MA, 1974.

Avis D, Toussaint GT: An optimal algorithm for determining the visibility of a polygon
from an edge. IEEE Trans Comp C-30:910-1014, 1981.

Beatty JC, Booth KS, Matthies LH: Complexity of scan line algorithms. Unpublished
manuscript, 1981.

Bentley JL: Decomposable searching problems. Info Proc Lett 8:244-251, 1979,
Edelsbrunner H: Finding transversals for sets of simple geometric figures. Submitted
for publication, 1982.

Edelsbrunner H, Maurer HA, Preparata FP, Rosenberg AL, Welzl E, Wood D: Stab-
bing line segments. BIT 22:276-281, 1982.

El-Gindy H, Avis D: A linear algorithm for determining the visibility polygon from a
point. J Algor 2:186-197, 1981.

Freeman H, Loutrel PP: An algorithm for the two-dimensional ‘*hidden line’” problem.
IEEE Trans Electr Comp EC-16:784-790, 1967.

Fuchs, H, Kedem ZM, Naylor BF: On visible surface generation by a priori tree struc-
tures. Comp Graph 14:124—133, 1980.

Gowda IG, Kirkpatrick DG: Exploiting linear merging and extra storage in the main-
tenance of fully dynamic geometric data structures. Proc I8th Annu Allerton Conf on
Communication, Control, and Computers, pp 1-10, 1980.

Hubschman H, Zucker SW: Frame-to-frame coherence and the hidden surface com-
putation: Constraints for a convex world. Comp Graph 15:45-54, 1981.

Lee DT, Preparata FP: An optimal algorithm for finding the kernel of a polygon. JACM
26:415-421, 1979.

Lee DT, Preparata FP: Euclidean shortest paths in the presence of rectilinear barriers.
Proc. 7th Conf. on Graphth. Concepts in Comp. Sci., Carl Hanser: 303-316, 1981,
1982.

Newman WM, Sproull RE: Principles of Interactive Computer Graphics, ed 2.
McGraw-Hill, New York, 1979.

Ottmann T, Wood D: Dynamical sets of points. Unpublished manuscript, 1982.
Overmars MH: Dynamization of order decomposable set problems. J Algor 2:245-
260, 1981.

Overmars MH: Searching in the past 1I: General transforms. Report RUU-CS-81-9,
Dept of Comp Sci, University of Utrecht, The Netherlands, 1981.

Preparata FP: personal communication, 1981.

Schmitt A: Time and space bounds for hidden line and hidden surface algorithms. Proc
Eurographics-81, North-Holland Publishing Company, Amsterdam, 1981.

Shamos MI: Problems in computational geometry. Report, Dept of Comp Sci, Carnegie-
Mellon University, Pittsburgh PA, 1977.

Sutherland 1E, Sproull RF, Shumacker RA: A characterization of ten hidden surface
algorithms. Comput Surv 6:1-55, 1974.

van Leeuwen J, Mehlhorn K: Personal communication, 1981.

Wood D: On wire frames and haloes. Unpublished manuscript, 1982.

Yao FF: On the priority approach to hidden-surface algorithms. Proc. 21st Ann. IEEE
Symp. on Found. of Comp. Sci., pp. 301-307, 1980.

