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Rectangle intersections involving rectilinearly-oriented (hyper-) rectangles in 
d-dimensional real space are examined from two points of view. First, a data structure 
is developed which is efficient in time and space and allows us to report all 
d-dimensional rectangles stored which intersect a d-dimensional query rectangle. 
Second, in Part 11, a slightly modified version of this new data structure is applied to 
report all intersecting pairs of rectangles of a given set. This approach yields a 
solution which is optimal in time and space for planar rectangles and reasonable in 
higher dimensions. 

KEY WORDS: Computational geometry, rectilinearly-oriented rectangle, 
intersection, searching problem, data structure, concrete complexity. 

CATEGORIES AND SUBJECT DESCRIPTORS: E.l [Data]: Data structures- 
trees; F.2.2 [Analysis of Algorithms and Problem Complexity]: 
Nonnumerical algorithms and problems-geometrical problems and 
computation, sorting and searching; H.3.3 [Information Storage and 
Retrieval]: Information search and retrieval-search process. 

1. INTRODUCTION 

The young branch of computer science called computational 
geometry deals with the computational complexity of geometric 
problems. This paper investigates such a problem which has 
applications in areas like VLSI design and computer graphics. We 
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210 H. EDELSBRUNNER 

refer to Bentley and Wood [ 2 ]  for details concerned with these 
applications. 

We first introduce a few definitions which help us to classify the 
area of computational geometry. An important class of problems, the 
so-called searching problems, receive their motivation from the 
theory of databases: A searching problem P involves a set S of objects 
and answers queries which depend on S and on a query object q. 
Thus, P can be viewed as a function which maps S and q into some 
answer P(S, q). Note that three types of data, namely objects, query 
objects, and answers are involved. 

A typical example is the so-called range searching problem which 
involves a set S of points in d dimensions. It maps S together with a 
query range q which is the Cartesian product of d intervals one on 
each coordinate-axis, into the set of points in S which are contained 
in q.  The range searching problem is important to our discussion in 
Section 2. 

The particular searching problem which is investigated in this 
paper is the so-called rectangle intersection searching problem. It is 
studied in the d-dimensional real space, for d z  1. A d-dimensional 
rectilinearly-oriented rectangle (for short d-rectangle) is the Cartesian 
product of d closed intervals one on each coordinate-axis. Two 
d-rectangles are said to intersect if they have at least one point in 
common. The (d-dimensional) rectangle intersection searching problem 
involves a set S of d-rectangles as objects and maps S together with 
a query d-rectangle q into the set of d-rectangles in S which intersect 
4. 

The usual way to treat a searching problem on a computer is to 
store the set S of objects in some data structure which allows us to 
answer queries efficiently. An everyday example is to sort a set of n 
numbers which allows us to decide in O(1ogn) time by binary search 
whether or not a later specified query number is in the set. To 
answer a query of the range searching problem or the rectangle 
intersection searching problem means to report the points or 
rectangles which are in the desired set. 

In certain applications, however, one has to solve so-called single- 
shot problems. That is, a solution of an instance of the problem is 
computed once and nothing has to be saved in the computer in 
order to answer later specified queries. Some single-shot problems 
are directly related to searching problems. We identify two classes of 
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RECTANGLE INTERSECTIONS-I 21 1 

such problems which relate to searching problems whose objects are 
of the same type as their query objects. 

The all-elements problem of a searching problem P maps a set S of 
objects into the set of answers P(S-{q ) ,  q), q  in S. Intuitively, an all- 
elements problem answers a query for each object in the set. The all- 
elements problem of the rectangle intersection searching problem 
involving a set S  of rectangles is solved by reporting for each 
rectangle q in S  those rectangles in S  which intersect it. 

Since the intersection relation is symmetric (i.e. a rectangle r 
intersects another rectangle s if and only if s intersects r) we might 
not be interested in the intersecting rectangles for each rectangle in S 
but rather in all pairs of intersecting rectangles. More general, we 
define the all-pairs problem of a searching problem P which maps a 
set S of objects into the set of pairs (p, q), p and q  in S,  such that p is 
in P(S-{q) ,  q) and q  is in P(S-{p) ,  p). In particular, Part I1 of this 
paper examines the all-pairs problem of the rectangle intersection 
searching problem which we call the all intersecting rectangles 
problem. 

The current paper consists of two parts. Section 2 of Part I 
examines the possibility to solve the rectangle intersection searching 
problem by means of solutions for the well-known range searching 
problem. Then Section 3 of Part I improves the thus obtained results 
by the design of a new data structure for rectangles. This solution is 
optimal for the one-dimensional case and reasonable in higher 
dimensions. Part I1 applies the data structure developed in Section 3 
to the all intersecting rectangles problem. The solution obtained is 
optimal in the two-dimensional case where it improves previous 
results, and it is reasonable in three and higher dimensions. 

The development described in this paper took place in 1980 and 
was previously reported in Edelsbrunner [3, 41. Since then several 
rediscoveries and improvements occurred. McCreight [8] 
independently obtained a data structure for intervals which is very 
similar to the 1-fold rectangle tree presented in Section 3.1. His so- 
called tile tree has the disadvantage that the worst-case bounds of 
our tree are not guaranteed. Lee and Wong [7] independently 
discovered the correspondence between rectangle intersection 
searching and range searching which is presented in Section 2. 
Finally, Six and Wood [lo] as well as Edelsbrunner [5] improved 
our results for d 2 2 dimensions. 
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212 H. EDELSBRUNNER 

2. RANGE SEARCHING FOR FINDJNG RECTANGLE 
INTERSECTIONS 

The rectangle intersection searching problem is shown to be solvable 
by data structures originally designed for the range searching 
problem. This result follows from a transformation of d-rectangles 
into 2d-dimensional points. 

LEMMA 2.1. A rectangle intersection query involving a set S of 
d-rectangles and a query d-rectangle q can be answered by (1) mapping 
S into an equal-sized set S' of points in 2d dimensions, (2) mapping q 
into a range q' in 2d dimensions, (3) solving the range query for S' and 
q' and (4) interpreting the answer for the range query as the answer for 
the rectangle intersection query for S and q. 

Proof Let us first examine the rectangle intersection problem in 
one dimension. Each 1-rectangle is a closed interval. An interval 
i =  [i,, i,] is fully determined by two values, namely the left endpoint 
i, and right endpoint i,. Thus, we may interpret this pair of values 
(i,, i,) as a point in two dimensions. Let S' be the set of two- 
dimensional points such that i1=(i1, i,) is in St if and only if 
i =  [i,, i,] is in S. We proceed by mapping the query interval 
q=[ql, q,] into the range q' which is the Cartesian product of the 
intervals (-inf, q,] on the first and [q,, inf) on the second 
coordinate-axis, where inf stands for the infinite value. Now the 
range query for S' and the query range q' is answered. As can be 
readily seen, each point of S' in q' is the image of an interval in S 
which intersects q which completes the argument for the one- 
dimensional case. 

Note that two d-rectangles intersect if and only if their intervals 
on the jth coordinate-axis intersect, for 1 s j s d .  This fact allows the 
generalization to d 2 2  dimensions to be accomplished. Let S be a set 
of d-rectangles and let S' denote the set of points in 2d dimensions 
such that the point r '=  (r,, r , ,  . . . , r,,) is in S' if and only if the 
d-rectangle r which is determined by the intervals 
[r,,r,], . . . , [r,,-,, r,,] is in S. The query d-rectangle q determined by 
the intervals [q,, q,], . . . , [q,,- ,, q,,] is mapped into the 
2d-dimensional range q' determined by the unbounded intervals 
( - inf, q2], [q,, inf), ( - inf, q,], . . . , [q,, - ,, inf). We find all rectangles 
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RECTANGLE INTERSECTIONS-I 213 

which intersect q by solving the range query for S' and the query 
range q'. This completes the argument. 

These considerations give us a first glimpse of the complexity of 
the rectangle intersection searching problem, since the range 
searching problem is well studied and efficient solutions are known. 

COROLLARY 2.2. For the rectangle intersection searching problem 
involving a set S oj'n d-rectangles there exists a data structure which 
requires O ( n 1 0 g ~ ~ ' n )  space and O ( n l ~ g ~ ~ - '  n) time for construction 
such that O(10g~~-l n+t )  time suffices to report the t d-rectangles in S 
which intersect u query d-rectangle. 

The bounds are achieved by the range tree which is described in 
Bentley [l] and improved in Willard [ I  I]. 

As the range searching problem is already well studied we do not 
attempt to improve the complexity of range searching in order to 
improve the bounds for the rectangle intersection searching problem. 
But there are two facts which lead us to hope that a specially 
designed data structure for the latter problem will be better. These 
facts are: 

i) The d-rectangles are mapped only into a subset of the 
2d-dimensional space, that is to {(x,, x2, . . . , x2J 

5.x2j, 1 Z,jS(/;. 
ii) The range in 2d dimensions obtained by mapping the query 

d-rectangle is not an arbitrary range. Each one of its 
intervals is unbounded in one direction and the finite vertex of 
the range is a point in {(x,, xz , .  . . , x,,)~x,~-, 2.xZj, 1 z j s d } .  

In Section 3 we exploit these facts in the design of a new data 
structure for d-rectangle., the so-called d-fold rectangle tree. 

3. A N E W  DATA STRUCTURE FOR d-RECTANGLES 

We first consider the 1-fold rectangle tree which stores 1-rectangles, 
that is, intervals on a line. Then Section 3.2 generalizes the results to 
two and higher dimensions. 
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214 H. EDELSBRUNNER 

3.1. The I -fold rectangle tree 

Let S denote a set of n intervals and let el , .  . . , e,, be the sorted list 
of left and right endpoints of these intervals. For convenience, we 
assume that no two endpoints are the same. Sets of intervals with 
potentially coinciding endpoints can be treated by the same method 
trivially modified. The root r of the I-fold rectangle tree for S 
contalns 

i)  a value, u(r)=(e,+e,+ ,)/2, that partitions the list into two 
parts each comprising exactly n endpoints, and 

ii) three pointers to its sons left(r), middle(r), and right(r). 

Let S, and S, denote the set of intervals in S which lie completely 
to the left and right of v(r), respectively. S ,  denotes the set of 
remaining intervals, that is, those intervals which contain v(r). Left (r) 
is the root of the 1-fold rectangle tree for the intervals in S ,  and 
right(r) is the root of the 1-fold rectangle tree for the intervals in S,. 
middle(r) is the root of a minimal height binary tree which stores the 
endpoints of the intervals in S ,  in its leaves. We call this tree the 
middle subtree of r. The endpoints in this tree are stored in increasing 
order and the leaves of the middle subtree are organized as a 
doubly-chained list which reflects the same ordering. Additionally, 
the root of the middle subtree contains pointers to the leftmost and 
rightmost leaves in the middle subtree, respectively, see Figure 3.1. 

In a more informal manner we say that the 1-fold rectangle tree is 
binary tree (termed the primary structure) each node of which is 
associated with a third tree (the middle subtree) which stores a 
subset of the given intervals. The totality of middle subtrees is 
termed the secondary structure. We call a node belonging to the 
primary structure a primury node, and a node belonging to the 
secondary structure a .src.ondurjs node. 

We leave to the interested reader the task to derive a detailed 
algorithm which constructs a 1-fold rectangle tree. Such an 
algorithm follows almost immediately from the definition of the tree. 
In the sequel, the search algorithm is described which detects for a 
given 1-fold rectangle tree T and a query interval y all intervals in T 
which intersect q. 

The intersecting intervals are determined by descending the 
primary structure of T and performing certain actions at each 
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RECTANGLE INTERSECTIONS-I 

FIGURE 3.1.  The I-fold rectangle tree for five intervals. 

primary node visited. Let p denote the current primary node. Two 
substantially different cases are distinguished: 

Case 1. There is no ancestor of p which has its value inside of q. 

Case 1.1. The value of p is outside of q. W.1.o.g. we assume that q 
is to the left of v(p). Then the middle subtree of p is examined, that 
is, the leaves are traversed from left to right and each interval whose 
left endpoint is encountered is reported until the first endpoint to the 
right of q is reached. In addition, the left son of p is visited 
recursively. 

Case 1.2. The value of p is contained in q. Note that q is the first 
node visited with this property. Then all intervals stored in the 
middle subtree of p are reported and both sons of p are visited 
recursively. 
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216 H. EDFLSBRUNNER 

Case 2. There exists an ancestor of p which has its value in q. 
Let a(p) denote the first ancestor on the way from p to the root with 
this property. W.1.o.g. we assume that p is in the right subtree of u(p). 

Case 2.1. The value of p lies to the right of q. Then the middle 
subtree of p is examined as in Case 1.1 and the left son of p is visited 
recursively. 

Case 2.2. The value of p lies in q. Then all intervals stored in the 
middle and the left subtree of p are reported and the right son of p is 
visited recursively. 

THEOREM 3.1. For the one-dimensional rectangle intersection 
searching problem involving a set S of n intervals there exists a data 
structure which requires O(n) space and (nlogn) time for construction 
such that O(logn+t) time suffices to report the t intervals which 
intersect a query interval. 

Proof We show the assertion by analyzing the time and space 
requirements of the 1-fold rectangle tree for S.  

In order to answer a query at most O(1ogn) primary nodes of the 
tree are visited. For each such node either the associated middle 
subtree is examined or all intervals stored in at most two of its 
subtrees are reported. Since the time needed for each such activity is 
proportional to the number of intervals detected, O(log n + t) time 
suffices to answer a query where t intervals are reported. 

The 1-fold rectangle tree for n intervals can be constructed in 
O(n1ogn) time by a recursive procedure which follows the definition 
of the tree: O(n) time is required for each level of the primary 
structure and O(nlog n) time suffices to construct the various middle 
subtrees. 

The space required by the primary structure is clearly O(n), and 
since each interval is stored exactly once in the secondary structure, 
the total space is O(n). This completes the argument. 

3.2. The d-fold rectangle tree 

This section extends the methods presented to d dimensions. The so- 
called d-fold rectangle tree to be described is a straightforward 
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RECTANGLE INTERSECTIONS-I 217 

generalization of the 1-fold rectangle tree and is used to 
accommodate d-rectangles. 

Let S denote a set of d-rectangles, for d 22 .  The d-fold rectangle 
tree for S consists of a 1-fold rectangle tree which stores the dth 
intervals of the d-rectangles in S. No doubly-chained organization of 
the leaves and no additional pointers for the secondary roots are 
required this time. This tree is referred to as the dth component tree. 
For each node p of this tree, we define set(p) as the set of 
d-rectangles which have at least one of their endpoints stored in the 
subtree of p. Then p is assigned the (d- 1)-fold rectangle tree which 
stores the (d - 1)-rectangles which are the orthogonal projections 
onto the first d - 1 coordinates of the d-rectangles in set (p). 

The algorithms for creating a d-fold rectangle tree and searching 
in it are very similar to the algorithms for the 1-fold rectangle tree. 
In order to adapt the construction algorithm we have to add the 
recursive mechanism that associates (d - 1)-fold trees to the nodes of 
the dth component tree. The modifications necessary for the search 
algorithm are: 

i) The command of reporting all intervals stored in some subtree 
T' is replaced by the command to investigate the appropriate 
lower dimensional subtree. 

ii) The examination of a middle subtree which is done by 
traversing the leaves exploiting the doubly-chained 
organization is replaced by the determination of O(1og n) 
disjoint subtrees of this middle subtree whose leaves are 
exactly the leaves which would be encountered during the 
traversal. For each of these subtrees the lower dimensional 
subtree associated with its root is investigated. 

THEOREM 3.2. For the d-dimensional rectangle intersection searching 
problem involving a set of n d-rectangles there exists a data structure 
which requires O(nlogd-' n) space and O(nlogd n) time for construction 
such that O(10g~~- ' n + t) time suflces to report the t rectangles which 
intersect a query rectangle. 

Proof The asserted bounds are shown to be correct for the d-fold 
rectangle tree T for S. 

A query in T visits O(1ogn) primary nodes of the dth component 
tree of 7: For each of these nodes either at most two (d - 1)-fold trees 
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2 18 H. EDELSBRUNNER 

associated with its .sons or O(1ogn) (d - 1)-fold trees associated with 
nodes in the middle subtree are investigated. Let Q(n, d) denote the 
query time for T not regarding the time required to report the 
intervals determined. Then the observation above implies Q(n, d) 
= 0(log2 n)Q(n, d - 1). Since Q(n, 1) = O(log n), see Theorem 3.1, we 
have Q(n, d) = O(10g~~ - n) as desired. 

Each d-rectangle in S has its endpoints in the subtrees of at most 
O(1og n) nodes of the dth component tree of ?: Thus, the (d- 1)-fold 
trees associated with the nodes of the dth component tree store 
O(n log n) (d - 1)-rectangles, altogether. Let P(n, d) denote the time 
required to construct T Then 

P(n, d) = O(n log n) + P(O(n log n), d - 1) 

and since P(n, 1) = O(n log n) we have P(n, d) = O(n logd n). Let S(n, d) 
denote the space required by T By the above observation, we have 

S(n, d) = O(n) + S(O(n log n), d - 1) 

and since S(n, 1) = O(n), we conclude S(n, d) = O(n logd- n) as asserted. 
This completes the argument. 

The investigation of algorithms which determine intersections on 
d-rectangles is continued in Part I1 of this paper. There, the data 
structure developed in this section is used for reporting all 
intersecting pairs of a set of d-rectangles. 
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