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The study begun in Part I is completed by providing an algorithm which reports all 
intersecting pairs of a set of rectangles in d dimensions. This approach yields a 
solution which is optimal in time and space for planar rectangles and reasonable in 
higher dimensions. 

KEY WORDS: Computational geometry, rectilinearly-oriented rectangle, 
intersection, searching problem, data structure, concrete complexity. 

CATEGORIES AND SUBJECT DESCRIPTORS: E.1. [Data]: Data structures- 
trees; F.2.2 [Analysis of Algorithms and Problem Complexity]: 
Nonnumerical algorithms and problems-geometrical problems and 
computation, sorting and searching; H.3.3 [Information Storage and 
Retrieval]: Information search and retrieval-search process. 

4. THE ALL INTERSECTING RECTANGLES PROBLEM 
This section applies the d-fold rectangle tree developed in Section 3 
to the all intersecting rectangles problem in d+  1 dimensions. This 
problem involves a set S of (d+ 1)-rectangles and requires the 
determination of all intersecting pairs in S. To this end, a modified 
version of the d-fold rectangle tree is developed. This so-called offline 
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222 H .  EDELSBRUNNER 

dynamic d-fold rectangle tree in conjunction with the plane sweep 
technique which is described, e.g. in Bentley and Wood [2] leads to 
efficient solutions for this problem. 

4.1. The offline dynamic d-fold rectangle tree 

A data structure storing a set of objects is called dynamic if it 
supports at little cost insertions and deletions of objects. We call a 
data structure offline dynamic if only insertions and deletions of 
objects from some prespecified and usually small set are allowed. 
Using the d-fold rectangle tree as the underlying data structure, we 
derive an offline dynamic data structure which stores d-rectangles 
and permits us to answer d-dimensional rectangle intersection 
queries efficiently. Intuitively, this data structure for a set S of 
d-rectangles consists of a skeleton which determines the way how a 
subset of S is stored. The actually stored subset is indicated by 
additional information with which the skeleton is augmented. Let us 
discuss the one-dimensional case first. 

The skeleton of the offline dynamic l-jold rectangle tree T for a set 
S of intervals is the I-fold rectangle tree for S without the doubly- 
chained organization of the secondary leaves and without the 
auxiliary pointers of the secondary roots. Yet, this skeleton stores 
none of the intervals in S. The intervals which are stored in T are 
indicated by various additional pointers the totality of which we 
term the auxiliary structure of 7: The flexibility of T is due to the 
flexibility of its auxiliary structure while the rigidity of its skeleton 
guarantees that the structure remains well balanced. 

We call a leaf of T active if it stores an endpoint of an interval 
which is actually present in the tree. The auxiliary structure 
organizes the active leaves in a doubly-chained list. The order in 
which the active leaves occur in this list is the same as in 7: In 
addition, the auxiliary structure equips each inner node p of T with 
two pointers leftfinger@) and rightfinger(p). The former points to 
technique employed in Bentley and Wood [2] which reduces the 
the latter points to the rightmost active leaf in this subtree (if i t  
exists). The auxiliary structure is constructed, destroyed, and 
adjusted while insertions and deletions of intervals are performed. 
The following actions are taken in order to insert an interval i from 
S into T: 
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RECTANGLE INTERSECTIONS-I1 223 

i) The middle subtree is determined which is ready to store the 
two endpoints of i. 

ii) The leaves of this subtree which store the endpoints of i are 
active now and therefore are included in the doubly-chained 
list of active leaves. To this end, the active leaves in between 
which they have to be inserted are determined exploiting the 
leftfinger and rightfinger pointers. 

iii) The leftfinger and rightfinger pointers of the ancestors of the 
two new active leaves are adjusted or created. 

A deletion is analogous, hence we omit its detailed description. 
Obviously, each of the three tasks can be accomplished in O(1ogn) 
time,. 

LEMMA 4.1. Let S denote a set of n intervals. There exists a data 
structure which requires O(n) space and O(n log n) time for construction 
such that insertions and deletions of intervals from S can be performed 
in O(1og n) time and O(1og n+ t) time sufJices to report the t intervals 
currently in the data structure which intersect a query interval. 

Proof We will show that the asserted bounds are correct for the 
offline dynamic 1-fold rectangle tree T for S. The space for the 
skeleton of T is clearly O(n) since this structure requires less space 
than the original 1-fold rectangle tree for S, see Theorem 3.1. The 
space required for the auxiliary structure is also O(n) since each node 
of the skeleton is equipped with at most two additional pointers. 
The time for construction which is the time required to build up the 
skeleton of T is also clear from Theorem 3.1. The method of 
obtaining O(1ogn) time for an insertion and deletion is sketched 
above. In order to answer an intersection query, an almost identical 
algorithm as the one outlined for ordinary 1-fold rectangle trees can 
be used. It is readily seen that this algorithm works in O(logn+ t) 
time which completes the argument. 

The generalization to d z 2  dimensions is straightforward and 
analogous to the generalization leading to the d-fold rectangle tree, 
see Section 3.2. The auxiliary information is only necessary for the 
first coinponent trees. We omit further details and state without 
proof: 
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224 H. EDELSBRUNNER 

LEMMA 4.2. Let S be a set of n d-rectangles. Then there exists a 
data structure which requires O(n logd - n) space and O(n logd n) time 
for construction such that an insertion and deletion of a d-rectangle 
from S can be accomplished in O(logdn) time and O(10g~~-l n+ t) time 
sufJices to report the t d-rectangles currently stored which intersect a 
query d-rectangle. 

4.2. Computing all intersecting pairs 

Let S = {r,, r,, . . . , r,} denote a set of n d-rectangles. Using the offline 
dynamic d-fold rectangle tree described in Section 4.1, we are able to 
give a naive algorithm for the d-dimensional all intersecting 
rectangles problem. The task is reduced to a sequence of insertions 
and intersection queries. 

Algorithm NAIVE METHOD: 
First, the skeleton of the offline dynamic d-fold rectangle tree T is 

constructed which is ready to represent any subset of S. 
Then, for j running from 1 to n, the d-rectangles stored in T which 

intersect rj are determined and rj is inserted into ?: 

Due to Lemma 4.2, Algorithm NAIVE METHOD finds the t 
intersecting pairs of S in O(n log2d- n + t) time and O(n logd- ' n) 
space. Another more sophisticated approach is the plane sweep 
technique employed in Bentley and Wood [2] which reduces the 
d-dimensional task to a sequence of O(n) (d-1)-dimensional 
intersection queries, insertions, and deletions involving only 
projections of rectangles in S. This method is now described for two 
dimensions and then sketched for higher dimensions. 

Let S denote a set of n 2-rectangles in the sequel called rectangles. 
Figure 4.1 displays a set of six rectangles which we use as a running 
example. Now imagine a vertical line L sweeping from left to right 
through the rectangles, see Figure 4.1. 

At any instant of time L divides the set S of rectangles into three 
- - disjoint subsets: The set of dead rectangles that lie completely to the 

left of L, the set of active rectangles that are cut by L, and the set of 
sleeping rectangles that lie completely to the right of L. In the 
example depicted in Figure 4.1, A is the only dead rectangle, B and 
C are active, and D, E and F are sleeping. 
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- * 
2 4 6 8  12 14 16 18 20 2.2 24 

FIGURE 4.1. L sweeping through six rectangles. 

While L sweeps from left to right, the three subsets of S change 
following the rules below: 

1) Initially, the sets of dead and active rectangles are empty and 
all rectangles are sleeping. 

2) When L reaches the left border of a rectangle then this 
rectangle becomes active. 

3) When L reaches the right border of a rectangle then this 
rectangle becomes dead. 

4) At the end of L's sweep, the sets of active and sleeping 
rectangles are empty and all rectangles are dead. 

Let us first give an informal description of the algorithm that 
detects the intersecting pairs by use of the plane sweep technique. 
The three subsets of S change only at critical x-values, that is, when 
L meets the left or right border of a rectangle in S.  The 2n critical 

- - x-values are stored in ascending order in an array and the plane 
sweep is carried out by scanning this array from left to right. At 
each critical x-value, certain actions are performed such as activating 
a rectangle, disactivating a rectangle, or searching for active 
rectangles which intersect a rectangle which is to become active. 
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226 H. EDELSBRUNNER 

Since the set of active rectangles plays an important role in our 
algorithm, we store the set in some data structure which allows us to 
perform insertions, deletions, and searching efficiently. 

The formal description of the algorithm follows: Let x,, . . . , x,, 
denote the critical x-values such that xi 5 xj for i<j. In degenerate 
cases, some of the critical x-values may coincide. In these cases, the 
values indicating left borders come before those indicating right 
borders. If critical values coincide and are of the same type then 
their order is immaterial. 

Algorithm PLANE SWEEP: 
First, the skeleton of the offline dynamic 1-fold rectangle tree T 

for the y-intervals of the rectangles in S is constructed. 
Then, for j running from 1 to 212, the following actions are taken: 

Case I x j  indicates that L meets the left border of a rectangle r 
in S. Then a query with the y-interval of r as query object is carried 
out in 7: This gives all active rectangles which intersect r. In 
addition, the y-interval of r is inserted into T. 

Case 2 xj indicates that L meets the right border of a rectangle 
r. Then the y-interval of r is deleted from T. 

Before analyzing the algorithm, let us consider a snap-shot of the 
data structure used for the set of rectangles depicted in Figure 4.1. L 
intersects the rectangles C and D which is reflected by the auxiliary 
structure whose pointers are denoted by dotted lines, see Figure 4.2. 
Note that only the four leaves of the middle subtree associated with 
the root of the tree are active. 

LEMMA 4.3. Algorithm PLANE SWEEP reports each pair of 
intersecting rectangles exactly once and only reports such pairs. 

Proof First, we show that each intersecting pair is reported 
exadly once. An intersecting pair (r, s) can be detected when r - 

becomes active or when s becomes active. W.1.o.g. we assume that r 
becomes active before s. Hence, the y-interval of s is not stored in T 
when r becomes active which implies that (r, s) is not detected at this 
time. Since r and s intersect by assumption, r must be active when s 
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RECTANGLE INTERSECTIONS-I1 

FIGURE 4.2. T storing two intervals. 

becomes active. Since the y-intervals of r and s intersect the pair (r, s) 
is detected when s becomes active. 

Assume now that a non-intersecting pair (r, s) is reported by the 
algorithm. Since r and s do not intersect, at least one of two cases 
occurs: (1) The x-intervals of r and s do not intersect, or (2) the y- 
intervals of r and s do not intersect. In the former case there is no 
point in time when both r and s are active, in the latter case the 
searches in T with the y-intervals of r and s do not report the pair 
(r, s). This completes the argument by contradiction. 

THEOREM 4.4. There exists an algorithm which reports the t 
intersecting pairs of a set S of n rectangles in O(nlogn+t) time and 
O(n) space. 

Proof We show that the assertion is correct for Algorithm 
PLANE SWEEP. Lemma 4.3 guarantees that the algorithm reports 
exactly the t intersecting pairs. The skeleton of the offline dynamic 1- 
fold rectangle tree T requires O(n) space and O(n1ogn) time for 
construction, see Lemma 4.1. Each one of the insertions, deletions, 
and intersection queries can be carried out in O(1ogn) time not 
regarding the time for reporting intersections. Since 3n such 
operations are performed we conclude that O(n log n) time suffices for 
all these activities. The space remains O(n) since the auxiliary 
structure constructed while intervals are inserted into T requires qn )  
space, see Lemma 4.1. This completes the argument. 

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ity

 o
f A

lb
er

ta
] a

t 2
0:

03
 2

7 
N

ov
em

be
r 2

01
4 



228 H. EDELSBRUNNER 

The plane sweep technique can easily be extended to three and 
higher dimensions as done in Six and Wood [lo]. The d-dimensional 
space is swept from left to right by a (d- 1)-dimensional hyperplane 
H perpendicular to the x-axis. Thus, the intersecting pairs of a set S 
of d-rectangles are detected by (1) constructing the skeleton of the 
offline dynamic (d-1)-fold rectangle tree for the orthogonal 
projections onto H of the d-rectangles in S, and (2) performing O(n) 
insertions, deletions, and intersection queries involving (&I)- 
rectangles. This finally implies: 

THEOREM 4.5. There exists an algorithm which reports the t 
intersecting pairs of' a set S of' n d-rectangles in O(n log2d-3 n _t t) time 
and O(n l o g d 2  n) space. 

5. CONCLUSIONS 

The contributions of this paper are threefold: (I) The close 
relationship between rectangle intersection searching in d and range 
searching in 2d dimensions is described which gives us a nice 
intuition of how rectangles can intersect. (2) A new data structure for 
d-dimensional rectangles is introduced which is efficient in time and 
in space. In particular, the solution provided for the one-dimensional 
rectangle intersection searching problem is optimal in both respects. 
In addition, an ofline dynamic version of this data structure is 
developed which supports insertions and deletions of d-dimensional 
rectangles from some prespecified set. (3) This offline dynamic 
version of the new data structure is used to determine all intersecting 
pairs of a set of n rectangles. The solution obtained is optimal in two 
dimensions where O(nlogn+ t )  time and O(n) space suffice to report 
the t intersecting pairs. 

We briefly compare these results with earlier ones. The two- 
dimensional all intersecting rectangles problem was studied in 
Bentley and Wood [2] and in Six and Wood [9]. Their algorithms 
achieve the same time bound as ours but they require O(n log n) space 
for the task. The problem in three and higher dimensions was 
considered in Six and Wood [lo]. Their method dominates ours in 
time but requires more space, that is, they need O(n l o g d '  n+ t )  time 
and O(nlogdl  n) space to report the t intersecting pairs. Since the 
study presented in this paper took place new results have been 
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RECTANGLE INTERSECTIONS-I1 229 

obtained by McCreight [8], Lee and Wong [ 7 ] ,  and Edelsbrunner 
[ 5 ]  which is mentioned in Section 1 of this paper. 

Let us finally give a few questions and open problems which come 
from our investigations. (1) The analysis of the d-fold rectangle tree 
as presented in Section 3.2 is best possible in the worst case. 
Nevertheless, we feel that it is terribly pessimistic in the expected 
case. (2) No other than trivial lower bounds are known for the 
various rectangle intersection problems presented in this paper. 
Recent results due to Fredman [6] seem to be a first step towards 
an appropriate understanding of these issues. 
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