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Abstract. A straight line that intersects all members of a set S of objects in the real plane is called
a transversal of S. Geometric transforms are described that reduce transversal problems for various
types of objects to convex hull problems for points. These reductions lead to efficient algorithms
for finding transversals which are also described. Applications of the algorithms are found in
computer graphics: “Reproduce the line displayed by a collection of pixels”, and in statistics:
“Find the line that minimizes the maximum distance from a collection of (weighted) points in
the plane™.

1. Introduction

Let S denote a set of objects in the d-dimensional Euclidean space E*, for some
positive integer d. A ((d —1)-dimensional) hyperplane in E? is a transversal of S
if it intersects all objects of S. Classical Helly-type theorems of the following generic
form imply trivial algorithms for deciding the existence of transversals [9, 2]): For
S a finite set of objects with certain properties, there exists a transversal if any k
objects of S admit a transversal. Typically, k is a rather small constant so that
polynomial time algorithms follow.

Departing from this mathematically beautiful but computationally expensive
characterization, Edelsbrunner, Overmars and Wood [5] develop a method for planar
visibility problems that yields a rather general method for computing transversals
in E? in O(n”log n) time, for n =1S|. O(n log n) time is shown to suffice for the
special cases of vertical line segments [12] and also for line segments with arbitrary
directions [4].

This paper uses geometric transforms to cast transversal problems into better
understood convex hull problems. Section 2 presents a collection of preliminary
results needed in Sections 3 to 5. The insight gained by this novel approach leads
to efficient algorithms for finding transversals for families of objects in E2 and
higher dimensions. Section 3 considers axis-parallel hyper-rectangles in E¢ and
applies methods from linear programming to find a transversal in O(n) time. An
application of the method to computer graphics is presented. Then, Section 4
considers translates of a simple object, in a sense to be made precise, in E>. An
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application of the methods to a problem in statistics is demonstrated. Section 5
focusses on homothets of a simple object in E’, that is, on objects that derive from
an original object by translation and changing the size. Finally, the results and
methods are discussed in Section 6 which also singles out a few open problems.

2. Preliminaries

We find it convenient to briefly discuss preliminary algorithms for constructing
convex hulls of sets of points and for computing separating hyperplanes. The convex
hull of a set of points in E? is the smallest convex polytope that contains all points
of the set. Efficient computational solutions for constructing the convex hull of a
finite set of points are known, which imply, by the transforms and methods to be
described, efficient solutions for transversal problems. We state the relevant results.

Proposition 2.1. The convex hull of a set of n points in E* can be constructed in
O(nlog n) time and O(n) space.

Algorithms that verify the assertion are given in [7, 13, 14], etc. Only the method
of Preparata and Hong [13] generalizes to E* without losing efficiency.

Proposition 2.2. The convex hull of n points in E* can be constructed in O(n log n)
time and O(n) space. Additional Q(n) time of preprocessing suffices to allow the
computation of a tangent plane with given normal vector in O(log n) time.

The method for computing tangent planes with given direction is described in [3].

A hyperplane separates two sets S and T of points in E“ if it intersects every
open line segment connecting a point of S with a point of T. The linear programming
methods in [11] imply the following.

Proposition 2.3. O(n) time suffices to find a separating hyperplane of two sets of a
total of n points in E* (if it exists).

3. Transversals for rectangles

We call an object in E¢ a (d-dimensional) rectangle if it is the Cartesian product
of d open intervals, one on each coordinate axis. A rectangle is completely deter-
mined by its lower corner (the Cartesian product of the startpoints of the defining
intervals) and its upper corner (determined by the endpoints of the intervals).

The following generalization of a result in [9] implies a trivial algorithm that
decides the existence of a transversal for a set S of n rectanglesin E¢ in O(n“*") time:

We call a hyperplane in E? specified by x; =a,x;+ - *+ay_,;x;_+ay negative
if the real numbers a, for i=1,..., d — 1, are nonpositive (see Fig. 3.1). There is a
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negative transversal for S if there is a negative transversal for any d + 1 rectangles
of S.
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Fig. 3.1. Negative transversal for seven rectangles.

This algorithm can be improved considerably as is shown below. An additional

advantage of the method to be described is the possibility to actually compute a
transversal (if it exists).

Theorem 3.1. O(n) time suffices to find a transversal of a set S of n rectangles in E¢
(if it exists),

Proof. We reduce the problem to finding a separating hyperplane for sets of points
in EY Without loss of generality, only negative transversals are considered. A
negative hyperplane h intersects a rectangle r if and only if the lower corner of
r is below h and the upper corner is above h. Let L and U be the sets of lower and
upper corners of rectangles in S, respectively. Then a negative hyperplane h is a
transversal of S if and only if h separates L from U (see Fig. 3.1). The assertion
follows from Proposition 2.3. [

We note that the described method extends to transversal problems for sets of
so-called k-oriented objects [8]: Let k be some positive constant integer and let K
be a collection of k distinct directions. A convex polytope in E¢ is k-oriented (w.r.t.
K)) if the direction of the normal of each facet is in K.

We close this section with an application to a problem in computer graphics. The
following algorithm is frequently used to display a straight line L on a raster display
device [6]:

Out of each column of points (pixels) choose the one closest to L to
represent a point of L,

Now assume that a set S of points is given. How fast can we decide whether or not
S displays a line, and, if the answer is affirmative, how fast can such a line be
determined? To answer these questions, we note that a point p on the screen



58 H. Edelsbrunner

represents a point of a line L if and only if p is closer to L than are the points a
and b immediately above and below p. Thus, L intersects the vertical segment
connecting 3(p+a) and 3(p+b). Each point of § defines a vertical segment which
must intersect L. As a consequence, the desired line is a transversal of the segments
and Theorem 3.1 gives an answer to the posed question.

4. Transversals for translates

The primary concern of this section is the investigation of transversal problems
for uniform sets of, in some sense, computationally simple objects. We call an open
convex subset o in E? a simple object if constant time suffices to compute the
orthogonal projection of o onto an arbitrary line. Typical examples are open convex
polygons with a constant number of edges, open discs, open ellipses, etc. Using the
natural extension of sums of points (or vectors) to sums of sets of points, a planar
object t is called a translate of another object o it there is a vector v such that
t=o0+uv (see Fig. 4.1).

A

Fig. 4.1. Object o with translate 1.

We are interested in solving transversal problems for finite sets of translates of
some given simple object 0. Note that a set S of translates of ¢ is uniquely defined
by o and the vectors that translate 0. We call o the prototype of S. The vector v that
defines 1= 0+ v also identifies the unique point P(¢) = O+, with O the origin of
E*. We call P(S)={P(t)|t in S} the (corresponding) point-set of S (see Fig. 4.2).

For M an arbitrary line, we write A™ for the orthogonal projection of a set A
in E” onto M. Then (0™, O™) is termed the basic projection of M and, by definition,
can be computed in constant time. A pair (i, p) with i an interval and p a point on
M, is termed a mirror image of the basic projection if there is a point m on M such
that o™ —m =m—iand O™ — m = m — p (see Fig. 4.3). Let now L denote an arbitrary
line, M some line perpendicular to L, and p, the intersection of L and M. The stripe
ST(L) of L is the set of points g such that i, contains q", with (i,, p,) a mirror
image of the basic projection (see Fig. 4.3).
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Fig. 4.3. Basic projection of M and stripe of L,

Since the basic projection of M can be computed in constant time, the same is
true for ST(L). The following lemma explicates the relation between the correspond-
ing point-set of a set of translates and the stripe of a line.

Lemma 4.1. Let t be a translate of some prototype. A line L intersects t if and only if
P(t) lies in ST(L).

Proof. Let M be some line perpendicular to L. L intersects t if and only if p, (= L™)
is contained in t™. Now, p, is in t™ if and only if P(£)™ is in iy, with (io, py) a
mirror image of (t", P(t)™) and therefore i,=ST(L)™. O
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Lemma 4.1 provides, by means of a geometric transform, a useful characterization
of transversals. The transform maps a set S of translates into P(S) and a line L
into ST(L). L is a transversal of S if and only if P(S) is contained in ST(L).

We continue with some definitions: For L a line in E* let a(L) in [0, 7) denote
the angle between the x-axis and L. For a = a(L), we let M (a) be a line perpendicular
to L. For a convex object o, in E, th(a, 0,) denotes the length of the orthogonal
projection of o, onto M(a), and o, is said to be thicker than o, (w.rt. a) if
th(a, 0,) > th(a, 0,), for 0, another convex object in E>.

Lemma 4.2. Let S be a set of translates of a simple object o and let C be the convex
hull of P(S). There exists a transversal of S if and only if there is an angle a such that
th(a, C)<th(aq, o).

Proof. If L is a transversal of S, then C is contained in ST(L). Since th(a(L),
ST(L)) =th(a(L), o), we conclude that th(C)<th(e). Conversely, an angle b with
th(b, C')=th(b, o) does not permit a transversal perpendicular to M(b). [

Note that Lemma 4.2 reduces the computation of a transversal to the following
thickness problem: Let o be a simple object and C a bounded convex polygon with
n vertices; find an angle a with th(a, C)<th(a, o).

Let ey, e,,..., e, ; be the edges of C sorted in counterclockwise order. For each
e; we define a; = a(L;), for L; the line that supports e; (see Fig. 4.4).

[ B

| x

Fig. 4.4. Polygon with associated angles.

Lemma 4.3. If there exists an angle a with th(a, C)<th(a, o), then there is an index
k, 0= k=n—1, such that th(a,, C) <th(a, o).

Proof. Rename the angles associated with the edges of C as by, b,,..., b, , such
that b;< b;,,, for i=0,..., n—2. We assume th(a, C) <th(a, o) for some angle a,
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and th(b;, C)=th(b, o) forall 0=<i= n— 1. Without loss of generality let by<a < b,.
Since C is at least as thick as o w.r.t. by and by, there is a translate of o contained

in the quadrangle Q defined by the four supporting lines of C whose angles are b,
and b, (see Fig. 4.5).

Fig. 4.5. Quadrangle defined by b, and b,.

Since there is no angle between b, and b, which is associated with an edge of C,
th(b, Q) =th(b, C)forall by< b < b,. This contradicts the assumption thatth(a, C) <
th(a, 0), for some a with by<a<b,. O

Lemma 4.3 allows the design of an efficient algorithm for the thickness problem.

Theorem 4.4. Let C be a convex polygon with n vertices and let o be a simple object.
There exists an algorithm that finds an angle a with th(a, C) <th(a, 0) in O(n) time
(if it exists).

Proof. By Lemma 4.3, the thickness problem reduces to identifying an angle a
associated with an edge of C such that th(a, C)<th(a, 0). An algorithm that is
similar to the one designed in [14] for determining the diameter of a convex polygon
determines th(a, C) for each a = g; in O(n) time:

Algorithm THICKNESS. Let vy, ..., v,_, denote the vertices of C such that v; and
v;+, are the endpoints of edge e, (taking all indices modulo n).

Step 1. Determine vertex v that maximizes the distance from line L, supporting
e,. This distance equals th(a,, C). Set i =0.

Step 2. Let e; and v; denote respectively the edge and the vertex such that th(a, C)
is the distance of v; from L, Determine the smallest positive integer m such that
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the distance of vj,,, to L, is smaller than the one of v;,,,_;. By convexity of C,
th(a;s,, C) is the distance of v;,,,_, from L. If i+1 is still smaller than n—1,
then repeat Step 2 with i=i+1.

By definition, th(a;, o) can be determined in constant time for 0<i<n—1. This
implies that O(n) time suffices to compare th(a;, C) with th(a; o), for all i=
Osivian=1 [

Now we are ready to give an efficient algorithm that computes a transversal for
a finite set of translates in E? (if it exists).

Theorem 4.5. Let S be a set of n translates of a simple object in E*. There exists an
algorithm that computes a transversal in O(n log n) time and O(n) space (if it exists).

Proof. The algorithm computes, in a first step, the convex hull C of P(S). C is a
bounded convex polygon with at most n vertices. Assume now that there exists a
transversal for S. Algorithm THICKNESS determines in O(n) time an edge ¢; and a
vertex v; maximizing the distance from L, such that th(a;, C) <th(a, 0). By Lemma
4.3 there is a transversal of S with angle a;. E.g., the line L parallel to L; such that
v;, U141, and v; are equidistant from L is a transversal of S and can be computed in
constant time from e; and v, O

It seems worthwhile to note that the described method does not generalize to E*
since Lemma 4.3 does not. We define the thickness of a convex polytope P in E*
as the length of the shortest orthogonal projection of P onto a line in E’. Then
27'2 is the thickness of the regular tetrahedron with edges of length 1. However,
each face has a vertex (2/3)"/?>27"/2 units of length away. Thus, the thickness of
P cannot be computed by checking only the directions determined by faces of P.

There is an interesting application of Algorithm THICKNESS to a problem in
statistics aimed at computing regression lines. It is trivial to modify Algorithm
THickNESs such that it computes the breadth B(C) of a convex polygon C, that is,
B(C)=min{th(a, C)|a in [0, 7)}. (Notice that Lemma 4.3 implies that if B(C)=
th(a, C), then a is associated with an edge of C.) Let L. be a line with angle
a=a(Lc¢) such that B(C)=th(a, C) and that L. pierces C in the middle, that is,
L¥ is the center of C™, for M perpendicular to L. If C contains n vertices, then
L can be computed in O(n) time from C (trivial extension of Theorem 4.4).

Let now S be a set of n_points in E? with the hypothesis that the points represent
observations of some affine dependence of y on x. For a line L, let dev(L)=
max{d(p, L)|p is § and d(p, L) denoting the orthogonal distance of p from L} be
called the deviation of L. For C the convex hull of S, L. minimizes the deviation
and thus approximates S best in the minmax sense. We suspect that the efficiency
of the sketched algorithm makes it an interesting alternative to existing methods
for computing regression lines in E” [10].
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5. Transversals for homothets

An object h in E* is called a (positive) homothet of another object o if there
exists a vector v and a positive real number m such that h = mo+v (see Fig. 5.1).

Ah

Y

Fig. 5.1. Object 0 with homothet h in E2.

This section concentrates on transversal problems for sets of homothets of a
simple object. The methods remain the same as those used for translates: A transform
is exploited to reduce transversal problems to convex hull problems. The additional
degree of generality, expressed by the factor of magnitude m, will be reflected by
an additional dimension of the obtained convex hull problems.

Let S be a set of homothets of a simple object 0 in E% We call o the prototype
of S. For convenience, E? is identified with the xy-plane in E°. For a homothet
h=mo+ v, with v=(v,, v,), we call P(h)=(v,, v,, m) the (corresponding) point of
h, and P(S)={P(h)|h in S} the (corresponding) point-set of S. The unbounded
cone C(h) with apex P(h) and h the intersection of C(h) with the xy-plane is
termed the cone of h (see Fig. 5.2). Recall that C(h) is open since h is open.

<Y

Fig. 5.2. Homothet, point, and cone.
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Observation 5.1. Let h, and h, be two homothets of a common object. Then C(h,)
and C(h,) are translates of each other.

Let now L be some line in the xy-plane and let M be a plane perpendicular to
L. The orthogonal projection C(0)™ of C(0) onto M is called the basic projection
of M (see Fig. 5.3). We define w'=—(C(0)™ — P(0))+ L", that is, w' is the translate
of —C(0)™ such that L is the apex of w’. We call W(L)={p in E*|w’ contains
p™} the wedge of L (see Fig. 5.3).

<Y

Fig. 5.3. Basic projection and wedge of L.

By definition of simple object, the basic projection of M and also W(L) can be
determined in constant time. The following assertion is a generalisation of Lemma
4.1 and describes the relation between the corresponding point-set of a set of
homothets and the wedge of a line.

Lemma 5.2. Let h be a homothet of a prototype in E*. A line L in E” intersects h if
and only if P(h) is contained in W(L).

Proof. L intersects h if and only if L™ is contained in A™. Since w' (= W(L)™)
and —C(h)"™ are translates of each other, P(h)™ is in w' if and only if L™ is
contained in C(h)™ and therefore in h™. By definition of W(L), P(h)™ isin w’ if
and only if P(h) is contained in W(L). O

The geometric transform suggested by Lemma 5.2 maps a set S of homothets into
the set P(S) of points in E°, and a line L in E? into its wedge W(L) in E*. To
develop an algorithm based on this transformation we need to be able to perform
a particular primitive operation on o: A simple object o in E? is tangible if constant
time suffices to compute the tangents on o that contain some arbitrary given point
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in E*. We assume that no tangent exists if o contains the point, and that only one
tangent is computed if the point lies on the boundary of o. Thus, the primitive
operation can also be used to test whether or not o or its closure contains some
given point.

The variant of the thickness problem to be solved for finding transversals reads
as follows: Let P be a convex polytope above the xy-plane, and let o be a simple
tangible object in the xy-plane; find a line L in the xy-plane such that W(L) contains
P. In order to attack this problem successfully, a geometric fact similar to Lemma
4.3 turns out to be useful. Some additional notation will simplify its discussion. By
an angle we always mean an angle in the xy-plane as defined in Section 4. Let e
be an edge of P connecting vertices v = P(h,) and w= P(h,). We call e relevant if
neither C(h,) contains C(h,) nor the other way round, and there exists a line L in
the xy-plane and a translate of W(L) that contains the interior of P and e lies in
a bounding halfplane of W(L). The angle a(L) défined by L is then termed an
angle of e.

Lemma 5.3. Each relevant edge has either one or two angles.

Proof. Let p and g be the endpoints of a relevant edge e of polytope P, and let a
be an angle of e. Then there is a line L with a = a(L) such that a bounding halfplane
of W(L) contains p and g. This halfplane is tangent to both C(h,) and C(h,), for
P(h,)=p and P(h,) = q. Consequently, L is tangent to h, and h, and both homothets
lie on the same side of L. Since h, and h, allow two common tangents of this kind,
there are at most two angles of e. [

We now present the anticipated geometric fact.

Lemma 5.4. Let 0 be a simple object in the xy-plane and let P denote a convex polytope
above the xy-plane. If there is an angle a and a line L* with a=a(L*) and P in
W(L*), then there exists such an angle b of an edge of P.

Proof. Let by, by, ..., by, be the angles of P’s edges such that b;=<b,,,, for0=i=
k—2. Without loss of generality, we assume the existence of a line L* with b,<
a(L*)< b, such that W(L*) contains P. Furthermore, we assume that P is not
contained in W(L) for any line L with a(L)=>5, for 0=<i= k-1 and in particular
fori=0,1.

For every angle b we define the wedge W(b) as the intersection of all translates
of W(L), for L an arbitrary line with a(L)= b, that contain the interior of P. In
addition, we let ST(b) be the intersection of W(b) with the xy-plane. By assumption,
ST(b,) and ST(b,) are nonempty and their intersection is a nonempty open quad-
rangle Q. Let r, and s, be the antipodal vertices of Q that allow tangent lines on
Q with any angle in [by, b,]. Let r and s be the two rays in the intersection of the
boundaries of W(b,) and W(b,) that intersect the xy-plane in r, and s, respectively.
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We argue below that there are vertices v and w of P on r and s, respectively, and
that every wedge W(a), with by<a <b,, which has v and w in the boundary
intersects the xy-plane properly. Note that this contradicts the existence of L* as
assumed in the beginning and thus proves the assertion.

Fact 1. Each of r and s contains a vertex of P.

Proof of Fact 1. Assume w.l.o.g. that r contains no vertex of P, and let A, and
A, be the planes tangent to W(b,) and W(b,), respectively, that intersect in r.
Consider an angle a increasing continuously from b, to by, and call A(a) the plane
that simultaneously changes from A, to A, and intersects the xy-plane in a line
with angle a. At every angle a, A(a) touches P, and, by convexity of P, the set of
contact-points is connected. However, since there is no angle of an edge in (b,, b,),
A(a) cannot touch P in an edge, for b, < a < b,. This contradicts either the convexity
of P or the assumption that r contains no vertex.

Fact 2. Let a be an angle in (by, b;). Then W(a) intersects the xy-plane properly.

Proof of Fact 2. Let p be any point in Q. By definition of the wedge of a line in
the xy-plane, the closure C of the cone —(C(0)—P(0))+p (which has apex p) is
contained in the intersection of W(b,) and W(b,). Consequently, C contains neither
v nor w. For L a line that contains p, the two bounding halfplanes of W(L) are
tangent to C. Let a=a(L) be in (by, b;) and let M be a plane orthogonal to L.
Since C is contained in the intersection of W(b,) and W(b,), the closure of W(L)"
(which equals C™) is contained in the orthogonal projection of the intersection of
W(b,) and W(b,) onto M. As a consequence, neither v nor w are contained in
W(L), and, moreover, they lie on different sides of W(L). Fact 2 follows, and
therewith Lemma 5.4. [0

Lemma 5.4 will be used for the design of an efficient algorithm that solves the
three-dimensional thickness problem at hand. First, some notation is introduced:
Let ¢ be a relevant edge of P and let a be an angle of e. W(L), for L a line with
a=a(L), is termed e-supporting if there is a translate of W(L) that contains the
interior of P and e is contained in a bounding halfplane. A translate W of W(L)
is maximal if W contains the interior of P and both bounding halfplanes of W
support P,

Theorem 5.5. Let o be a tangible simple object in the xy-plane and let P be a convex
polytope with n vertices above the xy-plane. There exists an algorithm that finds in
O(nlog n) time and O(n) space a line L in the xy-plane such that P is in W(L) (if
it exists).

Proof. First, an algorithm is outlined that identifies the relevant edges of P and
determines their angles. It considers each of the O(n) edges of P in turn and decides

their relevance as follows:

Algorithm. Let e be an edge of P with endpoints P(h,) and P(h,). Let p denote
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the intersection of the line through P(h;) and P(h,) with the xy-plane. (p is at
infinity if h, and h, have the same size.)

Case 1. p lies inside the closure of h, and therefore also inside the closure of h..
Then e is not relevant.

Case 2. p lies outside the closures of h, and h,. Then compute the lines L, and
L, through p that are tangent to both h, and h,. If W(L,) is e-supportirg, then e
is relevant and a(L,) is an angle of e. Analogously, if W(L,) is e-supporting, then
e is relevant and a(L,) is an angle of e. If neither W(L,) nor W(L,) is e-supporting,
then e is not relevant.

Since a plane which contains an edge of P supports P if and only if both faces
bounded by the edge lie on the same side of the plane, constant time suffices to
check the property of being e-supporting.

Next, for each relevant edge e and angle a of e we determine the maximal
translate W of W(L), for a(L)=a and W(L) e-supporting: a determines a plane
M perpendicular to L and thus the basic projection of M. Hence, the normals of
the bounding halfplanes of W are determined and W is computed by finding the
tangent planes of P with these normals. This can be done in O(log n) time following
a method of Dobkin and Kirkpatrick [3].

The final step in the algorithm is to test all maximal translates of wedges. If W
is a maximal translate with the closure above the xy-plane, then there is a line L
in the xy-plane such that W(L) is a translate of W, and P is contained in W(L).
The final step can be accomplished in O(n) time which implies the overall runtime
of O(nlog n) as desired. [

With the solution for the special three-dimensional thickness problem we are able
to give an algorithm that determines a transversal for a set of homothets (if it exists).

Theorem 5.6. Let S be a set of n homothets of a tangible simple object in E*. There
exists an algorithm that determines a transversal in O(n log n) time and O(n) space
(if it exists).

Proof. In a first step, the convex hull C of P(S) is constructed. Next, the algorithm
outlined in the proof of Theorem 5.5 is used to determine a line L in the xy-plane
such that W(L) contains C (if L exists). L is a transversal of S by Lemma 5.2. The
requirements follow from Proposition 2.2 and Theorem 5.5. O

We close this section with an application of the algorithm outlined in the proof
of Theorem 5.5. A trivial modification of it can be used to solve a weighted variant
of the statistical problem discussed in Section 4:

Let S be a set of n points in E* that are considered to be observations of
an affine relationship between x and y. Each point p in S has attached a
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weight w(p). For a line L we define the weighted deviation wdev(L)=
max{w(p)d(p, L)|p in S and d(p, L) the orthogonal distance of p from
L}. Find the line that minimizes the weighted deviation.

We leave the proof that O(n log n) time suffices to solve this problem as an exercise
to the interested reader.

6. Discussion

This paper presents a computational study of transversal problems. In particular,
sets of axis-parallel rectangles in E? and sets of translates and homothets of simple
objects in E” are examined. Also, applications of the methods to problems in
computer graphics and in statistics are demonstrated.

We consider the use of geometric transforms that have not been employed for
the design of algorithms before as the main contribution of this paper. The reader
should consult [1] for an introduction to geometric transforms applied in computa-
tional geometry. These transforms lead to a uniform approach to several transversal
problems for which not even trivial solutions existed. The efficiency of the obtained
algorithms is (to a great deal) due to the efficiency of existing algorithms for convex
hull problems and low-dimensional linear programming.

Let us finally mention a few open problems raised by the investigations of this
paper. (1) Can the geometric transforms described be exploited to obtain new
mathematical insight into transversal problems? (2) Our methods seem to be of
value for the computation of a point in the common intersection of a set of geometric
objects. This offers alternative and probably more general approaches to common
intersection problems (see [1] for other approaches).
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