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A polygon in the plane is convex if it contains all line segments connecting any
two of its points. Let P and Q denote two convex polygons. The computational
complexity of finding the minimum and maximum distance possible between two
points p in P and ¢ in Q is studied. An algorithm is described that determines the
minimum distance (together with points p and ¢ that realize it) in O(log m + log n)
time, where m and n denote the number of vertices of P and Q, respectively. This is
optimal in the worst case. For computing the maximum distance, a lower bound
Q(m + n) is proved. This bound is also shown to be best possible by establishing an
upper bound of O(m + n). © 1985 Academic Press, Inc.

1. INTRODUCTION

A polygon P is a bounded, closed, and connected subset of the real plane.
The boundary of P consists of a finite number of straight line segments
called edges. P is called convex if it contains all line segments that connect
any two of its points. The endpoints of the edges of P are called its vertices.

Let P and Q denote two convex polygons with m and n vertices,
respectively, and let d( p, g) be the Euclidean distance between two points
p and g in the plane. We call {d(p,q)| p in P and ¢ in Q} the ( Euclidean)
distance set of P and Q. The extreme values in the distance set are the
primary interest of this paper. More specifically, we study the complexity of
computing the minimum and maximum distance and of finding pairs of
points that realize them.

Finding the minimum distance possible between P and Q has applica-
tions in planning collision-free paths through a set of obstacles, see Schwartz
[7] who gives an algorithm that computes it in O((log m) (log n)) time. We
improve on this result by exhibiting an algorithm that determines the
minimum distance, along with a pair of points that realize it, in time
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O(logm + logn). This result is described in Section 3. Section 4 examines
the complexity of computing the maximum value in the distance set of P
and Q. A lower bound of Q(m + n) time in the worst case is proved and an
optimal algorithm that runs in O(m + n) time is sketched. The geometric
facts needed for an appropriate presentation of the algorithms in Sections 3
and 4 are developed in Section 2. Finally, Section 5 reviews the main
contributions and briefly addresses the extension of the problems to three
dimensions.

2. GEOMETRIC PRELIMINARIES

This section develops the geometric facts needed for the algorithms in
Sections 3 and 4. As in Section 1, P and Q denote two convex polygons
with m and n vertices, respectively. Let d( P, Q) denote the minimum value
and D(P, Q) the maximum value in the distance set of P and Q.

LemMA 2.1. Ifd(P,Q) > 0, then there exist points p in P and q in Q that
realize d( P, Q) such that p and q are vertices or either of them is a vertex and
the other lies on an edge.

Proof. Note first that neither p nor g can be an inner point. The
remaining possibility for proving Lemma 2.1 false is that p and g lie on
edges but neither of them can be a vertex. Let p lie on edge e, of P and let
q lie on edge e, of Q (see Fig. 2.1). Then ¢, and e, are necessarily parallel
and we may assume that they are vertical. W.lLo.g. assume also that the
upper endpoint v of e, is lower than the upper endpoint of e,. But then v

FIGURE 2.1
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and its orthogonal projection onto e, realize d(P, Q). This completes the
argument by contradiction.

The possibilities for the points that realize D(P,Q) are even more
restrictive.

LEMMA 2.2. Ifpin P and q in Q realize D(P, Q) then p and q are vertices
of P and Q, respectively.

Proof. Note again that p and ¢ lie necessarily on the boundaries of P
and Q, respectively. We assume w.lo.g. that p is not a vertex of P and lies
on some edge of P. Let ¢ in Q maximize the distance to p (see Fig. 2.2).
Then at least one of the endpoints of the edge that contains p is further
away from g than p. This contradicts the assumption and completes the
argument.

Intuitively, the next fact asserts that a point of P that realizes the
minimum distance to Q “sees” all of Q. To simplify its formulation, let
5( p,q) denote the line segment that connects p and g.

LemMa 2.3.  Let d(P,Q) > 0 and p in P such that there exists q in Q with
d(p,q) = d(P,Q). Then p is the only common point of P and s(p,q"), for
every point g” of Q.

Proof. By Lemma 2.1, p lies necessarily on the boundary of P. Assume
now that there exists a point ¢ in Q such that s( p, g”) intersects P in at
least one additional point p’ (see Fig. 2.3). Let ¢’ on s(g,q”) such that
s(p,q) and s(p’,q’) are parallel. By convexity, ¢’ is contained in Q, and
d(p’,q") < d(p,q). This contradicts the assumption and completes the
argument.

A related fact holds for pairs of points that realize D(P, Q).

P

FIGURE 2.2
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FIGURE 2.3

LEMMA 2.4. Let pin P and q in Q realize D(P, Q). Then the orthogonal
projection of an arbitrary point x of P or Q onto the line supporting s( p, q) lies
between p and q.

Proof. Assume the contrary, that is, there is a point x in P or Q whose
orthogonal projection onto the very line does not fall in between p and g.
W.lo.g. let x project onto p or p lie between the projection of x and g.
Then d(g, x) > d(gq, p) which contradicts the assumption and completes
the argument.

3. COMPUTING THE MINIMUM DISTANCE

This section investigates the complexity of computing the minimum
distance d(P, Q) between two convex polygons P and Q with m and n
vertices, respectively. An algorithm is outlined that computes d( P, Q) along
with a pair of points that realize d(P, Q) in time O(logm + logn). This is
optimal under the decision tree model by the following argument: The
minimal distance is either realized by two vertices or a vertex and an edge
(see Lemma 2.1). Thus any algorithm has to determine one out of 3 mn
pairs of vertices and vertex-edge pairs.

For the following we assume that P and Q do not intersect. When this is
not guaranteed then O(logm + log n) time suffices to decide whether or not
they intersect, see [2] or [4]. If P and Q intersect then the algorithms in [2],
[4] deliver a point x in the intersection which therefore realizes d(P, Q) = 0.

Let vy, v,,...,0,_, denote the vertices of P given in counterclockwise
order. That is, e; = (v;,v;,,) is an edge of P and P lies to the left of the
directed line that passes first through v, and then through v, ;. (The indices
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are taken modulo m.) Similarly, let wy, wy,...,w,_; be the vertices of Q in
counterclockwise order and let f; = (w,,w, ;) be the edges of O, taking the
indices modulo ». We assume that both sequences of vertices are stored in
one-dimensional arrays. For convenience, we use the capital letters P and Q
to denote these arrays also.

QOur approach to computing d(P, Q) is to perform binary search in P
and Q simultaneously. At each step half of the edges of at least one
remaining sequence are eliminated. To this end, we first need to identify two
subsequences of the vertices and edges of P and Q that permit the
simultaneous binary search strategy. We now concentrate on this initial step
which determines a subsequence P’ of vertices and edges of P and a
subsequence Q’ of vertices and edges of Q. P’ and Q' will be chosen such
that the following two conditions are satisfied:

(1) If p in P and ¢ in Q realize d(P, Q) then p ison P’ and ¢q is on
Q’, and

(i) the edges of P’ and Q’ are not edges of the convex hull of the
union of P and Q (see Fig. 3.1).

P’ and Q' are computed by the following algorithm:

Procedure INITIAL PHASE

Let v and w denote arbitrary points in P and Q, respectively (e.g., v = v,
and w = wy).

Fi1G. 3.1 Construction of P’ and Q.
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Determine the two lines V'’ and V'~ that pass through v and are tangent
to Q such that Q is contained in the wedge from V'’ to V” (see Fig. 3.1).
Let w’ and w” denote the vertices closest to v where ¥” and V” touch Q.
Analogously, determine the two lines W’ and W” that contain w and are
tangent to P such P is contained in the wedge from W to W". Let v’ and
v” denote the vertices closest to w where W’ and W” touch P, respectively.

We choose the sequence of vertices and edges from v’ to v” as P’ and the
sequence of vertices and edges from w” to w’ as Q' (see Fig. 3.1).

LemMa 3.1. (a) P’ and Q’, as computed by Procedure INITIAL PHASE,
satisfy conditions (i) and (ii).
(b) Procedure INITIAL PHASE can be implemented such that it
computes P’ and Q' in O(logm + logn) time.

Proof. Concerning part (a): Condition (ii) is clear from the construction.
By Lemma 2.3, every point p in P that realizes d(P, Q) with some ¢ in Q
is contained in P’. By symmetry, the same is true for all ¢ in Q that realize
d(P,Q) with some p in P.

Concerning part (b): The amount of time required by the procedure
depends on the amount of time needed to find a tangent that contains a
specified point outside the polygon. Chazelle and Dobkin [2] show that this
task can be accomplished in time O(logk), where k is the number of
vertices of the polygon. Thus, O(log m + logn) time suffices for Procedure
INITIAL PHASE. This completes the argument.

Now we are ready to present the algorithm that computes d(P, Q) along
with points p in P and g in Q that realize d(P, Q).

Algorithm BINARY ELIMINATION

Let p, = v’, p, =v", ¢, = w’, and g, = w”. While at least one of the
sequences from p, to p, and from g, to g, contains more than two vertices,
we take the following actions:

Let m, = v, be the median in the list of vertices from p, to p,, and let
m, = w; be the median in the list of vertices from ¢, to g,. Several cases are
distinguished depending on the number of vertices involved and on the four
angles defined as follows: Welet o’ be the angle frome,_; tom = s(m prMy)
and a” be the angle from m to e,. Analogously, we let 87 be the angle from
m to f; and B” be the angle from f;_, to m (see Fig. 3.2).

Case 1. One of the sequences contains only one vertex. (W.lo.g. p, =
p2) If B’ > m/2 then set g, = m,, and if B” > = /2 then set ¢, = m,.

Case 2. One of the sequences contains only two vertices. (W.lo.g.
p, = m, and p, precedes p,.) Two cases are distinguished:
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FiGure 3.2

Case 2.1. o’ > 0. Then perform the following three steps: (1) If
a’+ B’ >« then take the following actions: If a’ > m/2 then the set
py=p, and if B’ > 7/2 then set g, =m, (2) If B” > m/2 then set
g, = m,. Finally, (3) if &’ < 8” < w/2 then take the following actions: If
the orthogonal projection of m, onto s(p,, p,) exists then set g, = m
Otherwise set p, = p,. (See Fig. 3.3 (a) for an illustration).

g

Case 2.2. o’ < 0. Then set p, = p,. Additionally, we may proceed as
follows: If 8 > = then set q; = m, and if B” > 7 then set ¢, = m,. (See
Fig. 3.3 (b) for an illustration.)

Case 3. Both sequences contain at least three vertices each (see Fig. 3.2).
Again two cases are distinguished.

FIGURE 3.3
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Case 3.1. Each one of o, a”, B/, and B” is positive. Then perform
the following two steps: (1) If a’ + B’ > & then take the following actions:
If &’ > /2 then set p; = m, and if 8’ > 7/2 then set ¢, = m,. (2) If
a” + B” > m then take the followmg actions: If a” > # /2 then set p2 =
and if B” > w/2 then set g, = m,

Case 3.2. At least one of &', a”, B/, and B” is nonpositive. (W.l.o.g.
< 0.) Then set p, = m,. In addition, parts of Q’ can be eliminated: If
B’ > m then set ¢, = m, and if ” > m then set g, = m
A brief analysis of the correctness and the requlrements of Algorithm
BINARY ELIMINATION is presented before we proceed to the evaluation
of its output.

P

LemMmA 3.2, Algorithm BINARY ELIMINATION returns a pair of
vertices, a vertex and an edge, or two edges in O(logm + logn) time. In any
case, the pairs of points that realize d(P,Q) are contained in what is
delivered.

Proof. We first show that at least half of the edges of at least one
sequence are eliminated at each step. By convexity of P and Q we have

@D B’ =m0t B” = mw/2,
(i) o’ + B’ < = implies o’ < B,
(i) a’ + B’ >1r0ra”+ﬁ”>-n'.

Now, (i) guarantees that the desired amount of edges is eliminated in Case
1. By (ii), the same is true in Case 2.1, and (iii) implies the elimination of the
appropriate number of edges in Case 3.1. Cases 2.2 and 3.2 lead trivially to
the deletion of enough edges. As a consequence, Algorithm BINARY
ELIMINATION stops in O(logm + logn) time. Clearly, it delivers either
two vertices, a vertex and an edge, or two edges.

It remains to be shown that no point p of P’ ( and g of Q') is ever
eliminated if a point ¢’ in @ (and p’ in P) exists such that p and ¢’ (and ¢
and p’) realize d(P,Q). We discuss Cases 1 and 2.1 and leave the other
cases to the interested reader. First Case 1: If 8’ > 7 /2 then d( Pyym q) <
d(p,,q) for every point ¢ on the edges from m, to g,. Thus, the action
q, = m, taken in this case does not eliminate relevant points. The same
holds for 8” > /2. Now Case 2.1: The same reasoning as for Case 1
implies the correctness of subcases (1) and (2). Let us thus consider subcase
(3) (see Fig. 3.3 (a)). If the orthogonal projection m, of m, onto s(py, p,)
exists then d(gq, s(p;, p,)) > d(m e m;) for all pomts q dtfferent from m,
on the edges from g, to m,. If m,, does not exist then d(q, s( p,, p,)) &
d(m,, p,) for all of these pomts q This implies the correctness of the
actions taken and completes the argument.
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Next let us consider the final phase that ultimately computes d(P, Q). In
this phase, the constant amount of information provided by Algorithm
BINARY ELIMINATION is exploited.

Procedure FINAL PHASE
Casel. Two vertices p; and ¢, are delivered. Then d(P, Q) = d(p;, q,).

Case 2. A vertex p, and an edge f = (q,,q,) is delivered. Let f(p,)
denote the orthogonal projection of p, onto f (if it exists). Due to Lemma
2.1, d(P,Q) is realized either by p, and q,, by p, and g,, or by p, and
7(py).

Case 3. Two edges ¢ = (p,, p,) and f= (gq,,q,) are delivered. Let
f( p,) denote the orthogonal projection of p; onto f, for i = 1,2, if it exists,
and let e(g;) denote the orthogonal projection of g, onto e, for i = 1,2, if it
exists. Then d(P, Q) is realized either by p, and ¢,, p, and ¢,, p, and gq,,
or p, and ¢,, or by p, and f(p,), p, and f(p,), ¢, and e(q,), or g, and
e(q,)-

Having described all computations for finding the minimum distance, we
state the main result of this section.

THEOREM 3.3. Let P and Q denote two convex polygons with m and n
vertices, respectively. The minimum distance between P and Q, along with
points p in P and q in Q that realize it, can be computed in O(logm + logn)
time.

Proof. The task is accomplished in three phases. Procedure INITIAL
PHASE identifies two appropriate subsequences of the boundaries of P and
Q in O(log m + logn) time (see Lemma 3.1). In additional O(logm + logn)
time, Algorithm BINARY ELIMINATION determines a pair of vertices, a
vertex and an edge, or a pair of edges that contain all pairs ( p, g) realizing
d(P, Q) (see Lemma 3.2). Procedure FINAL PHASE then computes d( P, Q)
along with p in P and g in Q that realize d(P, Q) in constant time. This
completes the argument.

At this point we note that Chin and Wang [3] independently proved
O(logm + logn) as an upper bound for finding the minimum distance.
They did that by developing an essentially identical algorithm.

4. COMPUTING THE MAXIMUM DISTANCE
This section shows that computing the maximum distance between two

convex polygons is harder than computing the minimum distance. In
contrast to the case of the minimum distance, now convexity is of no use at
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all. The lower bound established below relies on representing a polygon by
the linear list of its vertices and edges. Nevertheless, we find the result
significant since this seems to be the most natural representation. The
existence of a representation that allows the computation of the maximum
distance in sublinear time remains an open problem.

THEOREM 4.1.  Let P and Q denote convex polygons with m and n vertices
stored in linear arrays, respectively. Then Q(m + n) is a lower bound on the
worst-case time complexity of any algorithm that computes the maximum
distance D(P, Q).

Proof. We show the assertion by application of an adversary argument
to a special choice of P and Q: P degenerates to a single point and the
vertices of Q lie on a circle whose center is P (see Fig. 4.1). Thus, if any
vertex of O withdraws from P as long as Q remains convex then D(P, Q)
increases while only one vertex of Q changes. This shows that each vertex of
Q has to be considered at least once in order to compute D(P, Q) correctly.
This completes the argument.

The lower bound given above is asymptotically best possible as follows
from the algorithm outlined in the proof of Theorem 4.2. The same
algorithm was developed independently in Toussaint and McAlear [9]. A

F1G. 4.1 Polygons for the adversary argument.
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more complicated algorithm that also runs in linear time can be found in
[1].

THEOREM 4.2. Let P and Q denote convex polygons with m and n vertices,
respectively. There exists an algorithm that computes D(P,Q), along with
points p in P and q in Q that realize it, in O(m + n) time.

Proof. The algorithm maintains two parallel supporting lines L, and L,
for P and for Q such that either P lies above L, and Q lies below L, or P
lies below L, and Q above L, (see Fig. 4.2). If a line is vertical than we say
that the right-hand side is below the line and the left-hand side is above it.

A pair of vertices (v,w), with v in P and w in Q is called antipodal if
there exist two such parallel supporting lines L, and L, that contain v and
w, respectively. By Lemma 2.4, the points p in P and ¢ in Q that realize
D(P, Q) are antipodal.

The algorithm computes all antipodal pairs of vertices by turning L, and
L, around P and Q. In Shamos [8], a similar strategy is used to compute
the diameter of a convex polygon. We thus refer to [8] for details. An easy
argument shows that there are at most O(m + n) antipodal pairs, and that
the algorithm requires constant time per pair. This implies that the al-
gorithm sketched requires O(m + n) time which completes the argument.

Marginally, we mention that O(m + n) time also suffices to compute the
maximum distance between two simple but not necessarily convex polygons.
In a first step, the convex hulls of both polygons are determined. This can
be done in O(m + n) time with an algorithm of McCallum and Avis [5].
Then the algorithm sketched in the proof of Theorem 4.2 is used to compute

FiG. 4.2 Polygons with supporting lines.
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the maximum distance between the two convex hulls. By Lemma 2.2, this
distance is also the maximum distance between the two original polygons.

5. DISCUSSION

This paper investigates the complexity of computing the extreme
(Euclidean) distances realized by two convex polygons in the plane. For
both problems, that is, for computing the minimum and maximum distance,
optimal algorithms are described. The minimum distance between two
convex polygons with m and n vertices, respectively, is determined in
O(logm + logn) time. This improves a previous result of Schwartz [7]
whose algorithm requires O((log m) (log n)) time, For finding the maximum
distance, £(m + n) time is shown to be necessary and sufficient.

Our results do not yield an efficient solution for determining the nearest
vertices of convex polygons. Although, at first sight, this problem seems to
be closely related to the minimum distance problem investigated in this
paper, the complexity is &(m + n) as shown in [6].

The most important extension of this work is the investigation of the
analogous problems in three dimensions. The computational complexity
depends then highly on the kind of representation chosen for the convex
polytopes. We refer to Dobkin and Kirkpatrick [4] whose hierarchical
representations seem to be a promising approach for fast computation of
the minimum distance.
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