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Let S denote a set of n points in the Euclidean plane. A subset S’ of S is termed
a k-set of § if it contains k points and there exists a straight line which has no point
of S on it and separates S’ from S — S’. We let f,(n) denote the maximum number
of k-sets which can be realized by a set of n points. This paper studies the
asymptotic behaviour of f,(n) as this function has applications to a number of
problems in computational geometry. A lower and an upper bound on f,(n) is
established. Both are nontrivial and improve bounds known before. In particular,
Jin)=f,_(n)=2(nlog k) is shown by exhibiting special point-sets which realize
that many k-sets. In addition, f; (n)=f,_,(n)= O(nk"?) is proved by the study of
a combinatorial problem which is of interest in its own right.  © 1985 Academic
Press Inc.

1. INTRODUCTION

Let k and n denote two positive integers such that k <n— 1, and let S
denote a set of n points in the Euclidean plane. We call a subset S’ of S a k-
set of S if S’ contains k points and there exists a straight line with no point
of § on it which separates S’ from S’ — S. The number of k-sets realized by
S is denoted by f,(S). While it is well known that

ki £(S)<n? —n
=1

which follows from a result in Steiner [14], little is known about the

individual terms f,(S). For positive integers k and n, k <n— 1, we let f,(n)

denote the maximum of f,(S) for all sets S of n points. The technical

sections will establish a lower and an upper bound on the asymptotic

behaviour of fi(n). To the knowledge of the authors, the problem was not
investigated before. (The following notation is used for the description of the -

asymptotic behaviour: Let f(n) and g(n) denote two positive-valued
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16 EDELSBRUNNER AND WELZL

functions. We say f(n) = O(g(n)) if there exists a positive constant ¢ such
that f(n)<cg(n), for all positive integers n. In addition, we say
/(n)=92(g(n)) if g(n) = O(An)), and £(n) = O(g(n)) if f (n) = O(g(n)) and
/() =2(g(n)).)

The motivation for our interest in f,(n) stems from several applications to
problems in computational geometry. This young field of computer science
studies the computational complexity of elementary geometric constructions,
cf. Shamos [12] for an excellent introduction to the field.

One typical problem for which knowledge about Jfi(n) is important is
called the halfplanar range search problem. It requires the accommodation
of a finite set of points in the Euclidean plane in a data structure such that
the number of points which lie in a later specified query halfplane can be
determined efficiently. Such a query is called a halfplanar range query.

Two nontrivial solutions for this problem are described in Willard [15]
and in Edelsbrunner, Kirkpatrick, and Maurer [2]. These solutions have the
disadvantage of either requiring a rather large amount of time for answering
a query (O(n*"") time in [15]) or requiring a rather large amount of space
for the data structure (O(n®) space in [2]). The dynamic setting of the
halfplanar range search problem asks for the computation of halfplanar
range queries, insertions of new points into the data structure, and deletions
of old points from the data structure. For this setting, Fredman [5] provides
evidence that for any solution of the problem, 2(n'/®) time is required by the
most time consuming of the three operations. This substantiates the thesis
that the problem is inherently more difficult than the classical orthogonal
range search problem, see, e.g., Bentley and Friedman [1].

By virtue of these disappointing facts, Edelsbrunner and Welzl [3]
investigated the possibility of providing approximate solutions for the
halfplanar range search problem. The simplest version asks whether or not
there are at least half of the n given points in the query halfplane. For this
problem a data structure is developed in [3] which requires O(f, ,(n)) space
and permits us to answer a query in O(log n) time.

A second problem related to f;(n) again deals with a set S of n pomts in
the Euclidean plane. S is to be accommodated in a data structure such that
the k of those points nearest to a later specified query point can be deter-
mined efficiently. The parameter k is a fixed positive integer smaller than n.
This so-called k-nearest neighbours search problem was solved by Shamos
and Hoey [13] and Lee [8] using order-k Voronoi diagrams. The order-k
Voronoi diagram for S consists of a collection of nonoverlapping regions
which covers the plane. Each subset of k points of S is assigned a (poten-
tially empty) region R such that those k points are the k nearest to a query
point g if and only if g resides in R.

It is easily verified that the region assigned to k specific points is properly
unbounded (i.e., there are two bounding rays which are not parallel) if and
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LINE SEPARATIONS IN THE PLANE 17

only if those points define a k-set of S. Thus f,(S) denotes the number of
properly unbounded regions of the diagram and f,(n) denotes the maximal
number of properly unbounded regions which can occur in any order-k
Voronoi diagram for » points.

Finally, f,(n) applies to a problem which deals with a set S of n points on
a horizontal line. Each one of those points moves with constant but, in
general, unique speed towards the left or the right. Ottmann and Wood [10]
studied a number of questions concerned with sets of moving points on the
line.

We say a point is at position k (at some point in time) if it is the only kth
point from the right. In general, the points at position k change over time
and a single point is, in general, at position k during several intervals of time.

THEOREM 1.1. Let S be a set of n moving points on the line and let
L(S) denote the sequence of points at position k, considering the time
interval from minus to plus infinity. Then the length of L,(S) is no greater
than f,_,(n) + fi(n) + 1.

Proof. Let each point p of S be specified by its location at time 0 and by
its speed which is positive if it moves towards the right and negative if it
moves towards the left. Let S’ be a set of points in the plane such that
p'=(p;,p,) is in S’ if and only if there is a moving point p in S with
location p, at time O and speed p,. The rightmost k points of S at time ¢
correspond to the k points in S’ which lie to the right of a line with slope
—1/t which, in turn, separates those k points from the rest. (The verification
of this assertion is left to the interested reader.) The point at position k
changes when the current kth point changes its position with the (k — 1)th
or (k+ 1)th point. Thus, each change of the point at position k defines a
new (k—1)set or k-set of S’. The easily verified observation that no
(k — 1)-set or k-set occurs twice during this process completes the argument.

An efficient algorithm which computes the sequence of points at some
fixed position k can be found in Edelsbrunner and Welzl [3].

The organization of the paper is as follows: Section 2 presents several
basic observations on the behaviour of f,(n). Then Section 3 demonstrates a
lower bound on f,(n) by exhibiting special sets of planar points. Section 4
establishes an upper bound on f(n) by investigating a combinatorial
problem which is also of interest in its own right. Finally, Section 5 discusses
the contributions and gives some related open problems.

2. Basic OBSERVATIONS

This section is intended to provide the reader with an appropriate feeling
for the behaviour of f,(n).
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Observation 2.1. f,(n) =fo_i(n) for 1<k n—1.

Thus, the interesting values of k are those from ] up to n/2]. (For any
real number a, |a| denotes the largest integer not greater than a. Similarly
[a] =—|—a].) It is also trivial to evaluate f,(n) for k = 1.

Observation 2.2. f,(n)=n for n > 2.

J1(n) is realized by a set of n points which all are extreme points of the set.
Less trivial is the evaluation for k=2,

LEMMA 2.3, fy(n)= |3n/2] for n > a.

Proof.  We show the existence of a point-set S which realizes that many
2-sets. For n=4, the set § contains three points which define a
nondegenerate triangle and a fourth point in the interior of this triangle. For
n> 4, take a regular [n/2]-gon and choose the remaining |n/2| points just in
from the midpoints of all (or all but one) of the sides, as indicated in
Fig. 2.1.

The following counting argument implies the lower bound of the assertion:
Any two consecutive points of the first chosen regular [n/2]-gon define a 2-
set and each of the additional points defines two 2-sets with the two nearest
points from the first chosen [n/2]-gon, respectively. This gives [n/2] +
2|n/2] = |3n/2| 2-sets.

We leave the proof that [3n/2] is also an upper bound to the interested
reader. We only note that this proof becomes easy in the setting of Section 4.
This completes the argument.

FiG. 2.1. 16 points which realize 24 2-sets.

gt
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LINE SEPARATIONS IN THE PLANE 19

Intuitively, it seems to be clear that for calculating f,(n) we can restrict
our attention to sets of points in general position, that is, no three points are
collinear, and no lines through two points, respectively, are parallel. Let us
be more precise:

LEMMA 2.4. Let k and n denote two positive integers with k < n. Then
there exists a set S of n points in general position such that S (8)=f(n).

Proof. If S, is a set of n points such that £,(S,) = f,(n), each k-set T and
its corresponding (n — k)-set 7" are determined by some line L({T,T'}). The
arrangement of these lines L({T, T"}) partitions the plane into open regions.
Each point of S, can be moved within its region to give a new set S in
general position with the same k-sets as S,. This completes the argument.

3. A LowerR BOUND ON THE MAXIMAL NUMBER OF k-SETS

This section demonstrates a lower bound on f,(n). This is done by
exhibiting special point-sets and analyzing the number of k-sets they realize.
We start with describing several sets of n points in the plane and analyzing
the number of |n/2|-sets they realize. Step by step, the point-set is refined
which improves the result. Finally, the lower bound is generalized to
arbitrary k with 1 <k<n— 1.

Let n be a multiple of 6 and let S, () denote a set of n points in the plane

~as follows: 7, s, and ¢ are three rays emanating from the origin which contain

the points of S,(n). Any two of r, s, and ¢ enclose an angle of 27/3, see
Fig. 3.1. We choose n/3 points of S,(n) on r, s, and ¢, respectively, such that
none of these points coincides with the origin. The three subsets are called
S1, S5, and S¢, see Fig. 3.1.

Calculation 3.1. Let n be a multiple of 6 and let S,(n) be as described
above. Then f, ,(S,(n))=n + 6.

Proof. The assertion follows from an easy counting argument to be
presented: For each positive i with 1 i< n/6 — 1 there is a unique n/2-set
which contains all n/3 points of S, the i points of §% which are nearest to
the origin, and the n/6 — i points of S| nearest to the origin. The complement
of each one of those n/6 — 1 n/2-sets is again an n/2-set. Since the same
argument holds when S7 is replaced by Si or S% we now have identified
n— 6 n/2-sets of §,(n). Note that none of these n/2-sets contains exactly n/6
points of any one of S7, S{, and S%, see Fig. 3.1.

There exist exactly two n/6-sets of S which both can be combined with
7 or S1, see Fig. 3.1. The same reasoning holds for S% and S replacing S”.
This gives additional 12 n/2-sets of S,(n) which completes the argument.
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Fig. 3.1. A possible §,(12) with f,(5,(12)) = 18.

A short moment of reflection shows that the special configuration chosen
for S,(n) allows many n/2-sets which do not partition one of S7s 8%, 0r 8%
into two equal sized halves. On the other hand, the fact that the points are
chosen exactly on the rays keeps the number of remaining n/2-sets small. We
will now describe a point-set S,(n) which shares with S,(n) the kind of
configuration but does not share the mentioned shortcoming.

Let n again be a multiple of 6 and let S}, S5, and S contain n/3 points
each such that §,(n) = S7U S3U §%. Intuitively, we obtain S4 from S for
A =r,s,t by perturbing a bit the points in the latter set.

The points of S7, §3, and S% are chosen near r, s, and ¢ and far enough
from the origin, respectively. To be precise we choose two positive real
numbers ¢ and 6 and define three regions r’/, s’, and ¢’ consisting of those
points of the plane whose distance to r, s, and ¢ is smaller than &, respec-
tively, and whose orthogonal projections onto r, s, and ¢, respectively, are
further from the origin than J units of length, see Fig.3.2. ¢ is chosen
sufficiently small and J is assumed to be sufficiently large. The points of S5,
S35, and S} are chosen in r’, s’, and ¢, respectively, such that for any
permutation (4, B, C) of (r, s, )

(i) the points of S4 are in general position, and
(i) the line through each pair of points of S4 separates B’ from C'.

Point-sets which satisfy condition (i) exist which can be shown by an easy
inductive argument. Condition (ii) can be guaranteed by moving the points
of §4 for A =r, s, t sufficiently near to 4.
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LINE SEPARATIONS IN THE PLANE 21

Fic. 3.2. A possible §,(12).

Calculation 3.2. Let n be a multiple of 6 and let S',(n) be a point-set as
described above. Then f,,(S,(1)) = 1 + f,,/6(S%) + f1,/6(S3) + £, (SL).

Proof. Due to condition (ii) there are n — 6 n/2-sets of §,(n) which do
not contain exactly half of the points of one of S}, S5, and S N

Let us now consider the n/2-sets of S,(n) which contain exactly n/6 points
of §%, say. We first concentrate on those n/6-sets of S’ which neither
contain the n/6 points nearest to the origin nor those n/6 points farthest from
the origin. A line L which separates two of those n/6-sets of S} also
separates s’ from ¢’ and therefore also separates two n/2-sets of S,(n).
Applying the same argument to S5 and S yields Sos6(S3) +16(S3) +
Jus6(85) — 6 n/2-sets of S,(n).

The n/6 points of S} nearest to or farthest from the origin can be
combined with S35 and with §%. Replacing S’ once by S5 and once by S,
yields 12 n/6-sets of S,(n) of the latter kind. Adding the three numbers
derived completes the argument.

For the next refinement of the point-set we need a transformation which
does not change the number of k-sets. To this end let y(e, §) denote the
region consisting of those points above the x axis whose distance to the
yaxis is smaller than ¢ and whose distance from the x axis is larger than ¢
and smaller than 26 for positive real numbers ¢ and 8. We also define two
points x’ = (—¢, 0) and x” = (g, 0), see Fig. 3.3.

LemMmA 3.3. Let S denote a set of m points in general position. Then for
any two positive real numbers ¢ and 0 there is a set S’ of points in y(e, §)
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FiG. 3.3. The region y(g, d) and the points x’ and x".

such that f,(S) =f(S") for 1 <k <m — 1 and any line through two points of
S' separates x' from x".

Proof. First, rotate S if necessary to eliminate horizontal connecting
lines of two points in S. '

Then an affine transformation is applied to the y-values of the points of .S
such that the orthogonal projection onto the y-axis of the resulting points fall
into the open interval (d, 20). The set S’ is obtained from the latter point-set
by application of a linear transformation to the x values of the points such
that the required conditions are satisfied. The existence of such transfor-
mations is readily seen which completes the argument.

With Lemma 3.3 we are able to refine S,(n) considerably. To this end let
n=2-3", for some positive integer m. We define S,(6) = .5,(6). Recall that
S5(6) is in general position and realizes 12 3-sets, see Calculation 3.1. For
m > 1, S;(n) consists of three disjoint subsets S}, S35, and S of n/3 points,
respectively. S} is obtained from S,(n/3) using Lemma 3.3 such that all
points lie in ' and a line through any two points of S separates s’ from #'.
Analogously obtained are S3 and S% from S,(n/3).

Calculation 3.4. Let n=2-3™, m a positive integer, and let S,(n) be as
described above. Then

Suj2(S3(n)) = n(log; (n/2) + 1).

Proof. Due to the recursive definition of S,(n) and due to
Calculation 3.2 we have f, ,(S5(n))=n+ 3f,,6(S;3(n/3)). Straightforward
calculations show that f, ,(S;(2-3™))=2-3"(m+1) and thus f, ,(S;(n))=
n(log;(n/2) + 1). This completes the argument.

Note that Calculation 3.4 holds only for very special positive integers n.
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In what follows, the result will be generalized to arbitrary n. Then aribtrary
positive integers k, with k < n are considered.

THEOREM 3.5. f, (1) >3"(m + 1), where m= [log;(n/2)| for positive
integers n. '

Proof. Let n,:=|n/2|—3™ and r, :=[n/2]—3"™. The set S,(n) of n
points is defined as the disjoint union of three sets which we call S, S¢, and
S2. S¢ realizes the configuration of S;(2 - 3™) and we exploit Lemma 3.3 to
force these 2 - 3™ points into a small vertical strip such that a line through
two points of S§ is nearly vertical, see Fig. 3.4. This choice of S§ guarantees
that for each complementary pair of 3™-sets of S§ there exists a line which
separates those two 3™-sets and also separates the points (—¢, 0) and (g, 0),
see Lemma 3.3. S consists of n, points which lie strictly to the left of the
lines through any two points of S¢. Similarly, S} contains n, points strictly

- to the right of those lines, see Fig. 3.4.

Let us now calculate the number of |n/2 |-sets realized by S,(n). Note that
|n/2] = 3™ + n,. Due to Calculation 3.4 there are 2 - 3™(m + 1) 3™-sets of
S™ and at least half of them lie to the left of a separating line. The n; points
of S} which lie also to the left of those lines complete these 3™(m + 1) 3"™-
sets of S§ to |n/2|-sets of S,(n). This completes the argument.

The remainder of this section is devoted to the generalization of
Theorem 3.5 to arbitrary positive integer k.

THEOREM 3.6. fi(n)=f,_.(n) = Q2(nlog k) for positive integers n and k
with k < [n/2].

Proof. Let C denote the unit circle. Most of the points of S,(n, k) which
will be described are chosen near C and some are chosen near the origin, see

| %

s
/

FiGc. 3.4. The configuration S,(n).
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Fig. 3.5. Let j:= |n/2k| and let ny = — 2kj. Ss(n, k) is the disjoint union
of point-sets 7, 55,..., S5, and S¢ such that | S| = 2k for 0<i<j—1and
|S§|=ng. S5 for 0Ki<j—1 is chosen such that Ju(85) = 3"(m + 1),
m = |log; k| (see Theorem 3.5) and Lemma 3.3 is used to force the points
into a small vertical strip. Let 4! denote the strip which contains S for
0<1<j— 1. We translate and rotate 47 (and with 4’ also S%) such that 4°
is contained in the interior of C and such that 4 touches C at two points
and the line L’ is the symmetry axis of A’ which cuts 4° at its long sides, see
Fig. 3.5. The line L’ goes through the origin and the angle from the positive
x axis to L' is 27ifj for 0<i<j— 1. The points of S are chosen near the
origin.

Due to Lemma 3.3 the sets S for 0 <i<j—1 can be chosen such that
each line which goes through two points of S5 has all areas 4" with &
different from i and S™ on one side. This guarantees that at least half of the
k-sets of A" with 0 <i<j— 1 are also k-sets of S's(n, k). By the choice of S
there are at least

3"(m + 1)/2 > (k/3)(log, k)/2

k-sets of A which survive. Hence, f,(S5(n, k)) > jk(log, k)/6. The assertion
follows from jk = @(n) which completes the argument.

-

FIG. 3.5. The configuration S,(n, k).
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LINE SEPARATIONS IN THE PLANE 235
4. AN UpPER BOUND ON THE NUMBER OF k-SETS

This section presents a nontrivial upper bound on f,(n). To this end, the
geometric problem is transformed into a combinatorial one. W.lLo.g. let §
denote a set of n planar points in general position, see Lemma 2.4. For
convenience, we label the points with the numbers 1, 2,..., n. Let L denote a
directed line which is not perpendicular to any line through two points of S.
Then the orthogonal projection onto L of S determines a permutation of
1,2...,n As L rotates counterclockwise, say, about some fixed point it
defines an infinite sequence of permutations in an obvious way. Using the
terminology of Goodman and Pollack [6] we term this sequence the circular
sequence of S and say that S induces its circular sequence. Evidently, the
circular sequence of any set of n points has period n(n — 1). Two properties
of circular sequences play important roles in the subsequent discussion.

PrOPERTY 4.1. Two successive permutations of a circular sequence
differ only by having the order of two adjacent numbers switched.

Property 4.1 follows from the assumption that the points are in general
position. Thus, a permutation is obtained from its predecessor as L rotates
through the direction perpendicular to the line through two points i and J.
Clearly, i and j are adjacent in both permutations while their order differs.
The positions of the other points cannot change simultaneously.

PROPERTY 4.2. Each one of the n(n — 1)/2 switches occurs exactly once
in any subsequence of n(n — 1)/2 + 1 permutations of a circular sequence for
1 points.

This property corresponds to the fact that as L rotates through an angle of
7 it defines n(n — 1)/2 + 1 permutations and rotates perpendicular through
each line defined by two points of the set.

For the time being, let us ignore the close relationship between sets of
points and circular sequences.

DEFINITION 4.1.  An infinite sequence of permutations of the numbers
1, 2,..., n which satisfies Properties 4.1 and 4.2 is called an allowable circular
sequence.

Note that the two properties imply a period of length n(n — 1). As an
immediate consequence of Property 4.2, the ordered switch j occurs exactly
n(n — 1)/2 steps after the ordered switch ji.

If an allowable circular sequence is induced by a point-set then the
sequence is said to be realizable. In spite of the close relationship between
sets of points and allowable circular sequences, Goodman and Pollack (6]
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showed that there exist allowable circular sequences which are not realizable.
The distinction between point-sets and allowable circular sequences relates to
the classical distinction between line-arrangements and pseudoline-
arrangements, see, e.g., Gruenbaum [7].

Let us now return to our original problem, that is, to the investigation of

Ji(n).

DEFINITION 4.2. We call a subset 4 of {1, 2,..., n} an allowable k-set for
I<k<n—1 of an allowable circular sequence C of permutations of
1,2,.,n if A contains k numbers and there exists a permutation in C such
that the kK numbers of 4 occur at the leftmost k positions.

We denote by g,(C) the number of allowable k-sets realized by the
circular sequence C. The maximum of 8x(C), for all circular sequences C of
1,2,..,n, is denoted by g,(n). Evidently, g,(n) =g,_,(n) and £, (n) < gx(n).
Thus, an upper bound on g, (n) is also an upper bound on f,(n).

Observation 4.1. Let C denote an allowable circular sequence of
1,2,..., n. Then g,(C) equals the number of switches at positions k and k + 1
(among n(n — 1) + 1 successive permutations of €):

Clearly, each switch at positions k and k + 1 defines a resulting allowable
k-set. One also readily sees that no allowable k-set is defined more than
once. Thus, we eventually consider the maximum number of switches that
can place at positions k and k+ 1 during n(n—1)+ 1 successive per-
mutations.

Let C¥,, denote an allowable circular sequence of 1, 2...., n, such that
during n(n— 1)+ 1 successive permutations there are g.(n) switches at
positions k and k + 1, for k< [/2]. Let C denote a subsequence of .
which consists of n(n — 1)/2 + 1 successive permutations such that at least
8x(n)/2 switches occur at the positions & and k + 1. Recall that each possible
(not ordered switch) occurs exactly once in C. Let Py =1, 2,..., n be the first
permutation of C and let Y =1i,i + L,...,j for 1<i<j< n denote a subse-
quence of P,. The subsequences to the left and to the right of ¥ are denoted
by X and Z, respectively. Hence, Py=XYZ. Let y denote the length of Y,
that is, p is the number of numbers in Y. We are going to analyze the
contribution of the numbers of Y to the switches at positions k and k + 1.

LEMMA 42. Let C be as defined above. Then at most
() + min{n — y, 2k} of the switches in C at positions k and k + 1 involve a
number of Y.

Proof. 1t is trivial to realize that at most (3) of the relevant switches
involve two numbers of Y. After those switches Y is totally reversed. It
remains to derive a bound on those relevant switches which involve exactly
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one number of Y. To this end we perform certain transformations on C such
that the contribution of the numbers in Y does not change and such that the
switches involving two numbers of X or two numbers of Z are performed as
late as possible. More specifically, we show:

Fact 1. C can be transformed such that (1) the contribution of the
numbers in Y does not change and (2) no switch involving two numbers of
either of X and Z is performed before the last switch (at positions k and
k + 1) involving a number of Y is completed.

Proof of Fact 1. Let f denote the smallest positive integer such that the
switch leading from the fth permutation P, in C to the (f+ 1)th
permutation P, , involves two numbers i and i + 1 of X, say. We delete P,
from C and concatenate a permutation P/, at the end of C. In all
permutations between P, and Pf, |, the numbers i and i + 1 are replaced by
each other. P, is chosen to differ from its predecessor only by having the
order of i and i + 1 changed. Applying this local transformation repeatedly
proves the assertion of Fact 1.

Thus, in the transformed sequence of permutations, no number of X is able
to move to the left before Y has completed its last contribution to the
switches at positions k and k + 1. Analogously, no number of Z is able to
move to the right before this event. It follows immediately that each one of
the numbers in X and Z can only once be the partner of a number in Y when
it is involved in a switch at positions k and k + 1. In addition, at most k
numbers of X can move from position k to k + 1 and at most Kk numbers of
Z can move from position k 4 1 to k, before the last contribution of Y to the
number of switches at these positions took place. This completes the
argument.

THEOREM 4.3. fi(n)=f,_(n)= O(nk'*) for positive integers n and k
with k < |n/2)-

Proof. We show the assertion by proving g,(n)=O0(nk'?). Let
P,=1,2,.., n be the first permutation of C as defined above. We partition P,
into subsequences with |k?| or |k"?|—1 numbers each. Due to
Lemma 4.2, the contributions to the number of switches at positions k and
k + 1 of any one of those subsequences is at most ¥/?) 4 2k < 3k. There are
at most |n/(|k'/*] — 1) subsequences for k >4, and at most n subsequences
for k < 4. The assertion follows since g,(n) is at most twice the quantity of
switches in C at the relevant positions. This completes the argument.
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5. EXTENSIONS AND DISCUSSION

First, the results and contributions of this paper are reviewed: The primary
concern has been an analysis of f,(n), that is, of the maximal number of k-
sets which can be realized by a set of » points in the plane. In Section 3, a
lower bound is demonstrated which tells us that Sie() =f,_(n) = Q(nlog k).
In Section 4, an upper bound is established stating Si(n)=f,_(n) = O(nk'??).
Both bound improve trivial bounds which were the only bounds known
before. Nevertheless, the result is not satisfying since it leaves us with quite a
gap in between. We feel that the lower bound is much closer to the actual
value of f,(n) and venture:

Conjecture 5.1.  fi(n) =0(nlog k) for positive integers n and k with
k< |n/2).

We finally give a number of open problems raised by the discussions of
this paper. The most urgent one is (1) the derivation of tighter bounds for
Ji(n), respectively the proof of Conjecture 5.1. Moreover, it is interesting to
know how much we have lost by the transformation of the point-set problem
into a combinatorial one. More specifically, (2) Do there exist positive
integers n and k such that f,(n) < g,(n), or do Ji(n) and g, (n) differ even
asymptotically? (3) What can be said about the sum of Ji(S), for a set S of n
planar points and all i in some index-set subset of {1, 2,..,|n/2]}? These
sums have applications in Edelsbrunner and Welzl [3]. At last, (4) How
many k-sets can be realized by a point-set in three dimensions? Such a k-set
is defined by a plane which separates it from the rest.

Note added in proof. A little while before the publication, the authors have been made
aware of an article by Erdos, Lovasz, Simmons, and Straus [4], where asymptotically the
same bounds for f,(n) have been established. It is interesting that the different methods in [4]
lead to the same bounds.
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