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This paper describes an optimal solution for the following geometric search problem defined for a set P of n points in three
dimensions: Given a plane h with all points of P on one side and a line ¢ in h, determine a point of P that is hit first when h is
rotated around ¢. The solution takes O(n) space and O(log n) time for a query. By use of geometric transforms, the post-office
problem for a finite set of points in two dimensions and certain two-dimensional point location problems are reduced to the

former problem and thus also optimally solved.
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1. Introduction

Let G be a plane graph with m straight edges in
E% G induces a subdivision S; of E? into O(m)
(open) regions, (relatively open) edges, and vertices
(see Fig. 1). To locate a point q in S5 means to
determine the region (or edge or vertex) of Sg that
contains q. In Fig. 1, q is contained in R ;.

The point location problem requires storing Sg
in some data structure such that later specified
points can be located efficiently. During the short
history of computational geometry, a good num-
ber of methods has been proposed for a solution.
However, implementable data structures that are
optimal in space and time are found in [12] and [7]
only.

One of the earliest and most important motiva-
tions to locate points derives from the post-office
problem [13]: Let S denote a finite set of points
(also called sites) in the Euclidean plane E?; store

* Research reported in this paper was partially supported by
the Austrian Fonds zur Forderung der wissenschaftlichen
Forschung.

S such that the nearest site to a later specified
query point can be determined efficiently. By in-
troducing a special subdivision, called the Voronoi
diagram of S, this problem can be reduced to point
location in E? [15]. Fig. 1 actually shows the
Voronoi diagram for seven sites indicated by small
empty circles,

A new and optimal solution of the post-office
problem is described in Section 3.2 of this paper.

Fig. 1. Straight-line subdivision of E2.
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Unlike previous solutions it does not reduce the
post-office problem to point location. In some
sense, it rather reduces locating a point in a
Voronoi diagram to a sequence of distance calcu-
lations and comparisons. Section 3.3 extends the
method to locate points in more general subdivi-
sions than Voronoi diagrams.

The solution of the post-office problem in Sec-
tion 3.2 follows by geometric transformation from
an optimal solution to the following slightly more
general problem in the three-dimensional Eucli-
dean space E*:

Let S denote a finite set of points in
E’. S is to be stored such that extremal
queries defined as follows can be
answered efficiently: Let h be a plane
such that S is contained in one of the
two open halfspaces defined, and let /
be a directed line (possibly at infinity)
in h; determine a point of S that is hit
first when h is rotated around ¢ in
counterclockwise direction. ! If £ is at
infinity, then the rotation degenerates
to a translation.

We call this the extremal search prob-
lem.

It is easy to see that attention might be restricted
to extreme points of S, that is, to the vertices of the
convex hull of S.? This suggests to store, some-
how, the convex hull of S. This suggestion is
followed in our paper.

The organization of the paper is as follows:
Section 2 gives a time- and space-optimal solution
for the extremal search problem as follows: After
some general remarks we describe the data struc-
ture (Section 2.1), show how to use it (Section 2.2),
and how to construct it (Section 2.3). Section 3
describes geometric transforms that yield applica-
tions of the results of Section 2 to other problems:
Section 3.1 deals with the dual setting, Section 3.2
considers the post-office problem, and Section 3.3

! The impression of counterclockwise rotation is realized when
we look in the direction of /.

2 The convex hull con S of S can be defined as the intersection
of all closed halfspaces that contain S [9].
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discusses the generalization of the methods to a
new and optimal solution for certain point loca-
tion problems in E?, Finally, Section 4 reviews the
main results and formulates open problems sug-
gested by the examinations of this paper.

2. Searching for extreme points in E>

Let S denote a set of n points in E* In ap-
proaching the extremal search problem for S, we
make use of a data structure sketched in [5]. For
the sake of completeness, we repeat and detail its
description. This data structure is based on convex
hulls of various sets of points. We start with the
introduction of definitions.

Let P=con S, that is, P is the convex hull of S,
A point p in S is a vertex of Pif P+ con(S — {p}).
If P has m < n vertices, then Euler’s theorem [11]
implies that P has at most 3m — 6 edges and at
most 2m — 4 faces, for m = 3. We let exr S denote
the set of extreme points of S, that is, of vertices of
P. A vertex v and an edge ¢ of P are incident. if v is
an endpoint of e, and two vertices v# w are
adjacent if they are incident upon a common edge.
The number of vertices adjacent to v is called the
degree deg(v) of v. Finally, a subset I of ext S is
independent (on P) if the vertices in I are pairwise
non-adjacent.

The data structure of [5] relies on the existence
of an independent set I of P with

(1) |I]| = |ext S|/c,, and

(2) deg(v)<c, for vin I,
for positive constants ¢, and c,. The existence of
such a set I follows from Euler’s theorem (see
Kirkpatrick [12] who shows it for ¢; =24 and
¢, = 12). However, it is not clear what the optimal
trade-off between ¢, and ¢, is. For ¢; =24 and
¢, =12, Kirkpatrick [12] also demonstrates a
straightforward O(n) time algorithm to find 1.

2.1. The data structure

This section presents in detail the data structure
called a hierarchic description Hier(P) of P. Hier(P)
is a sequence P, C --- C P, of convex polytopes
that approximate P increasingly well. Let V; be the
set of vertices of P,. We require that
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Fig. 2. Hierarchy of polytopes.
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Fig. 3. Storing an edge.

(i) P, is a triangle * and P, = P,

(i) ;cV,,, for 0gigk~-1, and I, ;=
V.., — V,is independent on P, _ ;,

(i) |I;| < |V;| /¢, and deg(v)<¢, for vin I,
for 1 i<k and ¢, and ¢, positive constants (see
Fig. 2).

k is referred to as the height of Hier(P), and
s=XF_o|V;| is called its size. By the geometric
regression of |V;|, for i=k down to 0, we have
k =0(log n) and s=O(n), for n the number of
vertices of P.

To store any P,, for 0 <1 < k, we use the follow-
ing simplified version of the quad-edge data struc-
ture of [10]. Each undirected edge is stored as a
pair of directed edges e and sym e. Each directed
edge e stores its origin org e, and pointers to edges
e’ = onext e and e” = dnext e such that e’ and e¢”
bound the face to the left of e,

orge'=orge and orge”’ =deste=orgsyme,

where dest e denotes the destination of directed
edge e (see Fig. 3). To facilitate searching in

3 A rriangle is the convex hull of three noncollinear points.
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III

I1
o

e sym e

I=orge LI

cnext e

(I,1V) =" ®——> (II,III)
dnext e
(II,IV) =18 ®—= (I1,1II)
isuce
(V,I) =——® &——= (v,II)

Hier(P), some °vertical’ structure that connects
consecutive polytopes is needed. Let e be a di-
rected edge in P, (0 <i <k —1). If there is an edge
fin P, with orgf=o0rge and dest f = dest e,
then f is the (direct) successor dsuc e of e. Other-
wise, there is a unique vertex v in I,,; such that
the relative interior of the triangle spanned by e
and v does not intersect P,. 4

We call edge g in P, | with org g=v and dest
g = org e the (indirect) successor isuc e of e. In Fig.
2, all edges except for (I, II) and (II, I) in P, have
direct successors. '

Fig. 3 shows the implementation of edge (I, IT)
of P; in Fig. 2. Only one pointer has to be reserved
for successors since an edge cannot have a direct
and an indirect successor at the same time.

We summarize the results of this section.

Theorem 2.1. Let P be a convex polytope with n
vertices in E*. A hierarchic description of P has
height O(log n) and requires O(n) space.

* Two such vertices contradict the independence of I;,, and
the nonexistence of v contradicts the nonexistence of f.
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Fig. 4. Vertices and edges extreme w.r.t. h and ¢.

2.2. Searching in a hierarchic description

This section demonstrates the use of hierarchic
descriptions for answering extremal queries. Let S
be a finite set of points in E’. Recall that an
extremal query specifies a plane h disjoint from
con S and a directed line ¢ in h, and asks for a
point p in S that is extreme w.r.t. h and ¢, that is,
p is hit first when h is turned around ¢. For the
time being, we assume that no two points of S are
coplanar with #. It follows that the answer is a
unique vertex of P=con S. The degenerate case
will be addressed at the end of this section.

We start with clarifying the role of direct and
indirect successors of directed edges in Hier(P)
consisting of polytopes Py, ..., P,. To this end, let
v; in P, (for 0 <i<k) be the extreme vertex of P,
w.r.t. h and . We call edges e; and f; extreme
(w.r.t. h and ¢) if org e, = org f,=v;, and if P, is
projected orthogonally onto a plane normal to 7,
then the projections of e, and f, appear on the
boundary of the resulting polygon. Fig. 4 depicts
the polytopes of Fig. 2 together with a query plane
h and a directed line ¢ in h. The view is taken in
the direction of ¢ so that h appears as a line and ¢
as a point. Vertices and edges extreme w.r.t. h and
¢ are drawn heavily.

Lemma 2.2. v, ., =V, or V,,, Is the origin of at least

one of
isuc e, sym onext dsuc e;,
sym dnext sym dsuc €;, isuc f;,

sym onext dsuc f; and sym dnext sym dsuc f;.
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Proof. The assertion is clear if v, ; = v;. So assume
Vis1#V;. Then v, is in I;,; and, by convexity of
P,,,, it is adjacent to v; and at least one of dest e;
and dest f,.° Say v,,, is adjacent to dest e,. If e,
has an indirect successor, then v,,, = org isuc e;.
Otherwise, v, , is the destination of the next-edges
of dsuc e; or sym dsuce;. O

On an intuitive level of understanding, the
search for v, (which is extreme in S w.r.t. h and ¢)
starts at B, and proceeds through the hierarchy to
P, (see Fig. 4, where the search proceeds from
right to left). For each P, ,, v;, , is computed from
vi. €, and f; (0 <i<k—1) (see Lemma 2.2). If
Vi+1 #V;, then e;,, and f,,, are determined in
O(deg(v;.1)) time from an arbitrary edge g with
org g=v;,, as follows:

For any three consecutive edges g, g,,
2, emanating from v, ., test whether
the plane that contains g, and is paral-
lel to £ separates dest g, from dest
g,. ° By convexity of P, this is false
exactly twice, namely for g, = e, ,, and
for g, = f,..

If, otherwise, v;,, =v;, then e, ; and f, , can be
chosen out of

{ sym isuc e;, dsuc e;, onext dsuc e;,

> Note that all vertices of P, are also vertices of P, ;.
 The sorted sequence of edges with origin v;,, can be com-
puted in O(deg(v; ,)) time using onext- and dnext-pointers.
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dnext sym dsuc e, isuc f;, dsuc f;,

onext dsuc £;, dnext sym dsuc f,}

using the same technique as before.

A formal description of the search algorithm is
given below. It assumes the existence of primitive
functions for finding e;,, and f, , ,, if an edge g in
P, ., with org g=v,,, is given (this is discussed
above), and for computing the ‘distance’ D(p, h, ¢)
of a point p from h and 7. It ¢ is at infinity, then
D(p, h, £) is the length of the translation until h
meets p, and D(p, h, £) is the angle through which
h has to be turned around ¢, otherwise.

Algorithm EXTREMAL SEARCH. Initially, vertex v,
and edges ¢, and f; of P, that are extreme wr.t. h
and £ are determined.

Fori=0tok—1, v, is selected from

{vi, org isuc e;, org isuc f;,
dest onext dsuc e;, dest dnext sym dsuc e;,
dest onext dsuc f;, dest dnext sym dsuc f; }

using the distance function D. If i <k —1, then
€, and f; , are computed as described. Other-
wise, v, is the answer.

Each action taken in the for-loop requires con-
stant time, even selection of e;,; and f,,,, since
then v;,; is in I;,; and thus deg(v,,,) <c,. This
can also be achieved if the restriction to vertices
that are pairwise not coplanar with ¢ is removed.
One method to cope with these degenerate cases is
to treat an edge parallel to ¢ as a vertex, and a
face coplanar with £ as an edge. Special care in
the design of the primitive functions that select
;.1 and f;, is then in order.

Theorem 2.3. Let S be a set of n points in E>.
Hier(con S) allows us to answer an extremal query
in O(log n) time.

2.3. Constructing a hierarchic description

Let S be a set of n points in E3, and let P be a
convex polytope with n vertices in E*. To set up a
hierarchic description, the following components
are used: ;
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(1) Preparata and Hong [14] describe an O(n
log n) time and O(n) space algorithm to construct
the convex hull of S. It is an easy exercise to
conver} the representation for convex hulls chosen
in [14] in O(n) time to the one described in Section
z2.1.

(2) O(n) time suffices to find an independent
set I of P with |I| > n/c, and deg(v) < c,, for vin
I (see the very beginning of Section 2).

(3) Given P (with vertex set V) and the vertices
in I (as computed in (2)) marked, con(V —I) can
be computed in O(n) time by deleting a vertex of I
from P at a time. With nominal extra cost, the
dsuc- and isuc-pointers from con(V —1) to P can
be established simultaneously.

This implies the following result.

Theorem 24. Ler S be a set of n points in E°.
O(n log n) time and O(n) space suffice to construct
Hier(S).

3. Applications

This section demonstrates solutions of three
problems from computational geometry using the
structure and algorithms introduced in Section 2.
For the three problems, two geometric transforms
are used to kind of reduce them to the extremal
search problem in E>. We discuss the transforms
first and come back to the problems later.

Both geometric transforms are based on the
paraboloid U:z=x?+y? and on various of its
properties. The dual transform D maps a point
p=(p, Py» P,) of E’ into the plane D(p):z=
2p,x + 2p,y — p, and vice versa, that is, D(D(p))
=p. The direction of the normal of D(p) is de-
termined by the x- and y-coordinates of p so the
points of a vertical line map into parallel planes. If
p is below U, that is, p, < p} + p;, then D(p) N U
is the set of points u on U such that the tangent
plane through u contains p. We refer to Fig. 5 for
an illustration: The view is taken along the y-axis
and the point shown has y-coordinate equal to
zero. To simplify the forthcoming discussion, some
notation has to be introduced: A plane h is vertical
if the z-axis is parallel to h. Note that D(p) is
nonvertical for all points p in E®. A point p is
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above, on, below a nonvertical plane h:z=h;x +
h,y + h; if p, is greater than, equal to, less than
h;p, + h,py + h;, respectively. Straightforward
calculations yield the following.

Observation 3.1. Let p and h be a point and a
nonvertical plane in B>, respectively. If p is above,
on, below h, then D(h) is above, on, below D(p),
respectively.

The other transform E embeds a two-dimen-
sional structure in E3, A (closed) disc

cilx—c;) +(x—¢,) <2

in E* (identified in the natural way with the
xy-plane in E*) maps into the plane

E(c):z=2c1x+2c2y+(c32—c%—c§),

and vice versa. It is worth mentioning that the
center (c,, ¢;) of ¢ and D(E(c)) lie on the same
vertical line. Also, the vertical projection of E(c)N
U onto the xy-plane is the boundary of c¢. Let
E(c)" and E(c)~ be the open halfspaces above and
below Efc), respectively. Then E(c) N U projects
vertically into the interior of ¢ and E(c) "N U into
the complement of c. We define p = D(E(p)) for a
point p in the xy-plane, that is, P is the vertical
projection of p onto U. Then we have the follow-
ing.

Observation 3.2. Let p and c be a point and a disc
in the xy-plane, respectively. p lies in the interior of
c, on the boundary of c, outside of c if and only if P
is in B(c)™, on E(c), in E(c)™, respectively.

E(c)

Mo
D(E(c))
Fig. 5. Geometric transforms D and E.
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Fig. 5 illustrates the transforms D and E one
dimension lower. So a plane appears as a line, a
circle is represented by a segment, and U is shown
as a parabola.

3.1. Penetration search in E?

Let HS be a finite set of (open) halfspaces in E*
with nonempty intersection I and let H be the set
of planes bounding halfspaces in HS. Further-
more, let g be a point in I and let v be a nonzero
vector in E*. A plane h in H is termed extreme
(w.r.t. q and v) if it is hit first when g moves in
the direction of v. The penetration search problem
requires storing HS such that an extreme plane of
a point in I and a vector can be found efficiently.

Without loss of generality, we assume that each
plane in H is nonvertical and bounds the corre-
sponding halfspace from below. Otherwise, verti-
cal planes are treated separately, and halfspaces
bounded from above symmetrically. By Observa-
tion 3.1, D maps a point q in I into a plane D(p)
below D(H) = {D(h) |h in H}. Clearly, if g moves
into the direction of v, it describes a line in E?
which implies that plane D(q) rotates around line
£=D(q@ND(q+v) by the following argument:
Assume that a plane D(q + \v) does not contain
¢. Then it is parallel to £ or intersects it in a point
r. By Observation 3.1, there is a unique plane that
contains ¢, q+ v, and q+ Av—a contradiction.
The direction of the rotation is also determined by
v. By Theorems 2.1, 2.3, and 2.4, we have the
following result.

Theorem 3.3. There is a data structure that solves
the penetration search problem for n halfspaces in
E? with O(log n) query time, O(n) space, and
O(n log n) time for construction.

This solution is exploited in [6] to construct
high-order Voronoi diagrams [15] and three-di-
mensional space cutting trees [4] efficiently.

3.2. The post-office problem
Let S be a set of n points (also called sites) in

E?. Recall that the post-office problem requires
storing S such that a nearest site for a given query
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point q can be determined efficiently.

To solve the problem, we embed the scenario in
E*: E? is identified with the xy-plane, S = {3|sin
S}, and q maps into the plane E(q). By Observa-
tion 3.2, S is above E(q) unless q is in S in which
case one point of S is in E(q) and the others are
above. A nearest neighbour s of q can be char-
acterized as follows:

Imagine a disc ¢ with center q and
initial radius c;=0. When ¢, grows
continuously, then s is encountered first
by ¢ (see Fig. 6).

In the three-dimensional embedding, the growth of
c goes along with an upward rise of E(c). By
Observation 3.2, s is a first point encountered by
E(c). Thus, the hierarchic description of con S
solves the post-office problem with optimal
O(log n) query time, optimal O(n) space, and
O(n log n) time for construction.

The novelty of this solution is not that it is the
first optimal solution but that it is not a reduction
to point location. Examining the hierarchic de-
scription of S carefully reveals that the folowing
simplification can be performed:

The search in Hier(S) is guided by spe-
cial ‘distance calculations’ between
points and a plane rotating around a
line. For the post-office problem, the
line is at infinity, thus the ‘distance’ is
proportional to the vertical distance be-
tween point § and plane E(q). This, in
turn, is the square of the Euclidean
distance between site s and query point

q.

Consequently, the search as required by
Hier(con S) can be interpreted as being guided by

Fig. 6. Growing disc identifies nearest neighbour.
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a sequence of distance calculations between sites
and query point. In fact, the vertical projections of
the lower parts of the polytopes in Hier(con S) are
Delaunay triangulations of subsets of S. Their
duals are Voronoi diagrams (see [8]).

3.3. Point location

Using the dual transform D, the solution for
the post-office problem in Section 3.2 can be inter-
preted as follows:

D(S) is a set of planes all tangent to U.
The intersection of all halfplanes
bounded from below by a plane in
D(S) is a convex polyhedron P. The
vertical projection of P’s boundary onto
the xy-plane is the Voronoi diagram
VOD(S) of S.” Raising the plane E(q)
now translates to lowering the point g,
and a first point hit by E(q) corre-
sponds to a first plane encountered by
qJ

So the post-office problem is also a special case of
the penetration search problem, namely for the
vector v=(0, 0, —1). The same picture applies to
every point location problem provided the subdivi-
sion S given can be transformed into a convex
polyhedron P such that Sg is the vertical projec-
tion of P’s boundary.

Unfortunately, not every subdivision of E? with
straight edges can be obtained by projection of the
boundary of some convex polyhedron P in E*, For
instance, the subdivision in Fig. 7(a) cannot since
the extensions of the three unbounded edges do
not meet in a point. By similar reasons, the tri-
angulation in Fig. 7(b), which we took from [2],
fails to derive from convex polyhedra: The planes
supporting A, A,, A (if there were any) intersect
in the shaded angles. Since these angles have no
common point, the intersections of the planes have
neither which implies that the planes do not exist.
We refer to [3,17,18,16] for literature on cell com-
plexes and projections of convex polyhedra.

Nevertheless, many naturally arising subdivi-

" The Voronoi diagram of S associates each site s with the
region V(s) = {p in E?|d(p,s) <d(p. 1), t in S—{s}}.
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(a)

Fig. 7. Subdivisions not obtainable by projection.

sions of E? can be obtained by projecting the
boundaries of convex polyhedra. For instance,
higher-order Voronoi diagrams belong to this class

[1].

4. Discussion

We start with a review of what we consider the
significant contributions of this paper. It offers a
unified view of four problems in computational
geometry: New and optimal solutions for the
post-office problem and certain point location
problems in E* are derived via geometric trans-
forms from an optimal solution for the extremal
search problem in E*: Find the first point hit by a
rotating or sweeping plane. Also, the dual problem
of finding the penetration of a moving point and a
convex polytope in E? is thus solved. The solution
for the post-office problem is the first one which is
optimal and does not reduce it to point location.
In some sense even, the method given for point
location is a reduction to a sequence of sort of
distance calculations. In this context it is inter-
esting to note that the hierarchic description, that
is, the central data structure, is essentially a DAG
—as are the other optimal solutions for point
location given in literature.

As an open problem we point out the investiga-
tion of the trade-off between constants ¢, and ¢,
inherent in the definition of a hierarchic descrip-
tion of a polytope. Results on this trade-off might
answer the question of the practicality of our
results.

Furthermore, no complexity results are availa-
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ble for deciding whether a given subdivision of E?
can be obtained by projecting the boundary of a
three-dimensional convex polyhedron.
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