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CONSTRUCTING BELTS IN TWO-DIMENSIONAL ARRANGEMENTS
WITH APPLICATIONS*

H. EDELSBRUNNERT aND E. WELZL+

Abstract. For H a set of lines in the Euclidean plane, A(H) denotes the induced dissection, called the
arrangement of H. We define the notion of a belt in A(H), which is bounded by a subset of the edges in
A(H), and describe two algorithms for constructing belts. All this is motivated by applications to a host of

seemingly unrelated problems including a type of range search and finding the minimum area triangle with
the vertices taken from some finite set of points.

Key words. computational geometry, arrangements of lines, plane-sweep, maintenance of convex hulls,
efficient algorithms, halfplanar range search

L. Introduction. The systematic study of algorithms for low-dimensional geometric
problems started with the doctoral dissertation of Shamos [S] around 1975. Since then,
this area of research experienced a steady increase in activity which can be explained
by the host of theoretically interesting problems in the field and also by the relevance
of the developed results to more practically oriented branches in computer science.

This paper is concerned with several seemingly unrelated problems dealing with
finite sets of points in the Euclidean plane. The problems are discussed in §8§ 4.1
through 4.5. All solutions rely heavily on the more basic developments of §§ 2 and 3.
Section 2 introduces the concept of a dual plane which hosts a line for each point in
the original space. Such a set of lines cuts the (dual) plane into convex regions, edges,
and vertices which express certain convexity properties of the (original) point-set fairly
explicitly. The set of lines also turns out to favour the development of algorithmic
solutions for the (original) problems, once the correspondences between both settings
are reasonably understood. Section 3 presents two algorithms for constructing belts,
a fundamental concept defined for sets of lines in § 2.

We explicate one problem to illustrate the general character of our results: Let S
be a set of n points in the plane. The halfplanar range search problem requires a data
structure for S such that the number of points which lie in a later specified query
halfplane can be determined efficiently. All known solutions either take a lot of space
(O(n?) space suffices to achieve O(log n) time for answering a query [EKM]) or
suboptimal time (with O(n) space, the currently best solutions answers a query in
O(n®*®) time [EW2]). Recent arguments of Fredman [F] also support the thesis that
halfplanar range search is inherently more complex than classical orthogonal range
search (see Bentley and Friedman [BF] for an early survey of solutions for the latter).
Motivated by these results, we relax the problem and ask for rough ideas of the number
of points in a query halfplane rather than for the exact answer. Sections 4.1 and 4.2
offer families of solutions which realize varying degrees of accuracy. Most striking,
Theorem 4.6 shows the existence of a constant space structure which discriminates
between halfplanes that contain less than one third and more than two thirds of all
points.

2. Geometric preliminaries. This section introduces the geometric concepts and
facts which are needed in the forthcoming discussions. The primary concern are

so-called k-sets of planar point-sets and their appearance under a dualizing geometric
transform.
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Let S denote a set of n points in the plane, for some positive integer n. We call
a subset S’ of S a k-set of S, for 0=k =n, if it contains k points and there exists a
halfplane which intersects S in S'. Let £.(S) denote the number of k-sets realized by
S and let fi(n) denote the maximum of £:(S), for all sets S of n points in the plane.
Then fy(n)=f,(n)=1 and obviously filn)=f,_i(n), for 0=k=n Bounds on the
asymptotic behaviour of fi(n), for 1=k=n-1, are developed in Erdos, Lovasz,
Simmons, and Straus [ELSS] and in Edelsbrunner and Welzl [EW1]:

PrOPOSITION 2.1. Let k and n denote two positive integers with k= |n/2]. Then
fi(n) and f,_.(n) are in Q(nlog (k+1)) and in O(nk'?).

It is often the case that geometric problems formulated for point-sets are more
conveniently solved in dual space, which can, e.g., be obtained by application of the
following geometric transform T which was also used in Brown [Br] to solve geometric
problems different from ours.

(1) A point p=(p, p,) is mapped into the line T(p) whose points (x, y) satisfy
y =px+p,, and

(2) a nonvertical line L whose points (x, y) satisfy y = L,x+ L, is mapped into

the point T(L)=(—L,, L,) (see Fig. 2-1).
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FIG. 2.1. T applied to three points and a line.

A set S of points is transformed into a set T(S) of nonvertical lines. The nice
property of T is the maintenance of the relative position between a point and a line.
Let p=(px py) be a point and L: y= L.x+ L, a nonvertical line. Let yo= L.px+ L,
Then we say that p lies below, on, or above L depending on whether p, <o, Py = Yo,
or p,> y,. We also say that L lies above p, contains p, or lies below p in these cases.

Observation 2.2. Let p denote a point and L a nonvertical line in the plane. Then
p lies below (or above) L if and only if T(p) lies below (or above) T(L).

This effect can be observed in Fig. 2.1 where p, is the only point below L and
T(p,) is the only line below T(L).

The set H = T(S) of lines induces a dissection of the plane called the arrangement
A(H) of H. A(H) consists of vertices (intersections of lines), edges (maximal connected
subsets of the lines which contain no vertex), and regions (maximal connected subsets
of the plane which contain no edge or vertex). For convenience, we say that two
parallel lines intersect in a vertex at infinity. Also for convenience, we define the notions
of complete edges and regions: A complete edge of A(H) is a bounded edge, an
unbounded edge on a line that has a parallel line in H, or the union of two unbounded
edges both supported by the same line which has no parallel line in H. A complete
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region of A(H) is a bounded region, an unbounded region enclosed between two
parallel lines, or the union of two unbounded regions R, and R, such that any line
in H separates R, from R,. Notice the similarity of these notions to the concepts of
edges and regions in the projective plane. There exists an important correspondence
between the k-sets of S and the complete regions of A(H):

Observation 2.3. Let S’ be some k-set of S. Then there exists a complete region
R in A(H) such that a line L separates S’ from S-S’ if and only if T(L) lies in R.

For each point p in the plane let b(p), of P), and a(p) denote the number of
lines in H which lie below p, contain p, and lie above p, respectively. Evidently,
b(p)+o(p)+a(p)=n (n the cardinality of H), for each point p. We define the k-belt
of H, for 0=k = [n/2], as the set of points p in the plane such that b(p)+o(p)=k
and a(p)+o(p)=k (see Fig. 2.2). The 0-belt is the whole plane, and the k-belt, for
k=1, is bounded below and above by an unbounded polygonal chain, respectively.
These polygonal chains are monotone in x, that is, any one of them intersects each
vertical line in exactly one point. For k= (n+1)/2, the two boundaries of the k-belt
coincide. Obviously, the k'-belt is contained in the k"-belt if 0= k"< k' < [n/2].

Fi1G. 2.2. The 3-belt for 8 lines.

Let p=(p, p,) be an arbitrary point in the plane and let B be the k-belt of H,
for some integer k. Let y, and y, denote the y-coordinates of the intersections of the
vertical line through p and the lower and upper boundary of B, respectively. We say
that p lies below, in, or above B if p, <y, y,=p,=y,, or y, < Py is true, respectively.

In the following sections, a k-belt will be represented by the sequences of edges
of its boundaries. Let b, ( H) denote the number of complete edges bounding the k-belt
of H, and let b.(n) denote the maximum of b,(H), for all sets H of n lines in the
plane. The strong relationship between the k-sets of S and the complete regions of
A(H) imply that b(n) and b, ,(n) are in O(fi_,(n)+fi(n)) and therefore in
Q(n log (k+1)) and in O(nk'/?). The interested reader is invited to verify the following:

LEMMA 2.4. Let S denote a set of n points in the plane with no three collinear, and
define H=T(S). Then :

by(H) =0,
b,(H) = £i(8),
b(H) = fi_y(S)+£(S), for2=k=[(n-1)/2].
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In § 4 of this paper, so-called simplified belts of sets of lines are used to decrease
the space requirements needed for solving halfplanar range estimation problems. These
simplified belts are obtained from ordinary belts by replacing sequences of complete
edges by single complete edges. To this end, let B denote the k-belt of a set H of
n=2 lines and 1=k=[n/2]. For convenience, we assume that no three lines of H
are concurrent, that is, no three intersect in a common vertex. The unrestricted case
will be discussed later. We call a vertex of the lower and upper boundary of B a lower
and an upper vertex, respectively. Note that two parallel lines define a vertex at infinity
which is defined a lower vertex. If a vertex belongs to both boundaries then it is
considered as two vertices, one of each kind. We assign the numbers 0, 1,- - -, b(H)—-1
to the b (H) vertices of B such that i<j if i is a lower and j an upper vertex, and
vertex i is to left of the vertical line through vertex j, otherwise (see Fig. 2.3).

FIG. 2.3. 3-simplified 3-belt for 8 lines.

Let m be a positive integer with m=2[n/2]-2k+1 and m=b(H)~-1. The
former restriction on m guarantees that the m-simplified belt is going to be bounded
by two noncrossing polygonal chains (see Lemma 2.6). The latter restriction implies
that the m-simplified belt will avoid over-simplification. The complete edges of the
boundaries of the m-simplified k-belt connect the vertices 0 and m, m and 2m, - - -, rm
and 0, with r= |(b(H)—1)/m]. A complete edge which connects two lower or two
upper vertices is the line segment which has the two vertices as endpoints. A complete
edge connecting a lower and an upper vertex consists of two rays on the line through
the two vertices which emanate from the two vertices such that they do not overlap.
The m-simplified k-belt is the set of points in between the lower and upper boundary
including the boundary points. The reason for the introduction of simplified belts is
the smaller number of vertices and edges they consist of as compared to ordinary belts.

Observation 2.5. Let S denote a set of n points in the plane such that no three
are collinear. Then the m-simplified k-belt of H = T(S), for 1=k = [n/2], 1=sm=
2[n/2]-2k+1, and m= b, (H)—1, has at most [bi(H)/m] vertices.

The nice property of simplified k-belts is the fact that they are reasonable approxi-
mations of ordinary k-belts.

LEMMA 2.6. Let S be a set of n points in the plane such that no three are collinear,
and define H=T(S). Then the m-simplified k-belt, for 1=m=2[n/2]-2k+1 and
m=b,(H)—1, contains the (k+|m/2))-belt and is contained in the max {0, k—
|m/2]}-belt of H.
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Proof. Consider an arbitrary complete edge e of the m-simplified k-belt which
we call M; see Fig. 2.4. Let L denote a line in H which properly intersects e, that is,
it does not support e. It is readily seen that at least one complete edge of the k-belt
of H which is supported by L is in the sequence of complete edges replaced by e (see
Fig. 2-4). (Note that this is true only because no three lines intersect in a common
point.) Consequently, at most m—2 lines of H properly intersect e.

-2

k-1 i k-1

k-2 r-,&- o= -fle/ Irrr

FI1G. 2.4. Simplification with m = 8.

From the correspondence between the k-sets of S and the complete regions of
A(H) (see Observations 2.2 and 2.3) and the definition of k-belts we know that the
regions which share an edge with the k-belt correspond to (k —1)-sets or k-sets. W.l.o.g.
let the regions above the considered sequence of edges correspond to (k—1)-sets.
Those regions above the latter regions which share edges with them correspond to
(k—2)-sets, etc., etc. Let k' be minimal such that there is a complete region R which
corresponds to a k'-set and R intersects e or lies between e and the sequence of edges
replaced by e. Since e properly intersects only m—2 lines, we have k'=k—|m/2].
(The details of the vetification of this fact are left to the interested reader.) This implies
the second part of Lemma 2.6 while the analogous reasoning implies the first part.
This completes the argument. :

As an immediate consequence of Lemma 2.6, the m-simplified k-belt intersects
each vertical line in a single and nonempty interval provided k + m/2] = [n/2] which
is equivalent to m=2[n/2]-2k+1. Thus, we can extend the below-in-above relation
defined for points and ordinary belts to points and simplified belts without ambiguity.

Let us now return to the general case of a point-set S which may contain an
arbitrary number of points on a single line. Difficulties arise when a belt of H = T(S)
is simplified which contains a vertex common to more than two lines. If the sim-
plification is carried out as described then Lemma 2.6 need not be true. This can be
remedied by taking care that a new complete edge properly intersects at most m —2
lines of H. A simple way to achieve this is to consider a vertex v which is common to
i=2 lines as a sequence of min {m -1, i —2} degenerate edges and one more vertex.
This invalidates the definition given for simplified belts, and Lemma 2.6 is true again.
Observation 2.5 is no longer true in the strength it is stated. Nevertheless we have:

Observation 2.7. Let S denote an arbitrary set of n points in the plane. Then the
m-simplified k-belt of H = T(S), with 1= k= [n/2]and 1=m=2[n/2]-2k+1, con-
tains at most [b.(n)/m] complete edges.

Although there may be new complete edges which replace less than m old ones,
the number is compensated by the loss of edges caused by the concurrency of lines.
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3. Constructing belts. Let S be a set of n points in the plane. Throughout this
section, we will assume that n and k are positive integers such that k= [n/2]. We will
introduce two algorithms for constructing a belt of H = T(S) which is represented by
two linear lists storing the lower and upper vertices ordered from left to right, respec-
tively. While the first algorithm is reasonably simple, the second is reasonably efficient.
In fact, no better algorithm is currently known except for the special case k=1. For
the time being, we assume that no two lines of H are parallel and that no three lines
are concurrent. The unrestricted case will be discussed later. W.l.o.g. only the construc-
tion of the lower boundary of a belt is described.

ArcoritHMm TRIVIAL PLANE SWEEP:

Let V denote a vertical line sweeping from left to right. (Note that no line in H
is vertical, thus, each line intersects V in exactly one point.) V is associated with a
linear array D which maintains the sorted order of the lines w.r.t. their intersections
with V as V sweeps from left to right. Hence, at any moment, the kth line in D is
also the kth bottommost line at the current x-coordinate. With V we associate also a
priority queue Q which contains the x-coordinates of the anticipated intersections of
any two adjacent lines in D.

If V encounters the intersection of two lines L, and L, with L, below L, to the
left of the intersection, then the following actions are taken: (1) Delete the topmost
element from Q, that is, the x-coordinate of the intersection. (2) Let Ly, and L,, denote
the lines immediately below L, and above L,, respectively. If L, and Ly, or L, and
L, intersect to the right of V then delete the x-coordinate of the respective intersection
from Q. (3) Reverse the order of L, and L, in D. (4) If L, and L,,, or L, and Ly,
intersect to the right of V, then insert the x-coordinates of those intersections into Q.
(5) If L, or L, is the kth line before the intersection is encountered, then the inter-
section point completes an edge of the k-belt which is reflected in the structure of the
k-belt.

Trivial modifications enable the algorithm to handle degeneracies like parallel
and concurrent lines. In the former case, intersection points in infinity are created. In
the latter case, the order of all lines which meet in a vertex encountered by V is
reversed in D.

LemMa 3.1. Let H be a set of n nonvertical lines in the plane. Algorithm TRIVIAL
PLANE SWEEP constructs the k-belt of H in O(n?log n) time and O(n+ b,(H)) space.

Proof. There are at most (3) intersections to be handled with the data structures
D and Q. Each intersection of two lines requires O(log n) time, see Aho, Hopcroft,
and Ullman [AHU]. Common intersections of i > 2 lines require O(i log n) time which
is less than the amount that would be needed if all pairs of the i lines intersect in
unique points. (Deletions from Q can be handled by maintaining a pointer from each
pair of adjacent lines in D for which an intersection is anticipated to the x-coordinate
of this intersection in Q.) The space required by D and Q is O(n) and the one for
the k-belt is O(b,(H)). This completes the argument.

It is worth noting that Algorithm TRIVIAL PLANE SWEEP can construct all
belts of H within the same asymptotic time bounds. The algorithm is also an interesting
general method for certain types of point problems if it neglects the construction of
belts and performs other actions instead. In fact, § 4.5 demonstrates one such example.

For computing a single belt, a considerably more efficient method is obtained by
refining Algorithm TRIVIAL PLANE SWEEP: Instead of considering all (3) intersec-
tions, only those coinciding with vertices of the belt are processed. This is made possible
by maintaining the lines below and above the kth line in separate data structures of
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a particular kind. For this algorithm we need the following result due to Overmars
and van Leeuwen [OvL1]:

ProOPOSITION 3.2. The intersection of a set S of n halfplanes can be computed in
O(n log n) time and O(n) space. This intersection can then be maintained with O(log” n)
time per insertion and deletion such that the adjacent edges of a given edge are available
in constant time. All bounds state the requirements in the worst case and n denotes the
current number of halfplanes stored.

Again only the construction of the lower boundary of the belt is described, and
for the time being, we assume that no two lines are parallel and no three are concurrent.

ALGoriTHM SOPHISTICATED PLANE SWEEP:

Let V denote a vertical line sweeping from left to right. At some moment in time
let L in H cause the kth bottommost intersection V; with V. The lines below V, are
interpreted as lower boundaries of halfplanes which are stored in a data structure Hp.
The lines above V. are interpreted as upper boundaries of halfplanes which are stored
in a similar data structure H,. Hg and H, are instances of the data structure referred
to in Proposition 3.2.

The next intersection of L to the right of V is determined as follows: (1) The
halfplane bounded below by L is inserted into Hp. The adjacent edge in counterclock-
wise order of the edge caused by this halfplane (if it exists) gives the leftmost intersection
to the right of V of L with a line L below V; (see Fig. 3.1, where no such edge exists).
(2) The halfplane bounded above by L is inserted into H,. The adjacent edge in
clockwise order of the edge caused by this halfplane (if it exists) gives the leftmost
intersection to the right of V of L with a line L, above V; (see Fig. 3.1). (3) W.Lo.g.
let L, intersect L above Lg (as illustrated in Fig. 3.1). Then L is deleted from Hj and
L, is deleted from H,. (If neither L, nor Ly exists, then L supports the rightmost
and unbounded edge of the lower boundary.) In addition, the new edge of the k-belt
created is reflected in the data structure of the k-belt, and L, is the new kth line.

FiG. 3.1. Constructing the 3-belt of 8 lines.

A short moment of reflection shows that for the correctness of the algorithm it
must be guaranteed that L contributes an edge to the intersection of halfplanes in Hg
and H,, respectively. In addition, this edge must intersect V at its current position.
We will argue that this is true for Hp as the case of H, is completely analogous.
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Let Iy denote the intersection of the halfplanes in Hp. Since the bounding lines
of those halfplanes are all below L at the current position of V, L has at least the
intersection with V in common with I. This point lies also on the boundary of the
halfplane which is bounded below by L. This implies what has to be guaranteed.

Similarly to Algorithm TRIVIAL PLANE SWEEP, degeneracies like parallel and
concurrent lines can be incorporated easily. While the former case is completely trivial,
the latter requires some care. It occurs when L intersects Ip or I, in a vertex or both
in the same point. If L intersects i lines in a single point, then up to i+3 insertions
and deletions have to be performed.

LEMMA 3.3. Algorithm SOPHISTICATED PLANE SWEEP constructs the k-belt
of H in O(bi(n) log® n) time and O(n+ b, (H)) space.

Proof. At the far left, the line with the kth smallest slope is also the kth bottommost
line. This line L can be determined in O(n) time and the data structures Hg and H,
for the lines below and above L, respectively, can be constructed in O(n log n) time.
These activities require O(n) space.

Each intersection point of two lines on the boundaries of the k-belt can be
determined in O(log® n) time and the structures Hg and H, can then be adjusted in
O(log® n) time, see Proposition 3.2. A careful implementation processes a vertex
common to i > 1 lines in O(i log® n) time. Note that this is less than the amount which
is required in the worst case if those i lines define () intersection points. This implies
that O(b,(n) log’ n) time is spent for the computation and O(b,(H)) space is occupied
by the description of the k-belt. This completes the argument.

Both algorithms can easily be adapted to construct simplified belts instead of
ordinary ones. For computing the m-simplified k-belt, only each mth vertex of the
k-belt gives rise to a new edge to be created. Recall that a vertex common to i=2
lines is interpreted as min {m, i — 1} vertices. This implies:

THEOREM 3.4. Let S denote a set of n points in the plane. Then there exists an
algorithm which constructs the m-simplified k-belt (the ordinary k-belt is the 1-simplified
k-belt) of H = T(S) in O(b.(n)log® n) time and O(b,(n)/ m) space.

The space bound is actually O(n+ b, (H)) for ordinary k-belts. The proof is an
immediate consequence of Lemma 3.3 and Observations 2.5 and 2.7.

This result is not optimal at least for k=1 which is shown by the following
argument: Let L™ denote the open halfplane which is bounded below by the nonvertical
line L, and let L™ denote the open halfplane which is bounded above by L. Then the
1-belt B of H can be written as

B=E*-N L"-N L.

LeH LeH

Since the intersection of n halfplanes can be determined in O(nlogn) time, see
Proposition 3.2, this gives also a method which computes B in O(n log n) time.

4. Applications. The methods presented in § 3 have interesting applications to
seemingly unrelated problems. Algorithm TRIVIAL PLANE SWEEP yields a new
method for finding a minimum area triangle with the three vertices taken from some
given finite set. This is discussed in § 4.5. Applications of k-belts to halfplanar range
estimation, finding so-called centerpoints, k-nearest neighbour search, and a problem
with points moving on a line are discussed in §§ 4.1 through 4.4.

4.1. Halfplanar range estimation. This section describes the use of ordinary and
simplified belts for halfplanar range estimation. Representative for a variety of conceiv-
able variants, we define three of the most basic halfplanar range estimation problems
and show how to solve them.
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Let S denote a set of n points in the plane and let k be some positive integer,
with k=[n/2]. The simplest halfplanar range estimation problem, termed simple
EP(k), reads as follows: Let h denote a query halfplane which contains A(h) points
of S. Decide whether 0= A(h) <k, k= A(h)=n—-k,orn—k<A(h)=n

THEOREM 4.1. Let S be a set of n points in the plane. There exists a data structure
which requires O(b,(n)) space and O(bi(n) log® n) time for construction such that
O(log n) time suffices to answer a query of the simple EP(k), with k= [n/2].

Proof. The asserted bounds can be achieved with the k-belt of H = T(S) as will
be shown. The required amount of space and time for the construction follows
immediately from Theorem 3.4. Thus, let us consider a query of the simple EP(k).
W.l.o.g. let the query halfplane h be bounded above by the line L. Then

(1) h contains less than k points if and only if T(L) lies below the k-belt of H,

(2) h contains no less than k and no more than n -k points if and only if T(L)
is contained in the k-belt, and

(3) h contains more than n —k points if and only if T(L) lies above the k-belt
of H.

Which one of the three cases applies can be decided in O(log n) time by binary
search since the two boundaries of the k-belt are monotone in x. This completes the
argument.

Considerably more accurate answers can be obtained using several belts instead
of a single one. We define the uniform EP(e), with 0<e<l, as follows: Let j=
[n/2]/|n°]] and let A(h) denote the number of points of S in the query halfplane
h. Determine an integer i, with —j =i =}, such that (J=DIn*|=AMB)<(j—i+1)|n®]
if i<0, jln*]=A(R)=n—j|n°] if i=0, and n—(j—i+1)|n°]| <A(h)=
n—(j—i)|n®] if i>0. This somewhat ugly definition of the problem has been chosen
since the most simple combination of belts is able to solve it. Similar but differently
defined halfplanar range estimation problems can be dealt with in more complicated
but essentially equivalent combinations of belts. For convenience, we define By (H) =
Yiek bi(H) for H=T(S) and K subset of {1,2,- - - , [n/27}. Bx(n) is then defined
as the maximum of By (H) for all sets S of n points.

THEOREM 4.2. Let S be a set of n points in the plane and write H Jfor T(S). For the
uniform EP(e), with 0<ge <1, there exists a data structure which requires O(Bg(n))
space and O(Bx (n) log® n) time for construction, where K = { [n®],2|n®], -, j{n°]},
such that a query can be answered in O(log n) time. _

Before proceeding to the proof of this assertion let us comment on Bg(n). No
reasonable upper bounds are known for these sums. The best bound follows from
Proposition 2.1 and claims that B(n) is in O(n?) and in O(|K|n*?), with |K| the
number of indices in K.

Proof of Theorem 4.2. The data structure used for the uniform EP(&) consists of
the k-belts of H, for k in K. Let h denote a query halfplane which is, say, bounded
above by the line L. In order to answer the query, we determine the largest i’ in
{0,1,- - -, j} such that T(L) is contained in the i [n®]-belt of H. Then the answer is
—j+i"if i'<j and T(L) lies below the (i'+1) | n°| -belt, and it is j—i’, otherwise.

Notice that binary search testing T(L) against the boundaries of the various belts
is no longer appropriate in order to achieve O(log n) query time. In the place of that
strategy we exploit a method due to Kirkpatrick [K]. Let D be a partition of the plane
with a total of |D| regions, straight edges, and vertices. Kirkpatrick’s method permits
us to determine in O(log | D]) time the region of D that contains a query point. O(|D|)
space and O(|D|log |D|) time for construction is required. The assertion follows since
the collection of k-belts used induces a partition D of the plane with |D|= O(Bg (n)).
This completes the argument.
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Before considering simplified belts for halfplanar range estimation we note that
k-belts of a line arrangement can be combined almost arbitrarily leading to all sorts
of answers reflecting the approximate number of points in the respective query half-
plane.

A serious drawback of ordinary belts is the superlinear space required in the worst
case. In particular, the combination of a large number of belts needs a rather large
amount of space. This drawback is bypassed by exploiting simplified belts as introduced
in § 2.

Let S denote a set of n points in the plane, define H=T(S), let k denote an
integer with 1=k = [n/2], and let m denote an integer with 2= m=2[n/2]-2k+1
and m = b, (H) — 1. Note that the simple EP(k) cannot be solved with the m-simplified
k-belt of H, if m>1. We define the simple EP(k, m) as follows: Let h be a query
halfplane and let A(h) designate the number of points of $ which are contained in h.
Decide whether 0= A(h)<k+|m/2], k—|m/2] =A(h)=n—k+|m/2], or n—k~-
|m/2] < A(h) = n. Note that the three cases are not exclusive which implies that A(h)
does not uniquely determine the answer.

THEOREM 4.3. Let S be a set of n points in the plane and H = T(S). For the simple
EP(k, m) with 1=k=[n/2],2=m=2[n/2]-2k+1, and m= b, (H)—1, there exists
a data structure which requires O(b,(n)/m) space and O(b.(n) log® n) time for construc-
tion such that O(log n) time suffices to answer a query.

Proof. The bounds for the required space and time for construction are trivially
achieved by the m-simplified k-belt of H which we call M, see Observation 2.7 and
Theorem 3.4. By Lemma 2.6, M is contained in the max {0, k— | m/2]}-belt of H and
contains the (k+ |m/2])-belt of H. Since k—|m/2] =0 and k+|m/2] =[n/2] by
definition of m, a query with halfplane h bounded above by L can be answered by
deciding whether T(L) lies below, in, or above M. This can be done in O(log n) time
using binary search which completes the argument.

We say that a halfplanar range estimation problem has accuracy m if the overlap
between two different answers is at most m. E.g. the problem solved by the [n'/?]-
simplified | n/3) -belt M of H has accuracy 2|n"/?/2]. Thatis, M decides with accuracy
2|n'/?/2] whether there are less than |n/3], from |n/3] to n—|n/3], or more than
n—|n/3] of the points in the query halfplane. Due to Proposition 2.1 and Observation
2.7, M is known to require O(n) space.

As for ordinary belts, almost arbitrary combinations of simplified belts can be
used to obtain different solutions for different halfplanar range estimation problems.
For example, a relaxed version of the uniform EP(¢) can be solved with [n®|-simplified
belts yielding:

THEOREM 4.4. Let S be a set of n points in the plane and let ¢ be a real number,
with 0< & < 1. Then there exists a data structure which requires O(n'~>*b,,,(n)) space
and O(n'"*b,,»(n) log® n) time for construction such that O(log n) time suffices to answer
the uniform EP(&) with accuracy |n*].

4.2. Centerpoints. Let S be a set of n points in the plane. A point ¢ not necessarily
in S is called a centerpoint of S if the two closed halfplanes of any line through ¢
contain both at least [n/3] points. The existence of a centerpoint for every set S is a
consequence of Helly’s theorem [H]. In dual space, T(c) is a line such that for any
point p of T(c) there are respective at least [n/3] lines of H = T(S) which are not
below and not above p. So, T(c) is contained in the [n/3]-belt of H. The construction
of the region of all centerpoints of S thus might proceed as follows:

1. Construct the [n/3]-belt B of H.
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2. Compute the intersection C of all closed halfplanes h defined as follows: Let
line L bound h, then T(L) is a vertex of B, and there are at most [n/3]—2 points
outside of h.

Theorem 3.4 and a method for constructing the intersection of m halfplanes in
O(m log m) time (Brown [Br]) imply

THEOREM 4.5. O(by,,31(n) log® n) time and O(by,,3,(n)) space suffices to construct
the region of all centerpoints of a set of n points in the plane.

A line T(c) dual to a centerpoint ¢ of S can be used for a surprisingly space
efficient solution of a weak halfplanar range estimation problem.

THEOREM 4.6. Let S be a set of n points in the plane. There is a data structure which
takes constant space and O(b;,;31(n) log” n) time for its construction such that constant
time suffices to decide whether a given halfplane contains at most n—[n/3] or at least
[n/3] points of S.

We mention that developments following the ones reported in this paper lead to
new algorithms which compute a single centerpoint in O(n log* n) time [CSY], [C].

4.3. k-nearest neighbours search. Let S denote a set of n points in the plane and
let k be some integer with 1 = k= n - 1. The k-nearest neighbours search problem [SH],
[L] requires the accommodation of S such that the k nearest to a later specified query
point can be determined efficiently. We consider the problem restricted to query points
in infinity which are better interpreted as directions. We assume that k is small compared
to n which are the only interesting cases.

Let B denote the k-belt of H = T(S). To each edge e of the lower boundary of
B we assign the list of lines below including the line which supports e. Similarly, to
each edge e of the upper boundary we assign the list of lines above including the line
which supports e. Note that two unbounded edges whose union is a complete edge
have assigned the same list which is now assigned to the complete edge. By construction,
two adjacent complete edges can have the same list of lines. In such a case both
complete edges are replaced by a single complete edge as described for simplified belts
in § 2. The new complete edge has assigned the same list as the two complete edges
it replaces. Let B’ denote the modified belt which is obtained by repeatedly replacing
adjacent complete edges with identical lists of lines. (Note that Algorithm SOPHISTI-
CATED PLANE SWEEP can be used to construct B’ without creating B.)

A direction in the original space transforms under T into a vertical line. The query
is answered by binary search to identify the two complete edges of B’ which intersect
this vertical line. The k-nearest neighbours are those points whose corresponding lines
are assigned to one of the two complete edges determined.

Some amount of space can be saved, in particular for large k, via the following
method: Instead of assigning a list to each complete edge of B’, we assign a list only
to every kth of its complete edges. Let e denote a complete edge which has assigned
a list of lines. The complete edge f immediately to the right of e stores the lines that
must be deleted from, resp. inserted into, the list of e in order to obtain the one of f.
In nondegenerate cases, f stores two lines. To cope with cases where f stores 2i>2
lines, f is effectively treated like a sequence of i complete edges. The analogous
information is stored for each of the next k—2 complete edges to the right of f. The
space required in the worst case is reduced by a factor k while the query time remains
the same by the following strategy: For a vertical query line g, the lower (or upper)
complete edge of B’ which intersects g is determined. Then the first complete edge to
the left of the latter is identified which has assigned a full list of lines. This list is
updated during the walk back to the originally determined complete edge. The lists
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are stored as doubly linked lists and the updates to be performed are indicated by
pointers to what has to be changed. A careful implementation of this method finally
implies:

THEOREM 4.7. Let S denote a set of n points in the plane. There exists a data structure
which requires O(f,(S)) space and O(b,(n)log’ n) time for construction such that
O(log n+ k) time suffices to report the k first points of S in a query direction.

4.4. Moving points on a line. Let S be a set of n moving points on a vertical line.
Each point p of S is specified by its location p, at time 0 and by its constant speed p;
which is positive if p moves upwards and negative if p moves downwards. We say
that a point p is at position k at time t if it is the kth point from above at this moment
t. Let P,(S) denote the sequence of points at position k during the time interval from
minus infinity to plus infinity. This model of moving points is also considered by
Ottmann and Wood [OW] who examine the construction of P,(S), for example.

THEOREM 4.8. Let S be a set of n moving points on a line. Then there exists an
algorithm which computes P,(S) in O(b.(n) log® n) time and O(n+|P,(S)|) space, where
|P.(S)| denotes the length of Pi(S).

Proof. Each point p of S is transformed into a line by introducing time as second
coordinate with horizontal axis, say. Then the line corresponding to p intersects the
vertical coordinate axis at location p, and has slope p,. Thus, our problem transforms
to computing the upper boundary of the k-belt of the line arrangement obtained. The
assertion follows from Theorem 3.4 which completes the argument.

4.5. Minimum area triangle. Let S denote a set of n points in the plane, with
n=3. A minimum area triangle of S is a triangle with minimum area whose vertices
are chosen from S. Dobkin and Munro [DM] were the first to come up with a nontrivial
solution that takes O(n*log® n) time and O(n? log n) space. Their method is based on

Observation 4.9. Let TR denote a minimum area triangle of S with vertices p, g,
and r. Then r is a point in S different from p and g which is nearest to the line through
p and q.

Observation 4.9 can be exploited for the determination of TR: for each line through
two points of S compute a nearest of the remaining points. Let us consider the scenario
in the dual space obtained by application of the transform T. The line through p and
g corresponds to the intersection v of T(p) and T(q) and r corresponds to a line
immediately below or above this intersection point, that is, r is hit first when v moves
upwards or downwards in the vertical direction. Note that the line immediately below
(or above) this intersection point is not unique if several lines intersect exactly
immediately below (or above) this point. A trivial modification of Algorithm TRIVIAL
PLANE SWEEP described in § 3 yields:

THEOREM 4.10. Let S denote a set of n =3 points in the plane. Then there exists an
algorithm which computes the minimum area triangle of S in O(n” log n) time and O(n)
space.

We note that following our developments [CGL], [EOS] developed an O(n?) time
and space algorithm for minimum area triangles which is based on the same geometric
observations as the algorithm above. The improvement in time is achieved by a new
method for constructing a complete arrangement.

5. Discussions and dynamization. The authors consider the introduction of k-belts
in arrangements of lines as the main contribution of this paper. This concept has
applications to several problems defined for lines or, in dual space, for points. Among
these applications are

(i) space efficient data structures for halfplanar range estimation in the plane,
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(ii) finding centerpoints in the plane,

(iii) determining k first points for query directions, and

(iv) computing the sequence of kth points of a dynamically changing set on a line.

All these applications rely on an efficient algorithm which computes a belt with
O(log’ n) time per edge. A less efficient but more powerful method which constructs
belts in O(n? log n) time can also be used to find a triangle with minimum area whose
vertices are taken from a finite set of points in the plane.

All data structures presented for halfplanar range estimation are inherently static,
that is, there is no way to perform insertions of new points or deletions of points
efficiently. Data structures which accommodate those two operations are called dynamic.
There exists an extensive literature about general methods which convert static data
structures for so-called decomposable searching problems into dynamic ones, see e.g.
Bentley [B], Maurer and Ottmann [MO], and Overmars and van Leeuwen [OvL2]. A
searching problem is said to be decomposable if the answer for any set S of objects
and any query objects g can be derived in constant time from the answers for S, and
g, and for S, and g, respectively, for every partition of § into S, and S,. It is easily
verified that the halfplanar range search problem is decomposable while the halfplanar
range estimation problems considered in §4.1 are not. Nevertheless, the general
dynamization methods can be applied to the data structures of § 4.1. The strange effect
of those conversions is that the data structures as well as the problems are changed
in a meaningful way.

Representative for other and similar cases, let us consider the simple EP(|n/3])
for a set S of n points in the plane. Let S,, S,,- - -, S,, be an arbitrary partition of S
into subsets of about n'/? points each. Hence, m is also about n'/2 Let |S:| denote the
number of points in S;. Instead of the | n/3]-belt for T(S) we maintain an LS:l/3] -belt
for each subset S, For details of the maintenance strategies of this collection of belts
we refer to Maurer and Ottmann [MO]. A point is inserted into (or deleted from) the
system by reconstructing only one belt which takes O(b,(n/m) log® n) time, with k
about n'/?/3. A query is performed on each data structure which takes O(n'?log n)
time. Let A(h) denote the exact number of points of S contained in h. The m answers
can be used to derive an interval of length about n/3 which contains A(h). This interval
can be derived from the m answers since the answer for S, with 1=i=m, decides for
about two thirds of the points in S; whether or not they are contained in the query
halfplane. _

Let us finally give a number of open problems which come naturally from the
investigations presented. (1) Give tighter bounds on f,(n), that is, improve Proposition
2.1. It is worthwhile to note that Erdos, Lovasz, Simmons and Straus [ELSS] and
Edelsbrunner and Welzl [EW1] conjecture that the derived lower bounds are closer
to the truth than the upper bounds. (2) Section 4.1 has exploited collections of k-belts
as data structures. Let K be some fixed subset of {1,2, - - - ,[n/2]} and let Fx(n)
denote the maximum of ¥, fi(S) for all sets S of n points in the plane. Calculate
a lower and an upper bound for Fy(n). (3) Let a(S) denote the maximal number of
edges of an arbitrary x-monotone polygonal chain which is a subset of U pes T(p).
Let a(n) denote the maximum of a(S) for all sets S of n points in the plane. Note
that Proposition 2.1 implies that a(n) is in Q(n log n). Derive an upper bound for
a(n). (4) Can the construction of a k-belt of a set of n lines be accomplished in
O(by(n) log n) time? (Compare Theorem 3.4.) (5) The data structure described in §43
has similarities with the order-k Voronoi diagram, see Shamos and Hoey [SH] or Lee
[L]. This diagram for a set S of n planar points is a partition of the plane into convex
regions. Each region R is associated with a subset S’ of S which contains k points
such that an arbitrary point falls into R if and only if the points in S’ are nearer to p
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than the points in S—S". Does there exist an algorithm which constructs the order-k
Voronoi diagram of S based on the method described in §4.3? It is tempting to
conjecture that such an algorithm can improve the algorithm due to Lee [L] which
constructs, successively, all order-i Voronoi diagrams, for 1=i=k. (6) At last, it is
also interesting to pose the same questions in a higher dimensional environment. Most
important: How many k-sets can be realized by a set of n points in three dimensions?

Note added in proof. It has been proved that Fx(n)e O(n(L,.x k)'*) (E. Welzl,
More on k-sets of finite sets in the plane, Rep. 204, Inst. for Information Processing,
Technical Univ. Graz, Graz, Austria, 1985). Moreover, we observed that a(n) € Q(n?).
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