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Let 4 be an arrangement of » lines in the plane. Suppose F;,..., F, are faces in the
dissection induced by 4 and that F, is a #(F;)-gon. We give asymptotic bounds on
the maximal sum 3% , t(F,) which can be realized by k different faces in an
arrangement of n lines. The results improve known bounds for k of higher order
than n'2.  © 1986 Academic Press, Inc.

1. INTRODUCTION AND PRELIMINARIES

An arrangement A of n lines is a finite set of n lines in the projective
plane. The only general assumption we make is that not all lines are con-
current (which implies 7> 3). A face F of such an arrangement is a connec-
ted component of its complement in the plane. Faces, respectively sets of
faces, often turn out to be, “regions of equal answer” in applications in
computational geometry (see FEdelsbrunner and Welzl [EW] and
Edelsbrunner et al. [EMPRWW]). As a consequence, these algorithms
have to store all or some particular faces of an arrangement. We say a line
of A contributes an edge to a face F if it has a nondegenerate interval in
common with the closure of F. For a face F, we denote by #(F) the number
of lines contributing edges to its boundary, ie., Fis a 7(F)-gon. A set & of
faces requires memory space proportional to ¥ .. 5 #(F) when it is stored
in a computer. '

We investigate asymptotic bounds for the maximal possible value of the
sum 3, 5 t(F) for sets & of k faces in an arrangement of » lines.

Let us briefly summarize earlier results. Levi [L] observed that HF)<n
for every arrangement of n lines. This was extended by Gunderson cf.
Carver [Cr] who proved that #(F,) + t(F,) <n+ 4 for two different faces in
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an arrangement of n lines. Finally Canham [Cn] generalized this as
follows:

PROPOSITION 1.1. If F,,.., F, are k different faces of an arrangement of
n lines, then

k
Y (F,)<n+2k(k—1).

J=1

Furthermore, for n = 2k(k — 1) there exist arrangements of lines such that the
upper bound is tight.

In what follows, for a natural number k and an arrangement 4, we
denote by a,(4) the maximal sum Y}_, #(F;) which can be realized by k
different faces Fi,.., F, in this arrangement 4. We denote by a,(n) the
maximum of a,(4) for all arrangements 4 of n lines in the plane. We
assume implicitly that 1<k <n(n—1)/2+4 1 since in an arrangement of n
lines there are at most n(n—1)/2+ 1 different faces. In these terms
Proposition 1.1 can be written as: ai(n)=n+2k(k—1) for n22k(k—1).
For n < 2k(k — 1) the bound rapidly becomes rather bad, e.g., for k =n, we
have a,(n) <n+ 2n(n—1). That is, the inequality gives an estimate already
worse than the trivial bound which is twice the maximal number of edges
in an arrangement of » lines, namely, 2n(n — 1).

On the other hand, determining the exact values for large k seems to be
very difficult. This can be seen from the following theorem. (An
arrangement of lines is simple if no three lines have a point in common.)

THEOREM 1.2. Let ,=n(n—1)/2+1, i.e, ¥, is the maximal number of
faces in an arrangement of n lines. Moreover, let p; (n) be the maximal num-
ber of triangle faces in any simple arrangement of n lines. Then

ay(n)=n(n—1)2+3k—-3  for k=y,— ps(n)
and

a,(n)<nn—1)/2+3k-3 for k<iy,— ps(n).

Proof. First note that for any k and » there exist simple arrangements
which realize a,(n). (The proof is left to the reader.) For a simple
arrangement we know that the number of faces equals V¥, (see
Theorem 2.10 in Griinbaum [G2]) and the number of edges equals
n(n—1). Hence, if we find an arrangement of » lines such that for k faces
F ={F,,.., F,} *_1(F;)=ay(n), then, simultaneously, the sum
> re s 1(F) realizes the minimum for ¥, —k faces. Since (F)>3 for every
face F, this observation immediately implies the theorem. |
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This theorem reveals the close relation between the functions p;(#) and
a,(n): exact knowledge of ps(n) is necessary for an exact determination of
ai(n). The exact value of ps(n) is known only for some small numbers »
and the authors are not aware of any better bounds than p, <n(n—1)/3,
for even n, and ps(n) <n(n—2)/3, for odd n (consult Griinbaum [G2] for
a survey of results on ps(n)). This justifies the investigation of the
asymptotic behaviour of a,(n) which provides a rough idea of the function.

For the purpose of analyzing the asymptotic behaviour of a,(n) we need
the following notation: let f(n) and g(n) denote two positive valued
functions on positive intergers n. We say that f(n) = O(g(n)) if there exists
a positive constant real ¢ such that f(n) <cg(n) for all n. In addition, we
say f(n) =Q(g(n)) if g(n)=O0(f(n)), and f(n)=6(g(n)) if f(n)=O0(g(n))
and f(n)=Q(g(n)). In this notation Proposition 1.1 claims that a,(n)=
O(n+k*) and that a,(n)=0(n) for k=0(n"?), if we consider k as a
function in n.

In the next section we improve this result to a,(n)= O(kn'*>+n), and
a,(n) = O(nk'?). Moreover, we show a,(n)=Q(n**k**+n) as a lower
bound. Section 3 gives a short discussion of the results.

2. ASYMPTOTIC BOUNDS

An easy decomposition argument together with Proposition 1.1 yields
our first bound.

THEOREM 2.1. a,(n)= O(kn'’* + n).

Proof. For k< (n/2)"* the result follows directly from Proposition 1.1.
Hence, we assume that k> (n/2)"% Let A be an arrangement of » lines
which realizes a(n), ie., there are k faces & = {F),,.., F,} such that

*_1 I(F,)=a,(n). We decompose # into [ k(2/n)"/*7 disjoint subsets, each
of cardinality less than or equal to (r/2)"%. Again due to Proposition 1.1
for each of these subsets 2 of # we have Y .., t(F)=0(n). As an
immediate consequence

Z I(F)_—_ O(rk(z/”)lff!‘] ?’!)I O(knlﬂ),

Fe#
which proves the theorem. [

This bound improves the one of Proposition 1.1 for k of higher order
than n'?, e.g, a,(n) = O(n*?) instead of a,(n) = O(n?). Despite this fact, we
still obtain the trivial upper bound of O(n?) for k = Q(n*?), k considered as
a function in n The following lemma leads to an improvement of
Theorem 2.1 for k= Q(n).



162 EDELSBRUNNER AND WELZL

LEMMA 2.2. Let n and m be two integers with 3<m<n. Then a;(n) m<
ai(m) n.

Proof. We show that a,(n)(n—1)<a(n—1)n holds, which easily
implies the assertion of the lemma. For this sake, let 4 be a simple
arrangement of n lines {L,,..., L,} which realizes a,(n). Let # be a set of k
faces F,,.,F, in A such that 3¥_, #(F;)=ai(n). For L, 1<i<n, we
denote by contr(L;) the number of faces in # to which L, contributes an
edge.

Evidently, >'7_, contr(L;) =a,(n). Consequently, there is at least one
line, say L,, such that contr(L,) < a,(n)/n.

Let A’ denote the arrangement of lines obtained from A by removing L,.
Some of the faces in (the dissection induced by) A4 are still faces in A"
These faces in 4 are termed invariant. If, however, L, contributes an edge
to a face Fin A4 then F is merged with the other face G in 4 to which L,
contributes the same edge. F is termed a changing face, G is termed the gain
of F, and the face in A" which covers F and G is termed the enlargement of
F (see Fig. 2.1).

For example, F, as depicted in Fig. 2.1 is an invariant face (wrt L;) while
F,, F5, and F, are changing faces. F5 is the gain of F, and F, the one of Fj.
F; is the enlargement of F;.

We construct a set &' of k faces Fi,.., F, such that the loss from

k_ t(F)) to Xk_, 1(F}) is at most contr(L,): (1) If F, is an invariant face
then we choose F:=F,. (2) If F, is a changing face such that the gain of F;
is not in & then F/ is the enlargement of F,. It is readily seen that #(F}) >
1(F;)—1. (3) If F, and F, are two changing faces such that one is the gain of
the other then we choose for F; the enlargement of F, and for F; any face in

FiG. 2.1. Invariant and changing faces.
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A" which has an empty intersection with each face in & and is not in &’
yet. For example, F}, in Fig. 2.1 is such a new face. Thus, #(F!)=t(F,)+
{(F;)—4 and #(F;)>3 and therefore HF;)+1(F)) = t(F;)+ t(F;)— 1. This
construction implies a,(n—1)>a,(n)—contr(L,)>a,(n)(1 — 1/n) which
eventually proves the assertion stated in the first sentence of the proof. |

As anticipated, we exploit Lemma 2.2 for a new upper bound on a,(n).

THEOREM 2.3. a,(n)= O(nk'?).

Proof. First, let k=s(s—1)/2+ 1, for some positive integer s. Then
a,(s)=2(s*—s), since k=y, and the number of edges in a simple
arrangement of s lines equals s?—s (recall the definition of ¥, in
Theorem 1.2). Using Lemma 2.2 we obtain

ag(n)<ay(s)n/s=2n(s—1)

which proves the assertion for all k such that k =s(s—1)/2+ 1, for some
positive integer s. The generalization to positive integer k for which no such
s exist 1s trivial which completes the argument. |

Observe that Theorem 2.3 improves the trivial upper bound even
asymptotically for all k in O(n®), with 0 <¢ < 2. The remainder of this sec-
tion establishes a lower bound for a,(#n). To this end, we need the following
lemma.

LEMMA 24. Let A be an arrangement of n lines. For a vertex v in the
arrangement, we denote by t(v) the number of lines of A passing through v. If
there is a set V of vertices with Y ,_, t(v) = a then there is an arrangement
A" of at most 2n lines and a set F of faces in A" with |F|=1|V| and
2res U(F)=2a

Proof. Let p be a fixed (“small”) positive real constant. For every ver-
tex v in V we define a circle C, with radius p and center ». Each line L in 4
which passes through at least one of the vertices in V is replaced by the
lines L’ and L" parallel to L which are tangent to the circles belonging to
the vertices in ¥ which are on L. '

The obtained arrangement 4’ has at most 2n lines. For ve ¥V, let F, be
the face in A’ which covers the circle C,. Clearly, we can choose p suf-
ficiently small such that #(F,)=2t(v) for all ve V. Then the set of faces
F = {F,|ve V} proves the assertion. ||

Thus, the problem comes down to the analysis of arrangements of lines
which realize many vertices of high degree. Such an arrangement is
described in the following proof which follows lines in [F].
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THEOREM 2.5. a,(n)=Q(n*’k**+n).

Proof. Define w=|k"?]. We assume n>8w which omits only unin-
teresting cases. We prove the assertion by explicit construction of an
arrangement 4 with at most m =| n/2 | lines.

Let V={(a,b)|1<a<w, 1<b<w}, a set of w? points with integer
coordinates. For any line L, we call the number of points of ¥ on L the
contribution of L. To make the points of ¥ vertices of 4, let the vertical and
horizontal lines that contain the columns and rows of V belong to 4. Let
L(i, j, r, s) be the line passing through points (i, j) and (i+r, j+s). To
complete 4, we let every line in

(LG, jyr,8)|1<r<fim k), 1<i<r, 1<j<|w/2],
and 1 <s<r with ged(r, s)=1}

belong to A, where f(m, k) = co(m/w)'”® with ¢, a suitable positive constant
to be specified later. Note that all lines in the above set are distinct. Hence
we have

S(m,k)
Al =2w+|w/2] ), ro(r),

where o(r)=|{s|1<s<r, ged(r, s)=1}| denotes Euler’s function. Since
>N ro( r]—@(N3) (see [HW], [F]), the numer of lines in A4 is in 6(m),
and for suitable ¢, even less or equal to m.

The contribution of L(i, j, r, s) is at least w/2r. The overall contribution
of all lines is therefore at least

Sm,k) Slm,r)

Lw/2] Z (w/2r) ro(r) = L w/2 J? Z o(r).

Since YV, o(r)=@(N?), (see [HW]), the overall contribution is in
Q(w*?n*?) which implies the assertion by Lemma 2.4. |

It is interesting to note that the construction given for k vertices is
asymptotically optimal as shown in [ST]. More specifically, they prove
that

Y t(v)=O0n**k*” +n),

veV

for V a set of k vertices in an arrangement of n lines.
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3. DISCUSSION

We have investigated the asymptotic behaviour of a,(n) which designates
the maximal number of edges of k faces in any arrangement of » lines in the
plane. In particular, we have shown that there is a real constant ¢, such
that a(n)<c,(n'?*k+n) and ay(n)<c,(nk'?) improving the known
bounds, unless k is of the order at most n'2. Moreover, there is a real con-
stant ¢, such that a,(n) > c,(n*°k*> + n). These results give a rough idea of
the behaviour of a,(n). Figure 3.1 provides a graphical display of these
results. This makes the gap in the current knowledge of the asymptotic
behaviour of a,(n) obvious. The horizontal coordinate axis represents the
logarithm of k to the base n and the vertical axis represents the logarithm
of ax(n) to the base n. It should be mentioned that our upper bound
arguments about arrangements of lines also go through for arrangements
of pseudolines.

We have seen that the problem of determining a,(n) is closely related to
determining the maximal ¥, _, 7(v) which can be realized by a set V of k
vertices in an arrangement of n lines. Let us call the corresponding function
bi(n). Lemma 2.4 showed that b,(n)= O(a,(n)); more precisely, it can be
proved that b,(n) <a,(n). We state as an open problem whether b,(n) and
a,(n) have the same asymptotic behaviour, i.e., whether or not b.(n)=
B(az,(n)). This is already known to be true for k=0(n'?) (see
Theorem 2.18 in Griinbaum [G2]). If it would be true also for k = Q(n'/?),
then this would settle the problem of the asymptotic behaviour of a,(n) by
the results in [ST] (see end of the previous section). Another problem in
this context concerns the function ¢, (n) which designates the maximal
sum ) . & HF)+ D, t(v) which can be realized by a set & of k faces
and a set V of m vertices in an arrangement of # lines. Again, exact results
for small k and m are known, namely,

k m k m '
ck,m(n]=n+4(2)+(2)+2km for n24(2)+(2)+2km

2.0

$ [
@}f
1.75 } =
15 —
: 12, V2 ok
nly//ﬁgkbe
1.25 ////
1
1.0
n
75 I
|
%k TS T s 7 8 1 13 15 17 19
lognk

FiG. 3.1. The asymptotic behaviour of a,(r).



166 EDELSBRUNNER AND WELZL

(see Purdy and Strommer [PS]). However, nothing seems to be known
about the behaviour of ¢, ,(n) if n is smaller than required above.

Finally, a tight asymptotic lower bound for the function p;(n) (ie., the
maximal number of triangles in a simple arrangement of n lines) is of
interest due to its close relation to a,(n) which is pointed out in
Theorem 1.2.
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