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OPTIMAL POINT LOCATION
IN A MONOTONE SUBDIVISION*

HERBERT EDELSBRUNNERY, LEONIDAS J. GUIBAS} AND JORGE STOLFI§

Abstract. Point location, often known in graphics as “hit detection,” is one of the fundamental problems
of computational geometry. In a point location query we want to identify which of a given collection of
geometric objects contains a particular point. Let & denote a subdivision of the Euclidean plane into
monotone regions by a straight-line graph of m edges. In this paper we exhibit a substantial refinement of
the technique of Lee and Preparata [SIAM J. Comput., 6 (1977), pp. 594-606] for locating a point in ¥
based on separating chains. The new data structure, called a layered dag, can be built in O(m) time, uses
O(m) storage, and makes possible point location in O(log m) time. Unlike previous structures that attain
these optimal bounds, the layered dag can be implemented in a simple and practical way, and is extensible
to subdivisions with edges more general than straight-line segments.

Key words. point location, monotone polygons, planar graphs, partial order, graph traversal,
computational geometry

1. Introduction. Point location is one of the fundamental problems in computa-
tional geometry. In the two-dimensional case, we are given a subdivision & of the
plane into two or more regions, and then asked to determine which of those regions
contains a given query point p. If the same subdivision is to be used for a large number
of queries, as is often the case, we can reduce the total cost of this task by preprocessing
the subdivision into a data structure suitable for the search. We will measure the
performance of a proposed solution to this problem by three quantities, the preprocess-
ing cost P, the storage cost S, and the query cost Q.

Optimal solutions for this search problem have been known since Lipton and
Tarjan [LT] and Kirkpatrick [Ki]. For a subdivision ¥ with m edges these optimal
solutions simultaneously attain S=O(m), Q= O(log m) and, under certain assump-
tions, also P = O(m). The Lipton-Tarjan method is based on their graph separator
theorem, and so far has been only of theoretical interest. Kirkpatrick’s method, which
consists of building a hierarchy of coarser and coarser subdivisions, is implementable,
but still the implied constants are so large as to make current implementations of little
practical interest. In addition, neither of these techniques seems to extend in a natural
way to curved-edge subdivisions.

Historically, Dobkin and Lipton [DL] were the first to achieve O(log m) query
time, while using O(m?) space. Their method was subsequently refined by Preparata
[P] so that O(m log m) space suffices. Later Bilardi and Preparata [BP] again gave a
refinement that achieves O(m) space in the expected case, while retaining O(mlog m)
space and O(log m) query time in the worst case. These solutions are applicable to
curved-edge subdivisions and seem to admit of efficient implementations.

A substantially different approach was taken by Shamos [S] and led to the
well-known point location paper of Lee and Preparata [LP], based on the construction
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of separating chains. This data structure attains P= O(mlogm), $=0(m), and
Q= O(log2 m). The constants of proportionality in these expressions are quite small,
and the algorithms, particularly the query one, are simpler than those of Kirkpatrick.
While Kirkpatrick’s algorithm requires the regions to be triangular, that of Lee and
Preparata works for regions of a more general shape (monotone polygons, which
include the convex ones). Recently Chazelle [C2] described a variant of this solution
as a special instance of a general method for “searching in history”. His structure
needs the same amount of space and time. These techniques again are applicable to
curved-edge subdivisions, although this possibility was not examined.

In a separate development, Edelsbrunner and Maurer [EM] came up with a
space-optimal solution that works for general subdivisions, and even for sets of arbitrary
nonoverlapping regions. The query time is Q= O(log®> m), but it can be improved to
Q = O(log® m) for rectangular subdivisions, where the structure becomes especially
simple. For this reason a generalization to rectangular point location in higher
dimensions has also succeeded; see Edelsbrunner, Haring and Hilbert [EH].

The purpose of this paper is to show an elegant modification to the separating
chain method of Lee and Preparata that yields a new optimal point location algorithm
for monotone subdivisions of the plane. The algorithm is based on a new data structure
called the layered dag. In this new structure the separating chains built into a binary
tree by Lee and Preparata are refined so that (1) once a point has been discriminated
against a chain, it can be discriminated against a child of that chain with constant
extra effort, and (2) the overall storage only doubles. The layered dag simultaneously
attains S = O(m) and Q= O(log m).! An additional insight allows us to build this dag
(as well as the original Lee-Preparata tree) in only O(m) time. Not only is this new
structure optimal with respect to all of preprocessing, space, and query costs, but in
fact a simple implementation, with small constants of proportionality, is possible. Like
its Lee-Preparata predecessor, it also extends to curved-edge subdivisions.

In the organization of the paper we have adopted the policy that each new data
structure is first introduced by how it is to be used, and then by how it is to be
constructed. We have placed emphasis throughout on implementation considerations,
as well as the underlying theory. Section 2 describes the basic notions surrounding
monotone polygons and subdivisions. Section 3 shows how nonmonotone subdivisions
can be made monotone. Sections 4, 5 and 6 introduce a partial ordering of the regions
and its use in getting a complete family of separators. Section 7 reviews the Lee-
Preparata structure, while §§ 8 and 9 introduce the layered dag, and explain its use in
point location and its construction. Section 10 gives an algorithm for constructing a
complete family of separators based on a traversal of the subdivision. Two implementa-
tion issues are taken up in §§11 and 12; these may be omitted on 2 first reading.
Section 11 describes some bit-twiddling trickery used to give us linear preprocessing
time, while § 12 discusses how subdivisions can be traversed without auxiliary storage.
Finally § 13 contains some further applications of the layered dag to problems in
computational geometry.

2. Monotone polygons and subdivisions. An interval is a convex subset of a straight
line, i.e., the whole line, a ray, a segment, a single point, or the empty set. An interval
is proper if it contains more than one point, and is open if it does not contain its
endpoints (if any). A subset of the plane is said to be monotone if its intersection with
any line parallel to the y axis is a single interval (possibly empty).

1 This refinement is similar to a technique proposed by Cole [C] and, in a different context, by Chazelle
[C3] (the hive graph).
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We define a polygon as an open, connected, and simply connected subset of the
plane whose boundary can be partitioned into finitely many points (vertices) and open
intervals (edges). Note that, according to these definitions, polygons may have infinite
extent. A subdivision is a partition of the plane into a finite number of disjoint polygons
(regions), edges, and vertices; these parts are collectively called the elements of the
subdivision. It follows from the definitions that every edge is on the boundary between
two regions (not necessarily distinct), that every vertex is incident to some edge, that
every endpoint of an edge is a vertex, and that every region (unless there is only one)
has some edge on its boundary. From these facts and from Euler’s theorem, we can
conclude that a subdivision with m edges has O(m) vertices and regions, thus justifying
our use of m as the measure of problem size.

A subdivision is said to be monotone if all its regions are monotone and it has no
vertical edges. The last condition is a technical one: it is imposed only to simplify the
proofs and algorithms and can be removed with some care. Figure 1 illustrates a
monotone subdivision (arrowheads denote edges extending to infinity).

FIG. 1. A monotone subdivision.

With minor caveats and modifications, monotone subdivisions include many
interesting subcases, such as triangulations, subdivisions of the plane into convex
pieces, and so forth. The lemma below shows that monotone subdivisions are precisely
the “regular planar straight-line graphs” as defined by Lee and Preparata [LP]:

LEMMA 1. A Subdivision with no vertical edges is monotone if and only if every
vertex is incident to at least two distinct edges, one at its left and one at its right.

Proof. The “only if”” part is easy, since if, for example, all edges incident to a
vertex v pointed to the right, then the region to the left of v would have a disconnected
intersection with a vertical line through v.

For the converse, assume R is a region that is not monotone, and let I be a vertical
line whose intersection with R consists of two or more components, as in Fig. 2. Since
R is connected, any two components I,, I, of the intersection are connected by a
simple path 7 in R. We can always choose I, I,, and = so that I, is above I,, and =
does not meet I except at its endpoints p,€ I, and p,€ I,. Then 7 and the interval
[p1, p.] delimit a closed and bounded region S of the plane.

Suppose 7 lies to the left of I The boundary of R must enter S at the lower
endpoint of I, (and also at the upper endpoint of I,). Since the boundary cannot meet
the path m, there must be some vertex of the subdivision in the interior of S. Let v be
the leftmost such vertex; clearly all edges incident to v lie to the right of it, and we
have proved the lemma. A similar argument holds if 7 lies to the right of L. O




320 H. EDELSBRUNNER, L. J. GUIBAS AND J. STOLFI

|
|
|

N

G

F1G. 2

Therefore, we can check whether any subdivision is monotone by enumerating
all the edges incident to each vertex, and checking whether they satisfy Lemma 1. Each
edge will be examined at most twice, and each vertex once, so this algorithm runs on
O(m) time.

3. Regularization. Lee and Preparata [LP] have shown that an arbitrary sub-
division with m edges can be refined into a monotone subdivision having =2m edges
in O(mlog m) time, a process they termed regularization. (They define a vertex as
being regular if it satisfies the condition of Lemma 1.) For the sake of completeness
we reproduce their algorithm here, in a slightly different setting.

The task of the regularization process is to add new edges to the subdivision so
as to make each vertex regular. Each new edge must connect two existing vertices (or
extend from an existing vertex to infinity), and may not intersect any other edges. In
other words, we can connect two vertices only if they are visible from each other. See
Fig. 3 for an example.

FiG. 3. Regularizing a nonmonotone subdivision.

The regularization algorithm is based on the sweeping line paradigm that has been
used extensively in computational geometry. We imagine that a vertical line sweeps
the plane from left to right. We call active those vertices, edges, and regions currently
intersecting the sweeping line. The list of active elements changes only when the line
passes through a vertex, at which time some edges may end and others may start.
Except at those moments, the active edges have an obvious vertical ordering, and cut
the sweeping line into one or more active intervals. To each active interval we assign
a generator, which is the last vertex swept over that happened to lie on or between the
two active edges bounding that interval. This vertex may be a left endpoint of those
edges, as Fig. 4 shows, or it may be an irregular vertex with no right-going edge, as
Fig. 5 shows.

LEMMA 2. The generator of an active interval is visible from any point in that interval.

Proof. By definition, the hatched region in Figs. 4 and 5 is free of vertices and
edges. 0O
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The regularization algorithm simulates this line sweep. We start by sorting all
vertices of the subdivision by their x-coordinates. We will assume these coordinates
are all distinct; if necessary, we can enforce this condition by rotating the subdivision
through a sufficiently small angle. We also augment the subdivision with two dummy
vertices at x = +00, to which are incident all edges having infinite left and right extent,
respectively. During the sweep, we maintain a balanced search tree whose leaves
represent the active intervals of the current sweep line (and the associated generators),
ordered by y-coordinate. Conceptually, we imagine that the sweep line jumps from
one corridor between successive vertices to the next, because within a corridor neither
the ordering nor the generators of the active intervals can change.

Consider what happens when we pass a vertex v with / left-going and r right-going
edges. At that moment we must delete the /+1 intervals bounded by edges that end
at v, and insert in their place the r+1 intervals bounded by edges that start at v. In
particular, if /=0, we must delete the currently active interval in which v lies, which
is bounded by the edges immediately above and below u. Similarly, if r=0, we add

~one new interval bounded by those two edges. Updating the generators is straightfor-

ward: the vertex v simply becomes the generator of the r+1 new intervals.

When an active interval is about to be deleted, we check whether a new regularizing
edge should be added to the subdivision. If the generator u of that interval has no
right-going edges, or the new vertex v has no left-going ones, we add a new edge
between u and v. See Fig. 6. By Lemma 2, this edge does not intersect any others.
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FIG. 6. Adding new edges.

When the sweep line reaches the vertex at x = +oo, all irregular vertices will have
been fixed in this way. The number of new edges is at most the original number of
irregular vertices, which in turn is at most m. The running time is dominated by the
cost of sorting of the vertices and manipulating the balanced tree, which is O(m log m)
in the worst case. The problem of whether regularization can be done in time faster
than O(m log m) remains open.

4. The vertical ordering. We denote by I1A the orthogonal projection of a set A
on the x-axis. The projection IIR of a monotone polygon is an open interval of the
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x-axis, whose endpoints, if any, are the projections of at most two extremal vertices
of R. The frontier of R is the boundary of R minus its extremal vertices. This frontier
consists of two disjoint pieces, the top and the bottom of the region R. Each is either
empty, or a connected polygonal line, which may extend to infinity in one or both
directions.

Given two subsets A and B of the plane, we say that A is above B (and write
A > B) if for every pair of vertically aligned points (x, y,) of A and (x, y,) of B we
have y, = y,, with strict inequality holding at least once. In this case we also say that
B is below A (and write B« A). Some of these concepts are illustrated in Fig. 7. For
the rest of this section, we will restrict > to the elements of a fixed monotone subdivision
¥, with n regions and m edges. Then » has several interesting properties listed in the
lemmas below (straightforward proofs will be omitted).

8
FiG.7. A»B,1IB.

LEMMA 3. For any two elements A and B of a monotone subdivision, A> B if and
only if A# B and there is some vertical line segment with lower endpoint in B and upper
endpoint in A. [

LEMMA 4. Any two elements A and B of a monotone subdivision satisfy exactly one
of A=B, A B, A» B, or IANIIB=gy. 0O

If three elements A, B and C are intercepted by a common vertical line, then
from A« B and B« C we can conclude A« C. Therefore, the relation « is transitive
(and in fact a linear order) when restricted to all the elements intercepted by a given
vertical line. Transitivity may not hold without this restriction, but the following
property will be true in any case:

LEMMA 5. The relation « is acyclic.

Proof. Supposenot. Let Ey« E,« E,< - - -« E, = Eybe a cycle of « with minimum
length, where each E; is an element of the subdivision &. From Lemma 4, it follows
immediately that k> 2.

The x-projections of any two consecutive elements E; and E,,, in this cycle must
have some abscissa x; in common. If for some i we had I1E;cI1E,_,, then the vertical
line through x; would meet E;_,, E, and E,.,; transitivity would hold, and we would
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have E;_, < E;,,. See Fig. 8. But then we could omit E; and still get a cycle, contradicting
the assumption that k is minimum. For analogous reasons, we cannot have IIE,<11E,,.

Let E; be one of the “leftmost” cycle elements, i.e., such that none of the intervals
I1E; contains a point to the left of II E. The projections I1 E;_; and I1 E, ., of its neighbors
must both meet I1E;, and, by what we have just said, extend beyond its right endpoint.
But then there would be again a vertical line meeting all three elements, implying
E;_ < E;,, and k is not minimum. We conclude that no such cycle exists. 0

We say that a region A is immediately above a region B (and write A> B) if A» B
and the frontiers of the two regions have at least one common edge; see Fig. 9.

FIG.9. A>B.

In general, the > relation is stronger than >, but the following is easily seen to

be true:
LEMMA 6. The transitive closure of > (restricted to the regions of a subdivision) is

the same as that of >. 0O

5. Separators. A separator for a subdivision & is a polygonal line s, consisting of
vertices and edges of &, with the property that it meets every vertical line at exactly
one point. Since s extends from x =—00 to x =+00, any element of the subdivision
that is not part of s is either above or below it. See Fig. 10. The elements of s have
pairwise disjoint projections on the x-axis, and so can be ordered from left to right;

the first and last elements are infinite edges.

FIG. 10. A separator.

A complete family of separators for a monotone subdivision & with n regions is
a sequence of n—1 distinct separators 5,< §,< - - - < s,_;. There must be at least one
region between any two consecutive separators, and also one below s, and one above
s.—1- If a region is below a separator s;, it must also be below any separator s; with
j>i. We can conclude that, if ¥ admits a complete family of separators, its regions
can be enumerated as Ry, R,, - - -, R,_; in such a way that R; < s; if and only if i <j;
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in particular,

(1) Ryk ;K RiK 5,&» x5, < R,_,.

Given a complete family of separators and an enumeration of the regions as in (1),
let us denote by index (R) the index of a region R in the enumeration. Then s;,gex(r) <
R < Singex(r)+1 (Whenever those separators are defined). Also, if we let above (e) be
the region above the edge or vertex e, and below (e) the one below it, the following
holds:

LEMMA 7. If i=index (below (e)) and j=index (above (e)), then the separators
containing e will be exactly s;.,, S;12,**+, 8. [

6. Existence of a complete family of separators. It is a well-known result that any
acyclic relation over a finite set can be extended to a linear (that is, total) order.
Therefore, by using Lemma 5 we conclude that there is an enumeration
Ry, Ry, - - -, R, of the regions of & that is compatible with «, i.e., such that R;« R;
implies i <j. Furthermore, any enumeration Ry, R,,- -, R,_, of the regions that is
compatible with < is also compatible with «, and vice-versa.

Since a region with nonempty bottom frontier is immediately above some other
region, and therefore not minimal under <, the first region in any such enumeration
has no bottom frontier, and extends to infinity in the —y direction. Since vertical edges
are not allowed, its x-projection is the whole x-axis. Similarly, the last region R,_, is
the only one with no top frontier, and also projects onto the whole x-axis. Therefore,
we always have Ry« R, « R,_, for 0<i<n-—1.

We are ready to prove the main result of this section:

THEOREM 8. Every monotone subdivision & admits a complete family of separators.

Proof. Let Ry, Ry, -+, R,_, be a linear ordering of the regions of & that is
compatible with the « relation, i.e. R;< R; only if i<j. Fori=1,2,---,n-1, let s;
be the collection of all edges and vertices that are on the frontier between regions with
indices <i and regions with indices =i. For example, Fig. 10 shows the separator ss.

Now consider any vertical line , and let R;, R, - - -, R;, be the regions it meets,
from bottom to top. Since / meets R, and R,_,, and R, < R, « - - -« R;, we will have
0=i<i,<-::-<i,=n-—1. Therefore, there is exactly one point on I that is on the
frontier between a region with index <i and a region with index =i, that is, on s
Furthermore, the intersection of I with s; will be equal to or above that with s;_;, and
for some such lines (those that meet R;_,) the two intersections will be distinct. So,
we have 5, € 5, K §,_,.

Clearly, the elements of s; have disjoint x-projections, and therefore can be ordered
from left to right; they must be alternately edges and vertices, the first and last being
infinite edges. To prove that s; is a separator, it remains only to show that s; is connected;
if that were not the case, we would have some vertex v of s; that is distinct from, but
has the same x-coordinate as, one endpoint of an adjacent edge e of s;; see Fig. 11.

T N

F1G. 11

But then we would have u « R« v (or vice-versa), for some region R; and therefore
e< R« v (or vice versa), contradicting the construction of s;. Therefore, each s; is a
separator, and s,, s,,* -, s, is a complete family of them. 0O
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7. A point location algorithm. Later on we will tackle the problem of efficiently
computing a complete family of separators for a monotone subdivision. Let us therefore
assume for now that we have such a family sy, s;,"* -, s,-;, With a corresponding
enumeration of the regions Ry, R,, - - -, R, _, satisfying (1); we will show next how
they can be used to determine, in time O(log2 m), the unique element of & that contains
a given point p.

The algorithm we will describe is essentially that of Lee and Preparata [LP], and
uses two levels of binary search. The inner loop takes a separator s; (as a linear array
of edges and vertices, sorted by x-coordinate), and determines by binary search an
edge or vertex e of s; whose x-projection contains the abscissa p, of p. By testing p
against e, we will know whether p is above s; or below s; (or, possibly, on e itself, in
which case the search terminates). The outer loop performs binary search on i, so as
to locate p between two consecutive separators s; and s;.;, that is to say in a region R,

Besides the separators, the algorithm assumes the index, index (R) can be obtained
for any given region R, and similarly the adjacent regions above (e) and below (e) can
be obtained from an edge e, all in constant time. We will see that the construction of
these tables is part of the process of constructing the family of separators. The search
algorithm uses these tables to reduce substantially the storage requirements (and also
speed up the search a little bit).

Let T be the infinite, complete binary search tree with internal nodes 1, 2,3, - -
and leaves 0,1,2,3,- - -, as in Fig. 12. The tree T is used as a flowchart for the outer
loop of the search algorithm, with the convention that each internal node i represents
a test of p against the separator s;, and each leaf j represents the output “p is in R;”.
While reading the algorithm it should be borne in mind that “left” in the tree
corresponds to “down” in the subdivision. The left and right children of an internal
node k of T will be denoted by I(k) and r(k), respectively. We let Ica (i, j) be the
lowest common ancestor in T of the leaves i and j, that is, the root of the smallest
subtree of T that contains both i and j.

FIG. 12. The tree T.

When testing p against a separator, we adopt the convention that each edge
contains its right endpoint but not its left. This is unambiguous since there are no
vertical edges. If the algorithm detects that p lies on some edge e during a discrimination
against a separator, it can terminate the search and, by comparing p with the right
endpoint of e, determine if our point is a vertex of the subdivision.



326 H. EDELSBRUNNER, L. J. GUIBAS AND J. STOLFI

ALGORITHM 1. Point location in a monotone subdivision.

[ {The algorithm returns in the variable loc a reference to the vertex, edge, or
region of & containing p.}

1. Set i< 0, jen—1, ke<lca(0,n—1).

2. While i<}, do:

[ {At this point p is above the separator s; and below s;., (whenever those
separators exist). That is, p is in one of the regions R, R;,,,- - -, R; (or
in some edge or vertex between two of these regions). At each iteration of
this loop, either i increases or j decreases, and k (a common ancestor of
i and j) moves down one level in the tree T}. )

3. Ifi<k=j then

[ 4. Find (by binary search) an edge e in s, such that p, Ile.

Let a < index (above (e)), b «index (below (e)).

{By Lemma 17, e belongs to the separators s, ., Sp+2, " * * , S.. Therefore,
by testing p against e we conclude it is either on e, above s,, or below
Spe1-}

5. If p is on e, set loc « e and terminate the search.

| 6. If p is above e, set i < a; else set j« b.

7. Else

L [ 8. If k>j set k<« I(k); else (if k=i) set k< r(k).

| 9. Set loc « R; and terminate the search.

The binary search along each separator s, can be performed in O(log m) time if the
edges of s, are stored in a linear array or balanced binary search tree sorted from left
to right. By the first iteration, the variable k=1ca (0, n —1) points to an internal node
of T at level [log n]; at each iteration it descends one level, so we have O(log n)
iterations, and a total time bound of O(log n log m) = O(log® m). This bound is tight:
Fig. 13 shows a subdivision with m edges that realizes it. This example has /m+1
regions and a family of Jm disjoint separators with Jm edges each.

Ro
FIG. 13. A subdivision that is bad for Algorithm 1.

Note that by keeping track of the variables i and j we are sometimes able to skip
the binary search for p, in some separators. This optimization may improve the average
running time of the algorithm in practice, but does not affect the worst-case bound. It
was included primarily to make algorithm 1 more similar to the variants developed
further on.

If we were to independently represent each separator as a linear array, with all
its edges and vertices, we would have to store n—1 separators, whose average length
can be as large as ®(m) for some classes of subdivisions. So, the storage requirement
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of this basic method is @(m?) in the worst case. However, after p has been tested
against the edge e in step 6, i and j are updated in such a way that we will never again
look at the edges of any other separator that contains e. Therefore, an edge need only
be stored in the first separator containing it that would be encountered in a search
down the tree T. Specifically, if the edge e is in the common frontier of regions R,
(below) and R; (above), by Lemma 7 it belongs to separators s, - - 5; and so it suffices
to store it in s,, where k is the least common ancestor of i and j. This is the highest
node in T whose separator contains e.

Note that only those edges assigned to s, according to the above rule are actually
stored in such a structure. In general these will form a proper subset of all the original
edges of s;, so between successive stored edges of s, there may be gaps. See Fig. 14.
Actually, it may happen that all the edges of s, are stored higher up in the tree, so
that s, is reduced to a single gap, extending from x = — to x = +00. The ordered list
of stored edges and gaps corresponding to separator s, will be termed the chain c,.
Note that to each subtree of T rooted at a node k there corresponds a “partial
subdivision” consisting of a range of regions and the edges and vertices between them.
The separator s, splits this partial subdivision into two others, each having half the
regions; the gaps of ¢, correspond to edges of s, that lie on the upper or lower boundary
of the partial subdivision, as shown in Fig. 14.

Riz

F1G. 14. Stored edges and gaps.

The total storage required to represent the chains is only O(m); in § 10 we show
how they can be constructed in O(m) time. The derivation of this bound is contingent
on our ability to compute the least common ancestor of any two leaves of T in O(1)
time. This is made possible by the fixed, regular structure of the search tree T (see
§ 11). The point location phase proper could easily be adapted to search a more
conventional linked tree structure, but such structures seem to admit no simple O(1)
algorithm for Ica determination.

8. A faster point location method. Our hope to obtain a faster algorithm for point
location comes from the fact that there is some obvious information loss in the method
of § 7. Specifically, when we discriminate a point against a chain ¢,, we must localize
it in the x coordinate to within an edge or a gap of ¢, Yet when we continue the
search down some child of k, we start this localization process all over again. It would
be nice if each edge or gap in a chain pointed to the place on each child chain where
the x search on that child will finish. The trouble is that an edge or gap of the parent
can cover many edges or gaps of the child.

The novel idea in the technique we present in this section is to refine the chains
so that the localization of p, in one chain allows us to do the same localization in its
children with only constant extra effort. In its ultimate form, this idea leads to breaking
up each chain at the x coordinates of all vertices of the subdivision. A bit of thought
will convince the reader, however, that such an extensive refinement will require
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quadratic storage for its representation. Instead, we describe below a refinement that
produces for each chain ¢, a list L, of x-values, defining a partitioning of the x axis
into x-intervals. Each such interval of L, overlaps the x-projection of exactly one edge
or gap of ¢, and at most two x-intervals of the lists L,y and L,). As we will see in
§ 9, this last condition is compatible with keeping the overall storage linear.

The lists L, and their interconnections can be conveniently represented by a linked
data structure that we call the layered dag. This is a directed acyclic graph whose nodes
correspond to tests of three kinds: x-tests, edge tests, and gap tests. A list L, is represented
in the dag by a collection of such nodes: each x-value of L, gives rise to an x-test,
and each interval between successive x-values to an edge or gap test. See Fig. 15.

gap edge gap edge edge gap

€
Cy ez ! €3 -

[
»
b S
e
—

A
b x-tests Q edge tests .} gap tests
v

FiG. 15. The dag nodes for list L,.

An x-test node ¢ contains the corresponding x-value of L,, denoted by xval (1),
and two pointers left (¢) and right (¢) to the adjacent edge or gap nodes of L;. An edge
or gap test node ¢ contains two links down (¢) and up (¢) to appropriate nodes of Ly,
and L, In addition, an edge test contains a reference edge () to the edge of ¢
whose projection covers the x-interval represented by & A gap test node contains
instead the chain number chain () = k. The various types of nodes present are illustrated

in Fig. 16.
\/ \ s.g\
|
X

xval: x /o \ }p
»

- left |right edge: e { chain:k |}
L. —l 7
W \, down ,

F1G. 16. The nodes of the layered dag.

Let us define more precisely the meaning of the links down (z) and up (¢). The
properties of the refined lists ensure that the x-interval of L, corresponding to an edge
or gap test ¢ covers either one x-interval I of L;,, or two such intervals I,, I, separated
by some element x; of L;,. In the first case, down () points to the edge or gap test
of L, corresponding to the interval I; in the second case, down () points to the
x-test corresponding to the separating abscissa x;. Similarly, the link up (¢) points to
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a node of L, defined in an analogous manner. In the special case when r(k) and
I(k) are leaves of T, we let down (t) =up () =nil.

The layered dag then consists of the test nodes for all lists L,, L,,-- -, L,_,, linked
together in this fashion. We can use this dag to simulate algorithm 1; the main difference
is that each time we move from a separator to one of its children, the down or up
pointers (possibly together with an x-test) allow us to locate x, in the new chain in
O(1) time. As before, the variables i and j keep track of the interval of separators in
which the point p is known to lie, namely above s; and below s;.,. This interval is
updated after each edge test exactly as in the previous algorithm, and is used during
a gap test. When we come to a gap test, we know that the chain number of the gap is
not interior to the interval in question. This gives us an unambiguous test as to whether
we are above or below the chain of the gap. By the time the search algorithm gets to
a null up or down link, the interval will have been narrowed down to a single region.

We have now presented enough details about the structure of the layered dag that
we can give the code for the point-location algorithm. The layered dag contains a
distinguished node root where the point location search begins. This node is the root
of a balanced tree of x-tests whose leaves are the edge tests corresponding to the list
for the root node of T.

ALGORITHM 2. Fast point location in a monotone subdivision.

{ This algorithm takes as input the root node of the layered dag and the number
n of regions. Its output, as in algorithm 1, is placed in the variable loc.}

1. Set i«<0, jen—1, t<root.

2. While i <j do:

[ {At this point we know p is above the separator s; and below s;,, (whenever
those separators exist). That is, p is in one of the regions R, R;.1, - -, R;
(or in some edge or vertex between two of these regions). The variable t
points to a test node in the layered dag, which together with its descendants
will allow us to locate the point p among those regions.}

3. If t is an edge test then let e < edge (t) and do:

{ At this point we know p, lies within Ile.}

4. If p is on e, set loc < e and terminate the algorithm.

5. If p is above e, set t < up (t) and i < index (above (e)).
Else set t « down () and j < index (below (e)).

6. Else if ¢ is an x-test then do:

{ The following x-test routes us to the appropriate edge of the next chain

we need to test against.}

L 7. If p, =xval (2) then ¢ < left () else < right (2).

8. Else t is a gap test; do

[ {We have already compared p against the appropriate edge of the chain

of the gap test. We just need to recontruct how that comparison went.}

L L9. If j<chain (¢) then t <« down (t) else t<up (1).

LIO. Set loc « R; and terminate the search.

9. Computing the layered dag. Now that we understand how the layered dag is
to be used, we will describe how it is to be constructed. Our starting point will be the
tree T and the chains ¢, defined in § 7; recall that ¢, consists of those edges of s, that
do not belong to any ancestor of s, (that is, to any separator whose index is an ancestor
of kinT).

Our construction of the layered dag proceeds from the bottom up and happens
simultaneously with the refinement of the chains ¢, We first describe how the x values
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in L, are obtained. Note that we already have at our disposal three sorted lists of x
values: those corresponding to L), to L, ), and also to the endpoints of the edges
stored with the chain ¢, associated with node k in the chain tree. The x values in L,
are a merge of those in ¢, and every other one of those present in each of L, and
L,). By convention, if k is a terminal node of the chain tree (so it corresponds to a
region), or k= n, then L, is empty. We imagine now that, in a bottom-up fashion, this
is done for every node k of the chain tree. The propagation of every other value from
the children to the father constitutes the chain refinement we had mentioned in § 8.
This refinement has two desirable properties:
LEMMA 9. An interval between two successive x values in L, overlaps at most two
intervals in Ly, or L), respectively. [
LEMMA 10. The total number of x values in the lists L,, summed over all k, is at
most 4m.
Proof. If a; denotes the number of edges in ¢, then
Y a.=m,
keT
since each edge of the subdivision occurs in exactly one chain c¢,. Let b, denote the
number of x values in L,, and A, (resp. B,) denote the sum of a; (resp. b;) over all
nodes i in the subtree rooted at k. To prove the lemma it suffices to show that

B, =4A,=4m

for the root node r=Ica (0, n—1).
As an inductive hypothesis now assume that

2) B,+b,=44,

for i=1I(k) or i=r(k). This hypothesis is trivially true for the leaves of T. Observe
now that

Bk = Bl(k)+Br(k)+ bk,
and that
b.=2a.+ (bl(k)+ br(k))/2,

since each edge in ¢, contributes at most two x-values to L,. Applying the inductive
hypothesis (2) yields

B+ b, =4A,,

which proves the same conclusion for k. This concludes the proof of the lemma. O

Intuitively, half of the x values of ¢; propagate to the father chain, a quarter to
the grandfather, an eighth to the great-grandfather, and so on. Although this argument
is not strictly correct it illustrates why we can expect the combined length of the L
lists to remain linear in m, and in fact just twice as great as the total number of x
values in the chains c.

The construction of the x-test, edge test, and gap test nodes representing the list
L, in the layered dag is now straightforward, as well as the setting of the left and right
fields of the x-tests. The down links of L, can be set according to the rules stated in
§ 8, by traversing simultaneously the two lists L, and L, from left to right. The up
pointers are analogous. In fact, it is possible to build L, and link it to the rest of the
dag in a single simultaneous traversal of ¢, Lyy), and L,,. This bottom-up process
terminates with the construction of the root chain L,, where r =1ca (0, n —1). As a final
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step we produce a tree of x-test nodes corresponding in a natural way to a binary
search on the x-values of the list L,. The leaves of the tree are made to point to the
appropriate edge test nodes of L,. All nodes of the layered dag can be reached from
the root of that tree.

ALGORITHM 3. Construction of the layered dag.

[ 1. Set i< 1. While i<n do:

B {Construct one more level of the tree T. The first node in this level is i
and the difference between successive nodes is 2i. A node k on this level
is the common ancestor of the leaves k — i through k+i—1; its children
(if i>1) are the internal nodes k—i/2 and k+i/2.}

2. Set k < i. While k—i<n do:

{Create the list L, from the chain c, and the lists L'=L,;, and

L"= L, (if they exist).}

Ifi=1,set L'« else set L'« Ly_;».

Ifi=1lork+i/2=n,set L"«J, else set L"« Ly, ;5.

5. If k=n, let ¢, be a single gap from x =~ to x =+,

Split the edges and gaps of ¢, at every other x-value of L' and L".

6. Set L, « . For each edge or gap e in ¢, do:

" 7. Append to L, an edge or gap test t representing e.

Set edge (1) « e or chain (t) « k, as appropriate.

8. If L'=¢, let down (t) « nil.

Else, if ITe overlaps only one x-interval of L', let down (t) point
to the corresponding edge or gap test of L'.

Else ITe overlaps two x-intervals of L’; create a new x-test node
t’ that chooses between the two corresponding edge or gap tests
of L', and let down (t) « ¢'.

9. Similarly, set up (¢) to nil, to an edge or gap test of L", orto a

| new x-test that chooses between two tests of L".

| 10. Set k<« k+2i.

[ 11. Set i< 2

12. Let r<Ilca (0, n—1). Construct a binary tree of x-tests for the list L,, and

let root point to this tree.

w

Note that several different nodes of L, may point to the same node of a child;
an example is shown in Fig. 17. Thus the resulting dags are not trees. We remark that

Z es L @

|
i
3 X

FIG. 17. Convergence in the dag.

the structure built by Kirkpatrick [Ki] also corresponds to a dag. This “sharing” of
subtrees seems to be an essential feature of algorithms for point location that simul-
taneously attain optimal space and query time.

To cut down on the number of links, we may consider storing the edge and gap
test nodes of each list L, in consecutive memory locations, in their natural left-to-right
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order, with the x-tests between them. The initial location of x, in L, could then be
carried out by standard binary search. Also, in the construction of L, we would be
able to scan the lists Ly, and L, without any auxiliary pointers or tables. Finally,
this sequential allocation would eliminate the need for the left and right links of x-tests,
a fact that may reduce the total storage used by pointers in the dag by about one third.

In any case, the initial location of x, in the root list L, can be determined in
O(log m) time. After that, Algorithm 2 executes exactly [lg n] edge or gap tests (one
at each level of T), and at most that many x-tests. So the total query time is O(log m).
A list L, with ¢ x-values is represented in the layered dag by at most ¢ x-tests and ¢+ 1
edge/gap tests and, as we have seen, it can be constructed in O(¢t) time. Using Lemma
10, we conclude that the layered dag contains at most 4m x-tests and 4m+n—1 edge
and gap tests, and can be built in total time O(m+n) from the chain tree T. In
summary, we have shown that

THEOREM 11. Assuming that the chain tree for a subdivision with m edges is given,
the layered dag data structure can be constructed in O(m) time, takes O(m) space, and
allows point location to be done in O(log m) time. [

10. Constructing a complete family of separators. We proceed now to the descrip-
tion of an efficient algorithm that constructs the chain tree T representing a complete
family of separators for a given monotone subdivision &. As suggested by the proof
of Theorem 8, the first pass of this algorithm enumerates the regions in a linear order
compatible with «. A second pass enumerates the edges and vertices of &, in such a
way that the edges and vertices of each separator are visited in order of increasing
x-coordinate (even though this may not be true for elements belonging to different
separators). Therefore, by just appending each visited element to its appropriate
separator, we will get the sorted lists required in Algorithms 1 and 3.

As in § 3, we will add to S two dummy vertices at x = —c0 and x = +00, which are
endpoints of all edges with infinite left or right extent, respectively. If we orient every
edge of & from right to left, we obtain a planar embedding of a directed, acyclic graph
S with exactly one source and one sink (solid lines in Fig. 18). The enumeration we
need in the second pass is basically a compatible traversal of this graph, in which we
visit a vertex only after visiting all its outgoing edges, and we visit an edge only after
visiting its destination. This is a form of topological sorting, as discussed in [Kn].

Consider now the dual graph $* whose vertices are the regions of &, and where
for each edge e of & there is an edge e’ from above (e) to below (e). By what we have
seen in §§ 4-6, S* too is acyclic and has exactly one source and one sink. We can
draw S* on top of S (dotted lines in Fig. 18) in such a way that each of its edges e’
crosses only the corresponding edge e of S, and that exactly once (going down).

FIG. 18. The graphs S and S*.
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Therefore, S* is planar, and corresponds to the topological dual of S, It turns out that
S* represents for the first pass what S does for the second: a compatible traversal of
S* will visit the regions in an order consistent with < and «.

Therefore, both passes reduce to a generic graph traversal algorithm, applied first
to $* and then to S. In the first pass, as each region R is visited, we store in a table
(or in a field of the region’s record) its serial number index (R) in the enumeration.
In the second pass, as each edge or vertex e is visited, we obtain the indices a =
index (above (e)) and b =index (below (e)) of the regions immediately above and
below it, and append e to the separating chain ¢, where k=Ica(q, b). With an
appropriate representation for subdivisions, it is possible to accomplish this graph
traversal without any auxiliary storage. This topic is discussed in § 12.

11. The lowest common ancestor function. If the construction of the separating
chains ¢; as described above is to run in O(m) time, it is essential that the total time
to compute Ica (index (below (e)), index (above (e))) for all edges e be O(m). This
rules out the straightforward algorithm that starts at the leaves i and j, and moves up
one level of T at a time, following “parent” links, until the two paths join at a common
node. This naive algorithm has running time Q(log |i —j|), and it is possible to have
subdivisions in which |index (below (e)) —index (above (e))| = Q(/m) for Q(m) edges
e, thus giving an overall running time of Q)(m log m).

Algorithms for computing in O(1) time the least common ancestor function on
general binary trees have been published by Harel [H]. His algorithms are probably
too complex to be of practical use here, but they can be considerably simplified thanks
to the regular structure of our search tree T. On this tree, the value of Ica (i, j) has a
simple interpretation in terms of the binary representations of i and j. Let » = [lgn]
be the number of bits needed to represent any number from 0 through n—1, and let

y —_— I I !
i=(a,_18,.° "+ 8,4+, 0 a,- - ajag),,

" n

. ”
J_(au—lav—Z B S) 1 a,-"-a,ap)>.

Then
lca (iaj)=(av—lav—l R ) 1 0 Tt 0 0)2-

Loosely speaking, Ica (i, j) is the longest common prefix of i and j, followed by 1 and
padded with zeros.

An efficient formula for computing Ica (i, j) is based on the function msb (k) =
Ica (0, k) =28%17 the most significant bit of k. Its values for k=1,2,---,n—1are 1,
2,2,4,4,4,4,8,8,--+,2"""; these numbers can be easily precomputed in O(n) time
and stored in a table with n — 1 entries, so we can compute msb (k) in O(1) time. Then
we can express the Ica function as

Ica (i, j) =j A (msb (i®j)—1)

where ®, A, and 1 are the boolean operations of bitwise “exclusive or”, “and”, and
complement. We assume these boolean operations can be computed in O(1) time, like
addition and subtraction. We feel their inclusion in the model is justified, since their
theoretical complexity is no greater than that of addition, and most computers have
such instructions.” For use in this formula, it is preferable to tabulate (msb (k) —1)
instead of msb (k).

% In fact, some machines can even compute [lg k]—1 from k (*“find first 1 bit™) and 27 from g (“shift

left g bits”), in a single instruction cycle. Under a more rigorous log-cost complexity model, all time and
space bounds in this paper and in the main references should be multiplied by an extra log m factor.
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Another way of computing lca is based on the bit-reversal function rev (k), that
reverses the order of the last » bits in the binary expansion of k. For example, for
n=16 and k=0,1, - - -, 15, the values of rev (k) are 0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5,
13, 3, 11, 7, 15. Using this function we get the formula

Ica (i, j) =rev (k@ (k—1)) A},
where k=rev (i®j).

12. Compatible traversal of an acyclic graph. The input to the compatible graph
traversal routine we mentioned in § 10 is a planar embedding G of a directed, acyclic,
and connected graph with exactly one sink and one source, both on the exterior face
of G. See Fig. 19.

source

sink

F1G. 19. The input to Algorithm 4.

Such an embedding defines a “counterclockwise” circular ordering of the edges
incident to any given vertex u. The post-order traversal of G is defined as a listing of
all its vertices and edges such that

(i) an edge is listed (or visited) only after its destination,

(ii) a vertex is visited only after all its outgoing edges, and

(iii) edges with same origin are visited in counterclockwise order.

This is clearly a compatible traversal as defined in § 10. The post-order traversal is
unique, and is a particular case of the general depth-first graph traversal described by
Tarjan [Ta]. This problem admits a straightforward recursive solution. Given a vertex
u (initially the source of G), we enumerate the edges out of u, in counterclockwise
order. For each edge e, we first recursively apply the procedure to its destination v
(unless it has been previously visited). We then visit e and proceed to the next edge.
After all edges out of u have been visited, we visit u and exit. This algorithm runs in
O(m) time and requires only O(m) auxiliary storage, the latter consisting of the
recursion stack and one mark bit per vertex (to distinguish the nodes that have already
been visited).

In the rest of this section we will show that this post-order traversal can be
performed without an auxiliary stack or any mark bits on the vertices, provided the
data structure used to represent the subdivision is rich enough. This improvement is
of significant practical interest, even though it does not affect the O(m) space bound.

As we observed, the embedding of G in the plane defines a counterclockwise
ordering of the edges incident to a given vertex u. In this ordering all outgoing edges
occur in consecutive positions, and the same is true of the incoming ones. To see why,
consider any two edges e,, e, entering u, and any two edges g,, g, leaving u. Let m,, 7,
be two paths from the source vertex of G that end with the edges e, and e,, and let
g, 0, be the two paths to the sink vertex that begin with g,, g,. See Fig. 20.

Since G is acyclic, both 7, and =, are disjoint from o, and o, (except for u itself).
Now, the paths 7, and =, together divide the plane in two (or more) regions. If the
two pairs of edges were interleaved, at least one of the paths o, and o, would have
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m
M2

FiG. 20

to cross m, Or ,, since they start on different regions but have a common destination.
This proves the above assertion.

If u has both incoming and outgoing edges, this result establishes a linear order
for each class with well-defined “first” and “last™ elements, which will be denoted by
first in (1), last in (u), first out (u), and last out (u). See Fig. 21. To make this definition
meaningful also for the source and sink of G, we will introduce a dummy edge base (G)
that connects the sink back to the source across the exterior face of G. We may consider
the resulting graph G’ as embedded on the upper half of a sphere, with base (G)
running across the bottom half, as in Fig. 22. In the graph G/, the first and last outgoing
edges of the source of G will be those incident to the exterior face of G. A similar
statement applies to the sink of G.

first out(u)

lastin{u)

last outlu)  gct in(u)
FiG. 21 FiG. 22

Let us mechanically translate the recursive post-order algorithm into an iterative
one, using an explicit stack Q to save the value of ¢ when simulating recursive calls
(the value of u need not be saved, since it is always the origin of e).

ALGORITHM 4. Post-order traversal of an acyclic planar graph with one source and
one sink.
[1. Set Q< O, u<«source of G, e« first out (u).
2. Repeat the following steps:
[ { At this point u is unvisited, and e is the first unvisited edge out of u.}
3. While e # base (G) and the destination v of e has not been visited yet,
4. Set u < v, push e onto the stack Q, and set e « first out (u).
If e #base (G), visit e.
6. While e =last out (u) do
7. Visit u.
8. If Q is empty, the algorithm terminates. Else,
9. Pop the topmost edge of Q, and assign it to e.
Set u to the origin of e.
10. Visit e.
LL11. Set e to the next edge out of u.

N
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The following claims about Algorithm 4 are a direct consequence of the planarity and
acyclicity of G, and can easily be proved by induction on the number of executed steps:
(I) Before every step, the edges in the stack Q form a path in G from the
source to u;
(IT) an edge is stacked onto Q (step 4) only if its destination is still unvisited;
(III) an edge is unstacked (step 9) only after its destination has been visited;
(IV) an edge is visited only after its destination has been visited;
(V) a vertex is visited only after its last outgoing edge has been visited;
(VI) every edge is stacked at most once;
(VII) for any given vertex, at most one incoming edge ever gets stacked; and

(VIII) an edge is visited only after the previous edge with same origin (if any) is

visited.

In particular, from (IV), (V), and (VIII) we conclude that all vertices and edges
of G are visited, and conditions (i)-(iii) are satisfied. Algorithm 4 defines a subgraph
H of G, consisting of all the edges that ever get stacked onto Q. Every vertex of G is
reachable from the source via a directed path in H (the contents of the Q at any
instant when the variable u is that vertex), and has at most one incoming edge in H.
It follows that H is an oriented spanning tree of G, as illustrated in Fig. 23. We remark

source

FIG. 23. The spanning tree H.

that the order in which the vertices of G are visited corresponds to the post-order
traversal of the tree H, as defined by Knuth [Kn]. We will show now that the only
edge of H (if any) entering a vertex u is last in (u). More precisely, the following
lemma holds:

LeEmMMA 12. Before any step of algorithm 4, if the stack Q is not empty, its topmost
edge is last in (u); otherwise u is the source of G.

Proof. The second part of the lemma is obvious, since the contents of Q is always
a path in G from the source to u. Let us then assume Q is not empty. Let u, be the
current value of u, 7 be the path in Q, and e, be the last edge of = (i.e., the top of
Q). See Fig. 24. Suppose e, is an edge distinct from e, but having the same destination
u,. From assertions (II) and (III) above we conclude that e, and e, have yet to be
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visited. By the time e, is visited by Algorithm 4, the variable u will contain the origin
of e,; the contents of Q at that time, plus the edge e,, will define another directed
path 7' from the source to u,. Since G is acyclic, the path 7' neither contains nor is
contained in 7; in fact, because of property (VII) the paths 7 and =’ must diverge
exactly once, at some vertex w # u,, and converge exactly once at u,. Therefore all
edges of 7 between w and u, must be unstacked (and visited) before e, is visited. In
particular, the edge a through which 7 leaves w is visited before the corresponding
edge a’ of 7', and therefore a’ must follow a in counterclockwise order around w.

Let R be the complement of the outer face of G, and let o be any directed path
from u, to the sink of G. The concatenation of 7 and o divides R in two (not necessarily
connected) regions, which we call left and right (with the direction of 7o being taken
as “forwards”). The path 7' cannot cross o (otherwise the two would give rise to a
cycle), and its first edge o’ lies in the left region; therefore, after leaving w the path
#' must lie entirely in the left region, and in particular e, precedes e, in the counterclock-
wise order around u,. By repeating this argument for all possible edges e, # e, into u,,
we conclude that e, =last in (u). O

Therefore, instead of retrieving e from the stack in step 9, we can simply set
e <last in (u). Note also that the test ‘e # base (G) and v has not been visited yet”
in step 3 is evaluated and yields true if and only if e is pushed into Q by the following
step, so we can replace that test by the condition “e # base (G) and e=last in (v)”.
These observations enable us to dispense with the recursion stack and the “visited”
bits on the vertices.

A representation for the embedded graph G that allows the efficient computation
of first out and its companions is the quad-edge data structure [GS]. This representation
is similar to the well-known “winged edge” and DCEL data structures [B], [MP], but
has over them the important advantage of encoding simultaneously both G and its
dual embedding, in precisely the same format, at a negligible extra cost in storage.
This allows the post-order traversals of both S and S* to be performed by the same
procedure, applied to the same data structure.

The quad-edge structure by itself can only represent an undirected embedded
graph, such as the undirected subdivision &. However, every edge € of ¥ is represented
by two distinct records in the structure, corresponding to the two possible orientations
of & Therefore, to refer to the edge & of the structure we must actually refer to a
specific directed version of & Given such a directed edge e, the quad-edge data structure

~gives immediate access to:

org (e) the origin vertex of e,
dest (e) the destination vertex of e,
onext () the next counterclockwise directed edge with the same origin,
dnext (e) the next counterclockwise directed edge with the same destination,
sym (e) the same edge directed the other way, and
rot (¢) the dual of the edge e, directed from the right to the left faces of e.
A directed graph G, such as S or S*, can be represented by the quad-edge encoding
of the corresponding undirected graph, plus a predicate forward (e, G) that tells
whether the directed edge e of the structure is actually an edge of G. Clearly, e is in
G if and only if sym (e) is not in G, so forward (e, G)=—forward (sym (e), G). In
our case, forward (e, S) is simply the test of whether the x-coordinate of dest (e) is
smaller than that of org (). Similarly, in the dual graph S* the predicate forward (e, S*)
tests whether the region dest (e) is immediately below the region org (e). This turns
out to be the same as —iforward (rot (e), S). The dummy edges that we must addto S
and S* are the only exception: we have rot (base (8*)) =base (S), and yet both are
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forward. For both graphs, we also have
e =last in (dest (e)) & forward (e, G) A —forward (dnext (e), G),
e =last out (org (e))<>forward (e, G) A =forward (onext (e), G),
e =last in (u)=>sym (dnext (e)) = first out (u).

These identities allow us to remove also the calls to first out and its companions from
Algorithm 4. Algorithm 5 below incorporates all these modifications.

ALGORITHM 5. Post-order traversal of an acyclic planar graph with one source and
one sink using O(1) auxiliary storage.
[1. Set u < dest (base (G)) and e « sym (dnext (base (G))).
2. Repeat the following steps:
i {At this point u is unvisited, forward (e, G) is true, and e is the first
~ unvisited edge out of u.}
3. While e # base (G) A =forward (dnext (e), G), do
{Here e is the last edge into its destination v, 50 v has not been visited
yet.}
4. Set u < dest (e), and set e < sym (dnext (e)).
{This sets e to first out (u).}
{Now e is the dummy edge, or its destination has already been visited.}
5. If e#base (G), visit e.
6. While ~forward (onext (e), G) do
{Here e has been visited and is last out (u).}
7. Visit u.
8. If u =dest (base (G)), the algorithm terminates. Else,
{Compute last in (u), and backtrack through it}
9. Set e« sym (onext (e)).
While forward (dnext (e), G), do e « dnext (e).
Set u «<org (e).
| 10. Visit e.
[11. Set e « onext (e).

The equivalence between Algorithms 4 and 5 is straightforward. It is also easy to show
that the latter runs in O(m) time for a subdivision with m edges. Every edge of the
graph is assigned to e at most twice: once in the enumeration of the edges out of a
vertex v (step 11), and once in the determination of last in (v) (step 9).

13. Conclusions and applications. We have introduced a new data structure, the
layered dag, which solves the point location problem for a monotone subdivision of
the plane in optimal time and space. The main idea has been to refine the chains
introduced by Lee and Preparata and connect the refined chains by links. The latter
concept originates with Willard [W] and has found frequent application since then.
The layered dag can be built from standard subdivision representations in linear time,
as follows. We use the graph traversal algorithm of § 12 to enumerate the regions of
the subdivision in a way compatible with the vertical ordering presented in § 4. Another
traversal of the subdivision then allows us to build the chain tree representing a
complete family of separators, as in § 10. Finally, the layered dag is built from the
chain tree, as explained in § 9. The point location algorithm using this structure has
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been given in § 8. Compared to previous optimal solutions, the advantage of the layered
dag is that

e it admits a simple, practical implementation, and

e it can be extended to subdivisions with curved edges.

We will not discuss in detail here how to generalize our method to work for curved-edge
subdivisions. Certain requirements for such a generalization to work are clear. We
must be able to break up edges into monotone pieces, to introduce the additional
edges required by regularization, and to test on what side of (a monotone segment of)
an edge a point lies. Our time bounds will be maintained as long as we are able to in
constant time:

e cut an edge into monotone pieces,

¢ add a monotone regularization edge between two existing monotone edges, and

e test if a point p is above or below a monotone edge e.

The layered dag also yields improved solutions for several other problems in computa-
tional geometry. All these problems are reduced to the subdivision search problem
treated earlier. For example, subdivisions with circular edges occur in the weighted
Voronoi diagram of a point set [AE]. There, each point p in a finite set U has associated
a positive weight w(p) and the region R(p)={x|d(x, p)/w(p)=d(x, q)/w(q),
for all ge U}. The layered dag offers the first optimal method for locating a point in
the diagram defined by these regions.

Finally, certain problems related to windowing a two-dimensional picture given
as a collection of line segments have been reduced to subdivision search by Edels-
brunner, Overmars, and Seidel [EO]. The layered dag provides a way to extend their
methods to more general curves without losing efficiency.
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