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CONSTRUCTING ARRANGEMENTS OF LINES AND HYPERPLANES
WITH APPLICATIONS*

H. EDELSBRUNNERTY, J. O'ROURKE%, anD R. SEIDELS§

Abstract. A finite set of lines partitions the Euclidean plane into a cell complex. Similarly, a finite set
of (d —1)-dimensional hyperplanes partitions d-dimensional Euclidean space. An algorithm is presented
that constructs a representation for the cell complex defined by n hyperplanes in optimal O(n?) time in d
dimensions. It relies on a combinatorial result that is of interest in its own right. The algorithm is shown
to lead to new methods for computing A-matrices, constructing all higher-order Voronoi diagrams, halfspatial
| range estimation, degeneracy testing, and finding minimum measure simplices. In all five applications, the
new algorithms are asymptotically faster than previous results, and in several cases are the only known
methods that generalize to arbitrary dimensions. The algorithm also implies an upper bound of 2"‘d, ca
positive constant, for the number of combinatorially distinct arrangements of n hyperplanes in E¥,

Key words. arrangements, configurations, geometric transformation, combinatorial geometry, computa-
tional geometry, optimal algorithm

L. Introduction. Let H denote a finite set of lines in the Euclidean plane E*. H
determines a partition of the plane called the arrangement A(H) of H or the cell
complex induced by H. A(H) consists of vertices (intersections of lines), edges (maximal
connected components of the lines containing no vertex), and regions (maximal
connected components of E? containing no edge or vertex). All geometric entities of
this paper will be defined in Euclidean space which should make clear that our
discussion does not take the projective view. However, no essential use is made of the
concept of distance which implies that all results, but the ones on minimum measure
simplices in § 4.5, also hold in real affine space.

Arrangements of lines have been studied from various mathematical points of
view since Steiner [St] in 1826. The first attempt to provide a systematic exposition of
the subject was made in 1967 in Griinbaum [G1], and to a more exhaustive extent five
years later in Griinbaum [G2]. In spite of the extensive literature on arrangements of
lines, there is a host of easily formulated but unsolved questions in this area. The
interested reader is referred to [G2] where many open conjectures are stated. Recent

advances on questions posed in [G2] are reported e.g. in Goodman and Pollack [GP1]
and Edelsbrunner and Welzl [EW3].

The notion of a two-dimensional arrangement is easily generalized to three and
. higher dimensions. There, H is a finite set of ((d — 1)-dimensional) hyperplanes in the
d-dimensional Euclidean space E? The arrangement A(H) consists of open convex
d-dimensional polyhedra and various relatively open convex k-dimensional polyhedra
bounding them, for 0= k=d —1.
Arrangements in E“ for d =3, have received considerably less attention in the
mathematical literature than arrangements in E2. We refer to Griinbaum [G1, Chap. 18],
and Griinbaum [G3] for surveys of d-dimensional arrangements. A reason for the lack
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of attention is probably the difficulty of visualizing arrangements even in E°. Further-
more, Goodman and Pollack [GP2] demonstrated that a tool that is useful in E? (the
“Levi enlargement lemma,” see e.g. [G2]) does not generalize to E3.

Much of the significance of arrangements in E¢ is due to a dual correspondence
to configurations of points in E° Many problems for sets of points are more con-
veniently solved for the corresponding arrangement. Examples for this thesis are the
computational geometry problems discussed in § 4. Additional significance stems from
the correspondence of arrangements in E9 to a special type of polytopes, called
zonotopes, in E?*! that can be defined as the Minkowski sum of segments (see e.g.
[G3]).

The purpose of this work is to describe an optimal algorithm for constructing
arrangements in E for d =2. The optimality of the algorithm follows from the fact
that the time required to construct an arrangement does not exceed asymptotically the
space needed to store it. To be more specific: An arrangement of n hyperplanes in
E°, for d 22, is constructed in O(n?) time, and the arrangement actually needs space
proportional to n? unless it is highly degenerate; see e.g. Griinbaum [G1], [G3],
Zaslavsky [Z], and Alexanderson and Wetzel [AW]. (For d =1, the arrangement is.
essentially a sorted set of points on a line and cannot be constructed faster than in
O(n log n) time.)

The optimality of the algorithm relies heavily on a nontrivial combinatorial fact
that appears to be new (Thms. 2.7 and 2.8). This fact and other geometric preliminaries
are demonstrated in § 2. Section 3 outlines the algorithm for constructing arrangements,
In § 4, applications of the algorithm to A-matrices, halfspatial range estimation, Voronoi
diagrams, degeneracy tests, and minimum measure simplices are demonstrated. Finally,
§ 5 reviews the main results and lists some open problems.

2. Geometric fundamentals. This section discusses properties of arrangements of
hyperplanes and configurations of points. It falls into three parts. Section 2.1 is devoted
to a geometric transform that realizes the duality between arrangements and con-
figurations; that will be exploited in the applications of § 4. Section 2.2 lists rather
straightforward properties of arrangements that are relevant for the algorithmic part
of this paper, §§ 3 and 4. Finally, § 2.3 presents a combinatorial result that is the key
to the optimality of the algorithm outlined in § 3.

2.1. Arrangements and configurations. Let h be a nonvertical hyperplane in E¢
ford =2, thatis, hisa (d —1)-dimensional hyperplane that intersects the dth coordinate
axis in a unique point. Then the points on h with coordinates Xy, * * v, Xy satisfy a.
relation of the form x; = hyx;+ -« - + hy_;x,_, +h,. Let p=(p1," -+, pa) be a point in
E“ We say that p is above, on, and below h if p, is greater than, equal to, and smaller
than h,p,+ -+ - + hy_yps_1+ ha Let T be the geometric transform that maps the hyper-
plane h into the point T(h)=(h,,- - - h;) and the point p into the hyperplane T(p)
whose points (x;, * - + x;) satisfy x;, =—p,x,— - - - —Pa-1X4-1+ ps. Where convenient,
we will also use the natural extension of T to sets of hyperplanes and sets of points.
One of the significant properties of T is that it preserves the relative positions of h
and p.

Observation 2.1. If p is above, on, or below h then T(h) is below, on, or above
T(p) respectively.

This observation establishes that T leads to dual and order preserving arrangements
of hyperplanes if applied to configurations of points and vice versa. This duality of T
has found applications to computing intersections of halfspaces (Brown [B]) and other
tasks [EMPRWW], [EW2], [O].
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We contiriue the development with an implication of Observation 2.1. First, some
definitions are introduced. A set in E is called a subspace of dimension k (or a k-flat),
for 0= k=d, if there are d — k hyperplanes (and no fewer) such that the set is the
intersection of these hyperplanes. Thus, E% is a d-flat, each hyperplane is a (d —1)-flat,
and, for convenience, the empty set is said to be a (—1)-flat. (The terms “points,”
“lines,” and “planes’ are used to designate 0-flats, 1-flats, and 2-flats in E2 or B

Observation 2.2. Let S be a sct of points in E° and let H be the set of all
hyperplanes containing S. Then T(H) is the intersection of all hyperplanes T(p), for
pin §.

For the reader particularly interested in the transform T. we note that a rather

extensive list of similar implications restricted to E2 can be found in Goodman and
Pollack [GP3].

2.2 Properties of arrangements. Let H = {hy,- - -, h,} denote a set of n nonvertical
hyperplanes in E¢ for d = 2; since they are nonvertical, none contains a 1-flat parallel
to the dth coordinate axis. Let h; and h] denote the open halfspaces above and below
h, for 1=i=n. The arrangement A(H) consists of faces f with
(*) f= N s(n),
where sq(h;) is either h, h}, or h. Thus, each face f can be assigned its intersection
word w(f)=w, -+ - w,, with w;=0, +, or — depending on whether s/(h;) is h, h}, or
hi. f is called a k-face, for 0= k=4, if the affine hull of f is a k-flat. (The affine hull
of a set X is the collection of points of the form Y, ax; with g, real, i, a=1,and
x; in X, for 0=i=m.) The terms “vertices,” “edges,” and “‘regions” are synonymous
with 0-faces, 1-faces, and 2-faces for arrangements in E2 and E>. If f is a k-face, then
w(f) contains d —k 0’s, for k=d —1, d, and at least d — k,for0O=k=d-2. A k-face
g and a (k—1)-face f are said to be incident if f is contained in the closure of g, for
1= k=d. Thus, w(f) matches w(g) up to a positive number of letters which are 0 in
w(f). Also g is termed a superface of f and f is called a subface of g (To avoid
confusion, we say that f is a subface of g (or g a superface of f) only if the dimensions
of f and g differ by one. A synonym for subface is facet.)

A(H) is called simple if the intersection of any k hyperplanes is a (d — k)-flat,
for 1=k=d+1. Observe that this condition excludes parallelism between any two
subspaces unless one contains the other. If A(H) is simple, then f is a k-face if and
only if w(f) contains exactly d —k 0's for 0= k=d. Thus, a face f is subface of a face

(1% ¢ if and only if w(f) and w(g) differ in exactly one letter which is 0 in w(f).

It will be necessary to have a system of notation to describe the relationship
between the faces of an arrangement and a new hyperplane not part of the arrangement.
The reader who is less interested in the algorithm for constructing arrangements may
skip the introduction of this notation as well as Lemmas 2.3 and 24. Let H=
{hy, - -+, h,} denote a set of n nonvertical hyperplanes in E“ and let h denote a
nonvertical hyperplane not in H. We assign to each face f of A(H) one of the colours
white, red, black, and grey, depending on its relationship to h:

f is black if h contains f,
f is red if h intersects f but does not contain f,
f is grey if h does not intersect f but intersects the closure of f, and
S is white if h does not intersect the closure of f.
The nonwhite faces in A(H) are exactly those that are involved in updates if h is to

be added to the arrangement. Using the introduced notation, we present a few basic
properties of faces in arrangements.
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LEmMmA 2.3. Let A(H) be an arrangement in E% f a subface of face gin A(H),
and h a nonvertical hyperplane not in H.

(i) Only the pairs of colours indicated by 1’s in Table 2-1 can occur.

(ii) If g has two black subfaces, then g is black.

(iii) g is red if and only if it is a 1-face that intersects h, it has a red subface, or it
has grey subfaces on both sides of h.

(iv) If g is a 1-face, then only the circled 1’s in Table 2.1 hold.

TaBLE 2.1
Matiching colours.
g
F white grey red black
white @ @ ® 0
grey 0 1 1 0
red 0 0 1 0
black 0 @ 0 @

The proof of Lemma 2.3 is omitted as straightforward arguments using (*) and
the definitions imply the assertion. The same is true for the proof of the next lemma.
Let A(H) and h be as above. We call a face f in A(H U {h}) blue if it is contained in
h but was not present in A(H).

LemMA 2.4. Let A(H) and h be as in Lemma 2.3 and let g be a red k-face in A(H),
Jor some k with 1=k=d.

(i) gNh™ and gNh~ are k-faces in A(HU{h}), and gNh is a blue (k—1)-face
in A(HU{h}).

(ii) A (k—1)-face f of A(H U{h}) is a subface of gN\ h™ if and only if either (1) f
is a white or grey subface of g above h, (2) f=fNh", for a red subface f’ of g, or (3)
f=gN h. The symmetric statements hold for gN h™.

(iii) A (k—2)-face f" is incident with g N\ h if and only if either (1) f"=f"N h, for
a red subface f* of g, or (2) f" is a black face in A(H) incident with a grey subface of g.

For the analysis of the algorithms to follow in § 3, the cardinalities of several sets
of faces and incidences are of interest. Let C,.(H) denote the number of k-faces of
A(H), for 0=k =d, and let I,(H) be the number of incidences between k-faces and
(k+1)-faces of A(H), for 0= k=d —1. We prove below that both C,.(H) and I,(H)
are in O(n?), if n denotes the number of hyperplanes in H.

LEMMA 2.5. Let H be a set of n hyperplanes in E®. Then

() C(H)=X! , (L)), for 0=k=d, and

(il) L(H)=2(d~k) L, (a0, for 0=k=d-1.

Equality occurs if A(H) is simple.

Proof. Part (i) of the assertion follows from the exact formula for simple arrange-
ments, e.g. given in Zaslavsky [Z] or Alexanderson and Wetzel [AW], and the fact
that the number of k-faces is maximized when A(H) is simple.

Observe now that a k-face f that is contained in i hyperplanes (so i = d — k) has
at most 2(4_j_,) incident (k+1)-faces. This follows from the fact that the i hyperplanes
define at most (4_j_,) (k+1)-flats each containing two superfaces of f. But as f
represents (4',) k-faces (the maximal number of k-faces created by i hyperplanes),
there are at most 2(d — k) (k+1)-faces for each k-face that f represents. The maximum
2(d — k) is achieved if i = d — k, which implies that I, (H) is maximal if A(H) is simple.
This completes the argument.
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Let now v be a 0-face in an arrangement A(H). Then the number of 1-faces
incident with v is called the degree deg (v) of v.

LEMMA 2.6. Let H be a set of n hyperplanes in E? and let V denote the set of 0-faces
contained in a 1-flat of A(H). Then ¥, _,, deg (v) = O(n™).

Proof. There are at most (,",) 1-flats in A(H). One of these 1-flats can intersect
each of the other 1-flats at most once. Hence, ¥, _,, deg (v) <2(,",) = O(n®™").

2.3. Combinatorial results. The combinatorial results demonstrated in this subsec-
tion are crucial for the algorithms in §§ 3 and 4. They appear to be new and are of
independent interest. We start with the introduction of some notation.

Let H ={ho, hy, " -, h,} denote a set of n+1 nonvertical hyperplanes in E“. For
convenience, h is assumed to coincide with the hyperplane spanned by the first d —1
coordinate axes. In § 3, hy will play the role of the new hyperplane added to the existing
arrangement formed by h,, - - -, h,. A d-face g in A(H) is said to be active (with respect
to hy) if g is above h, and the closure of g intersects h,. Note that g is active if and
only if it is contained in a grey or red face (with respect to h,) in A(H —{ho}). Extending

o the notion of an incidence, a k-face f, for 0= k=d — 1, is said to bound d-face g if f
is contained in the closure of g. We call the pair (7, g) a k-border (of g); often the
d-face g will not be explicitly mentioned when it is irrelevant or clear from the context.
Where convenient, a flat is said to contain (f, g) if it contains J, and also f is said to
contain (f, g). The intersection of all open halfspaces containing g that are defined by
hyperplanes in H containing f is termed the cone of (£ g). In a two-dimensional
arrangement, the cone of a vertex is a wedge with apex at the vertex, and the cone of
an edge is a halfplane with the edge on its boundary. The k-degree deg, (g) of g is
now defined as the number of k-faces that bound g, for 0= k=d —1. The sum of the
k-degrees of all active d-faces in A(H) is denoted by S{(H, h,). These definitions are
illustrated in Fig. 2.1, which shows the regions active with respect to the horizontal
line ho. In the arrangement depicted, S3(H, ho) =17 and S3(H, h,) =19.

7

TN

~

F1G. 2.1. Regions active with respect to h,.

We call a k-border (f, g) active if g is active. So S{(H, hy) counts the number of
active k-borders (rather than the number of k-faces that bound active d-faces). For
0=k=d -1, define S§(n) =max {S¢(H, hy): H a set of n+1 nonvertical hyperplanes
in E and hoin H}. It is easy to see that there are simple arrangements A(H) of n+1
hyperplanes that achieve S§(n). Thus, for deriving upper bounds it suffices to examine
simple arrangements.

We prove below that S(n) is in O(n“™"), which permits the insertion of h, into
A(H —{ho}) in O(n""") time. The algorithm for performing the insertion will be




346 H. EDELSBRUNNER, J. O'ROURKE AND R. SEIDEL

described in § 3. Since the result is easiest to understand in E2, this case is considered
first and generalized to higher dimensions later. In both cases, the main technique is
to sweep the arrangement with a unidirected hyperplane initially coincident with h,.
During the sweep, faces in the hyperplane are classified into three states that change
g‘;e(f glme The rules obeyed by these changes are finally exploited to infer bounds on

n

THEOREM 2.7. Sé(n) =5n-3 and Si(n)=5n-1.

Proof. Let H={h,,- - -, h,} denote a set of n+1 nonvertical lines in E* such that
h, coincides with the x,-axis and A(H) is simple. We first show that 5n—1 is an upper
bound for $2(n) and demonstrate that it is tight. Then we argue that S3(n) = Si(n) —2.

Observe first that the number of active 1-borders contained in hy is n + 1. It remains
to show that 4n —2 is the maximum number of active 1-borders that are not contained
in ho. To this end, we perform a continuous upwards sweep with a horizontal line h.
Initially h=h,, and at each point in time h intersects A(H) in a one- dlmensmnal
arrangement A,(H). Let p; denote the intersection of h with h;, and lel v¥ and of
denote the 0-borders on p; in A,(H). The superscript L indicates that vF=(p,e.), for
e, the segment in A,(H) to the left of p;; the superscript R indicates the symmetric
situation to the right. Consult Fig. 2.2 for an illustration.

At each point in time, a 0-border v in A,(H) is in one of three states. Let ¢ denote
the 1-border in A(H) such that the cone of v in A,(H) is the intersection of h and
the cone of e in A(H). The cone of v in A,(H) is a horizontal ray within h with
endpoint v; the cone of e in A(H) is a halfplane with e on its boundary. Thus e must
contain v for the intersection of h and the cone of e to be the cone of v. Define the
state of v as follows:

v is alive or live if e is active.
v is dead if there are two lines h; and h; in H —{ho} such that the intersection

of h; and h; is between hy and h, e is contamed in h; or h; and the cone of e

contains the wedge between h; and h; that lies entirely above h (Note that death

is irreversible.)
Otherwise, v is sleeping.

Intuitively, v is sleeping when it traverses a “dead sector” of A(H) and Stlll has
the chance to leave it and become alive. In Fig. 2.2, vy and o7 are alive, vy o5, 0%,
vR and vl are dead, and vy is sleeping. In the argument below, we watch the states
of 0-borders changing from live to dead which allows us to infer results on the number
of active 1-borders in A(H). During the sweep of h, the states of the 0-borders in

F1G. 2.2. The bottom-up sweep.
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Ay (H) change only when two points p; and p; switch. The following rules can be
observed:

R1. All 2n 0-borders are alive in the beginning of the sweep.

R2. At least two O-borders are alive when h has passed all vertices of A(H).

Let now h pass the mtersectlon of h; and h; such that p; is to the left of p; before
they switch. The states of v; and v; after the sw1tch depend only on the:r states before
the switch, and similarly for v® and u_, . As the rules for the states of v and v, are
strictly symmetric, we consider only those for v- and v;'. The rules observed in each
of five cases follow immediately from the definitions of the states “alive,” “sleeping,”
and “dead.” Table 2.2 indicates the possible states before and after the switch.

TABLE 2.2
Before After
Rule oF vk T uf
R3 alive alive dead alive
R4 dead alive dead sleeping
RS alive sleeping dead alive
R6 dead sleeping dead sleeping
dead dead dead dead
R7 sleeping sleeping dead sleeping

The two cases where v} is alive or sleeping and v}' is dead have not been enumerated
as they cannot occur. Consult Fig. 2.3 for an illustration of rules R3-R7. Living 0-borders

are indicated by solid lines, sleeping 0-borders by dashed lines, and dead 0-borders
by dotted lines.

FiG. 2.3. lustration of rules R3-R7.

These rules are exploited for deriving an upper bound on the number of active

-1-borders in A(H) that are not contained in h,. To this end, four counters are used:

ACT, to designate the current number of active 1-borders in A(H) that are entirely
below h and not contained in hy, and A, S, and D, to designate the current number
of 0-borders in A,(H) that are alive, sleeping, and dead, respectively. Initially, ACT =0,
A=2n, §=0, and D=0 by R1; ultimately, A=2 by R2. Application of the rules
R3-R7 causes the following changes to ACT, A, S, and D:

R3: ACT=ACT+2, A=A-1,S=S8, D=D+1.
R4: ACT=ACT+1, A=A-1,S5=S+1, D=D.
RS: ACT=ACT+1, A=A, S=S-1, D=D+1.
R6: ACT=ACT, A=A, S=S, D=D.

R7: ACT=ACT, A=A, S=S-1,D=D+1.

The transitions flow only from alive to dead (R3) or sleeping (R4), and from sleeping
to dead (R5 and R7). Both the alive > dead and the alive - sleeping - dead paths give
rise to at most two active 1-borders in A(H). Since A= 2n initially, 4n active borders
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could be generated. But A=2 after the complete sweep, and each of the remaining
live 0-borders is contained in an unbounded active 1-border of A(H). Therefore, 4n —2
is an upper bound on the number of active 1-borders in A(H) that are not contained
in hy. This shows that (4n—2)+(n+1)=5n—1 is an upper bound on Si(n). The
arrangement shown in Fig. 2.1 actually realizes equality for n = 4 and can be generalized
to arbitrary n in an obvious way. This shows Si(n)=5n-1.

To establish S3(n)=S3(n)—2, observe that deg, (r) = deg, (r) for each bounded
region r in A(H), and that deg, (r) =deg, (r)+1 for each unbounded region r in
A(H). At least two of the active regions are unbounded, so S3(n)= S7(n)—2. In fact,
the arrangement (shown in Fig. 2.1) that realizes S;(n) has exactly two unbounded
active regions, which implies Sg(n)= Si(n)—2=5n~—3. This completes the proof.

We recently learned that Theorem 2.7 was independently discovered by Chazelle,
Guibas, and Lee [CGL]. The proof given in [CGL] is considerably simpler than ours;
however, it does not seem to generalize to three and higher dimensions. In fact, the
motivation for presenting the proof given above (out of a number of possible proofs)
is its generalizability. :

It is worth mentioning that the assertion of Theorem 2.7 also holds for families
of pseudo-lines. (A pseudo-line is an unbounded and connected curve in E” such that
any two in a given arrangement intersect in exactly one point and cross there.) Consult
Grinbaum [G2] for an account of this natural generalization of lines. The proof of

“Theorem 2.7 for arrangements of pseudo-lines is the same as that for lines except that
the sweep is performed with a pseudo-line.

Next, the analogue of Theorem 2.7 in d =3 dimensions will be established. The
essential idea in the proof is the same as in the proof of Theorem 2.7: the halfspace
above h, is swept by a hyperplane h parallel to hy. The switches of pairs of points are
now replaced by switches of d-tuples of (d —2)-flats in h, that is, the (d —1)-dimensional
bounded simplex defined by d (d —2)-flats collapses and reappears in mirrored shape.
Consult Fig. 2.4, which depicts a switch when h is a plane.

FIG. 2.4. Switch in E*.

THEOREM 2.8. S¢(n)=0(n?™"), ford=3 and 0=k=d-1.

Proof. Let H ={hy,- - -, h,} denote a set of n+1 nonvertical hyperplanes in E*
such that h, coincides with the hyperplane spanned by the first d —1 coordinate axes
and such that A(H) is simple. The intersection of A(H —{ho}) and h, is isomorphic
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to a simple arrangement of n hyperplanes in E“~". There are 6(n™") k-faces (0= k=
d —1) in this arrangement (see Lemma 2.5) and these k-faces bound d-faces of A(H)
that are active with respect to ho. Thus, Si(n)=6(n?"), for 0=k=d -1, which
establishes the asymptotic lower bound of the assertion.

For a proof of the upper bound, we perform an upwards sweep with a hyperplane
h parallel to ho, that is, h sweeps in the direction of the x,-axis. Initially, h = hy, and
at each point in time, h intersects A(H) in a (d —1)-dimensional arrangement A,(H).
We define a relation R between the faces of A(H ) suchthat (g, g')in R, for (k+1)-faces
gand g'and 0=k=d -1, if

(1) there is a (k+1)-flat p (defined by d —k—1 hyperplanes in H) that contains
g and g,

(1) g and g’ share a bounding 0-face, and

(iii) there is no hyperplane parallel to h, that intersects both g and g'.

We call two faces g and g’ equivalent if they are in the same equivalence class induced
by the transitive closure of R. So all 1-faces of a 1-flat are equivalent, and h intersects
exactly one face of each equivalence class unless it contains a 0-face of A(H). The
notion of ‘‘equivalence” can be extended to borders of A(H) such that two (k+
1)-borders ¢ and ¢’ are equivalent if

(i) the two (k+1)-faces g and g’ that contain ¢ and ¢’ are equivalent, and

(i1) the cones of ¢ and ¢’ are the same.

Let now b and b’ be two k-borders in A,(H), for 0= k=d -2, at different points in
time. Let ¢ and ¢’ be the (k+1)-borders in A(H) such that the cone of b (and &) is
the intersection of h and the cone of ¢ (and ¢'). We identify b and b’ if ¢ and ¢’ are
equivalent. Consult Fig. 2.4 for an illustration of this identification of borders which
is natural when the sweep of h is considered as a process in time.

At each point in time, a k-border b (0=k=d-2) in A,(H) is in one of three
states. Let ¢ denote the (k+1)-border in A(H) such that the cone of b (in A,(H)) is
the intersection of h and the cone of ¢ (in A(H). Then the state of b is defined as follows:

b is alive if c is active.

b is dead if there are d hyperplanes in H —{h,} such that their common 0-face
lies between h, and h, ¢ is contained in the intersection of d —k—1 of these
hyperplanes, and the cone of ¢ contains the unique sector defined by the d hyper-
planes that lies above h,. (Death is thus irreversible.)

Otherwise, b is sleeping.

During the sweep of h, the states of the k-borders in A,(H) change only when d

- (d-2)-flats in A,(H) switch (see Fig. 2.4 for a switch of three lines (1-flats) in E?).
The rules for the changes of the states that are observed can be related and reduced
to the rules described in the proof of Theorem 2.7: All ®(n?") k-borders in A,(H),
for 0= k=d -2, are alive in the beginning of the sweep. Let now h pass the common
0-face v of d hyperplanes h;,, - - -, hyy in H (see Fig. 2.4). There are certain k-borders
in A,(H), for 0=k=d —2, that collapse into v as h comes closer to v. We call such
a k-border collapsing. A collapsing i-border B is paired with a collapsing (d —i—2)-
border b, for 0=i=d -2, if the following holds:

(i) there is no hyperplane in H that contains B and b (before they collapse), and

(ii) there is a proper halfspace in h that contains the cone of B and the cone of b.
In the arrangement shown in Fig. 2.4, the following 0-borders and 1-borders are paired:
(A, ay), (As, a5), (By, by), (Bs, by), (C,, ¢;), and (C;, ¢,). Note that there are collapsing
i-borders in A,(H) that are not paired. However, each (collapsing) i-border, for
0=i=d -2, of the collapsing (d —1)-simplex s in A,(H) is paired with a (d —i—2)-
border whose cone does not contain s. Let f be a (d —1)-face in A,(H) that shares
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a bounding i-face with s, with i maximal and 0=i=d —2. Then the i-border b of f
contained in that common i-face is paired with some (d —i~2)-border B of s. Paired
borders play the same role in this proof as vFand u}' have done in the proof of Theorem
2.7. Let B and b be two paired borders such that the cone of B contains s and the
cone of b contains f (before s collapses). After the collapse, B becomes a border of
£, and b becomes a border of s. Hence, b dies in any case, and the new state of B
depends on the old states of B and b. The changes of the states of B and b follow
exactly the rules R3-R7 (see Table 2.2 and Fig. 2.3). For instance, if b was alive before
the collapse then B stays or becomes alive as it belongs now to a (d —1)-face (in
A,(H)) that is the intersection of h and an active d-face in A(H). If b was not alive
before the collapse, then it cannot change the state of B unless B is alive in which
case B falls asleep.

Let us now exploit this property for deriving an upper bound on the number of
active k-borders in A(H), for 0=k =d — 1. Note first that an active k-border is created
during the sweep of h (that is, the upper end of the k-face that contains the active
k-border is passed by h) only when a switch occurs in A,(H) such that some of the
collapsing borders are alive. Furthermore, each collapse creates at most a constant
number of active k-borders.

Let g be the d-face in A(H) such that the collapsing (d —1)-complex s in An(H)
is the intersection of g and h. We distinguish two cases: First assume that g is not
active. Then there is another (d —1)-face f in A,(H) with the following properties:

(i) Let g’ be the d-face in A(H) such that f=g'( h. Then g'is active and f shares
a bounding i-face, (i maximal and 0=i=d-2) with s.

(ii) There is a (living) i-border b of f contained in that i-face that is paired with

a (nonliving) (d —i—2)-border of s.
By rule R3 or RS, b dies. However, this implies that this case can occur only O(n
times as each occurrence increases the number of dead borders in A,(H) by at least
one. Second, assume that g is active. As h is passing the topmost point of g (since s
is collapsing) and there are only O(n“™") active d-faces in A(H), this case can also
occur only O(n?™") times. This completes the proof.

In order to keep the proof of Theorem 2.8 short, we have refrained from deriving
more accurate than only asymptotic upper bounds. Nevertheless, we conjecture that
the applied proof technique is well suited for calculating more accurate bounds as
well. It is worthwhile to note here that Theorem 2.8 also holds for arrangements of
pseudo-hyperplanes appropriately defined (see e.g. [GP2]). In this more general setting,
the proof of Theorem 2.8 can be adapted by performing a sweep with a pseudo-
hyperplane.

There is an interesting consequence of Theorems 2.7 and 2.8:

CoROLLARY 2.9. Let H be a set of n hyperplanes in E“ let f be a d-face in A(H),
and let degy (f) denote the number of k-faces (0= k= d —1) bounding f. Then the sum
of the products deg,_, (f) deg (f), for all d-faces f in A(H), is in o(n?).

Proof. The sum of S§(H, h), for all h in H, is in O(n?) by Theorems 2.7 and 2.8.
Turning A(H) upside-down and repeating the evaluation of Si(H, h) gives again
O(n?). But now, each k-face in A(H) has been counted degy_; (f) times for each
d-face f that is bounded by the k-face.

3. Constructing arrangements, This section describes algorithms for constructing
arrangements in Euclidean spaces. For expository reasons, the algorithm working in
E?is presented first and the general algorithm later. The next subsection presents the
overall structure of the algorithm and the data structure used for representing arrange-
ments.

d*])
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3.1. The overall structure. The construction of an arrangement proceeds incre-
mentally, that is, the arrangement is built by adding hyperplanes one at a time to an
already existing arrangement. The order in which the hyperplanes are added is
irrelevant. To avoid tedious special cases that occur for sets of hyperplanes whose
normal-vectors do not span E“, we start with a carefully chosen subcollection of the
given set.

Let H denote a set of n hyperplanes hy, - - - , h, in E“ and define H,={h,, - - -, b},
for 1=i=n D(H) denotes the data structure to be described that represents the
arrangement A(H). We assume that the normal-vectors of the hyperplanes in H span
E“ Otherwise, each hyperplane is intersected with the k-dimensional subspace of E¢
(with k <d) spanned by the normal-vectors, and the resulting k-dimensional arrange-
ment, which captures the essential information of the d-dimensional arrangement, is
constructed. We will see that this preprocessing phase only requires O(n) time if d is

considered a constant. Now, the overall structure of the algorithm can be described
as follows:

Without loss of generality, assume the normal-vectors of hy, - - -, hy span E°
Construct D(H,).

For i running from d +1 to n, construct D(H,) from D(H,_,) by insertion of h,
Finally, D(H)= D(H,).

Some comments are in order to clarify the preprocessing phase that computes the
space spanned by the normal-vectors of the hyperplanes. It is readily seen that this
action can be performed in O(n) time by successively testing whether the normal-vector
of the current hyperplane is contained in the subspace spanned so far. Let k denote
the dimension of the spanned subspace. Then this strategy can also be used to identify
k hyperplanes whose normal-vectors span the subspace. Without loss of generality let
this subspace be spanned by the last k coordinate axes. Then each hyperplane is
replaced by its intersection with this subspace and the arrangement of the resulting
hyperplanes in k dimensions is constructed. The method for constructing D(H,) (or
D(H,)) is demonstrated in the next subsection.

3.2. The representation of arrangements. For storing an arrangement A(H), we
basically use the incidence lattice of A(H) defined for polytopes in Gruenbaum [G1].
By convention, A(H) is called a (d +1)-face and the empty set is called a (—1)-face
of A(H). Also A(H) is said to be incident with all its d-faces, and the empty set is
said to be incident with all 0-faces. The incidence lattice of A(H) represents each
k-face by a node, for —-1=k=d+1, and contains connections between nodes of
incident faces. Where convenient in the subsequent discussion, no distinction will be

made between a node and its corresponding face. See Fig. 3.1 for an arrangement of
two lines in E* and its incidence lattice.

F1G. 3.1. Arrangement and incidence lattice.
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A point p(f) in f is also associated with each k-face f, for 0=k=d If fis a
0-face, then p(f) =f. To be precise, we use the following definition for p(f):

(1) If f is an unbounded 1-face then p(f) is the unique point of f with distance
1 from the only incident vertex.

(2) If f is a bounded 1-face or f is a k-face with k =2, then p(f) = (X, p(f))/m,

for fi, - - -, fn the subfaces of f.
In addition, each (d —1)-face is associated with its supporting hyperplane. The data
structure D(H) is thus the incidence lattice of A(H) augmented with some auxiliary
information as described. Without confusion, we will use A(H) and D(H) interchange-
ably. The auxiliary information used above is not the only choice: it could easily be
replaced by equivalent information, such as lists of supporting hyperplanes. The
preferred structure depends on the particular application for which the arrangement
is being used, and indeed we will further augment the structure when discussing specific
problems in § 4.

Before proceeding to the algorithms for building D(H ), we discuss the construction
of D(H,) as required in the initial step of the algorithm. We make use of the special
structure of D(H,), which results from the assumption that the normal-vectors of H, ‘
span E“ Recall that C,.(H) denotes the number of k-faces in A(H), for 0=k=d. By
definition C_,(H;)=C4(Hy)=1.

LEmMa 3.1. Cu(Hy)=2%(}), for 0sk=d.

The assertion follows from the duality of A(H,) and the d-dimensional cube in
conjunction with Theorem 4.4.2 in [G1]. By “duality” we mean that the incidence
lattices of A(H,) and the cube are isomorphic. The assertion can also be verified
directly from the observation that the subarrangement of A(H,) in one of the hyper-
planes is isomorphic to an arrangement defined by d —1 hyperplanes in E“~" whose
normal-vectors span E“~'. Both facts can be exploited to find the connections to be
established between the nodes, thus determining the incidence lattice of A(Hy). The
following gives a simple and constructive description of the incidence lattice of A(Hy ).
We will use the intersection words of the faces as defined in § 2.2.

A(Hjy) is a simple arrangement, so for each word w in {0, +, —}* there is a face
f with w(f)=w. If there are d —k 0’s in w then f is a k-face. For a proof of this
observe that there are exactly 2"(5) words of length d which contain d —k 0’s. But
Lemma 3.1 tells us that there are also exactly that many k-faces in A(H,).

Thus, the incidence lattice of A(H,) can be set up by creating a node for each
word in {0, +, —}%. In addition, two nodes representing A(H,) and the empty set are
created. Figure 3.2 shows the incidence lattice of A(H,) with the intersection word of
each node marked.

F1G. 3.2. Incidence lattice of A(H,).
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Two nodes are connected if their words differ in only one letter, which is 0 in one
word. In addition, all d-faces are connected to the (d +1)-face and the O-face is
connected to the (—1)-face. It is easy to then augment D(H,) with the necessary
auxiliary information.

3.3. Constructing arrangements of lines. This section describes an algorithm that
inserts a line h into an arrangement A(H) of a set H of n lines in E. The assumptions
on HU{h} are that no line is vertical and that A(H U {h}) is simple. The strategy for
inserting h into A(H) is presented on a rather intuitive level. The full details, including
the handling of degenerate cases, can be derived from the general strategy presented
in § 3.4. The main purpose of this section is to provide intuition for the explanations
in §3.4.

The insertion of h into A(H) is accomplished in three steps:

Step 1. An edge of A(H) that intersects h is identified.

Step 2. All edges and regions that intersect h are marked red.

Step 3. The marked edges and regions are updated and the new vertices and edges
contained in h are integrated.

The three steps are now explained in more detail.

Step 1. To identify an edge e, that intersects h, the edges on an arbitrary line of
H are visited and tested. The process starts at an arbitrary edge e and proceeds edge
by edge closer to h until e, is reached.

Step 2. Starting with e, all edges and regions that intersect h are marked and
remembered in separate storage. To initialize the process, e, is marked red and
remembered. In addition, the incident regions of e, are also marked red, remembered,
and put into an empty queue Q. While Q is not empty, the first region r is deleted
from Q, and its incident white edges are tested for intersection with h. Those that
intersect h are marked red and remembered. Also, if they have an incident region that
is not yet marked red then it is marked red and put into Q to await its computation.

Step 3. This step concentrates on splitting each red edge and each red region into
two, establishing their new incidences, and integrating the new vertices and edges
contained in h into the data structure.

Each red edge e is replaced by two new red edges e, and e, representing the parts
of e above and below h. Next, the incidences of e, and e, are established in the
appropriate way. That is: (1) Both are connected to the incident regions of e, and (2)
e, () is connected to the vertex of e above (below) h. In addition, a blue node v is
created that represents e h and is thus connected to e,, e,, and the (—1)-face. See
Fig. 3.3, where the red nodes are shaded and the blue node cross-hatched.

F1G. 3.3. Updating a red edge e.
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Additional adjustment of incidences is carried out when the red regions are
updated. Instead of discussing the update of a red region (which is similar to that of
a red edge), we refer to Fig. 3.4, which depicts the actions to be taken in order to split

ared region r. Finally, all marked vertices, edges, and regions are unmarked by coloring
them white.

F1G. 3.4. Updating a red region r.

We only mention that O(n) time suffices to insert h into A(H); see also Lemma
3.2. Thus, O(n?) time suffices to set up the arrangement for n lines in E”; see also
Theorem 3.3.

3.4. Constructing arrangements in d dimensions. In this section, the insertion of a
hyperplane in E“ into an arrangement A(H) of a set H of n hyperplanes is discussed.
It is assumed that the normal-vectors of the hyperplanes in H span E* as discussed
in § 3.1. No restriction on the position of the hyperplanes is assumed except for the
exclusion of multiple hyperplanes and of vertical hyperplanes; in particular, the
arrangement is not assumed to be simple.

The algorithm that inserts h into A(H) proceeds in three steps:

Step 1. A 1-face in A(H) is identified whose closure intersects h.

Step 2. All faces in A(H) whose closures intersect & are marked black, red, or grey.

Step 3. The marked faces are updated and the new faces contained in h are
integrated.

The remainder of this section describes in detail the actions taken in each step
and finally gives an analysis of the time and space requirements.

We apply the following strategy to determine a 1-face e, of A(H) whose closure
intersects h:

Step 1.1. Let w be an arbitrary 0-face and e an incident 1-face not parallel to h.
If the closure of e intersects h, then e is the 1-face e, required. Otherwise, set v to w
if e has only one incident 0-face, and set v to the incident 0-face nearer to h if there
are two.

Step 1.2, Let ¢’ (distinct from e) denote the superface of v collinear with e. If the
closure of e’ intersects h then e’ is the 1-face e,. Otherwise, let v’ be the subface of e’
distinct from v. Step 1.2 is now repeated with e and v replaced with e’ and v".

Starting with the 1-face e,, all k-faces in A(H), for 0= k=d, whose closures
intersect h are marked and remembered in queue Q. In addition to the queues
Qo, - * +, Qu we use a queue Q to store temporarily those 2-faces that are awaiting
examination.

Step 2.1. The 1-face e, is marked red if it intersects h, and grey, otherwise. (Note
that due to the method of choosing e, €, is not contained in h.) In addition, e, is put
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into Q,. If e, is red then all incident 2-faces are marked red and put into Q and Q,
(Table 2.1, third row and column). If e, is grey then its incident 0-face contained in h
is marked black and put into Q,. The incident 2-faces are marked grey, for the moment,
and put into Q and Q, (Table 2.1, second row and column).

Step 2.2. While Q is not empty, the first 2-face r is deleted from Q. All incident
white 1-faces e are tested for intersection with A.

Case 2.2.1. If e is contained in h, then e is marked black and put into Q,.
The white subfaces of e are marked black and put into Q,. The white superfaces
of e are marked grey, for the moment, and put into Q and Q, (Table 2.1, fourth
row and column).

Case 2.2.2. If e intersects h but is not contained in h, then e is marked red
and put into Q,. All white superfaces are marked red and put into Q and Q,
(Table 2.1, third row and column).

Case 2.2.3. If e does not intersect h but its closure does then e is marked
grey and put into Q,. The white subface contained in h (if it exists) is marked
black and put into Q,. The white superfaces are marked grey, for the moment,
and put into Q and Q, (Table 2.1, second row and column).

Case 2.2.4. No action is taken if the closure of e does not intersect h (Table
2.1, first column).

Step 2.3. All grey 2-faces in Q; that have either a red subface or grey subfaces
above and below & are marked red (Lemma 2.3(iii)). All grey 2-faces which have at
least two black subfaces are marked black (Lemma 2.3(i1)).

Step 2.4. For k running from 3 to d and for all faces f in Q,_,, the following
actions are taken for the white superfaces of f-

Case 2.4.1. If f is red then they are marked red (Table 2.1, third row).

Case 2.4.2. If f is black, then they are marked black if they have at least two
black subfaces, and grey otherwise (Lemma 2.3(ii)).

Case 2.4.3. If fis grey, then they are marked red if they have also red subfaces
or grey subfaces above and below h, and grey otherwise (Lemma 2.3(iii)).

In any of the three cases, the examined superfaces of f are put into Q.

In Step 2, the nodes which are relevant for structural changes in D(H) have been
colored appropriately and stored in queues Qo, - - -, Q,. Step 3 performs these changes
by replacing each red node by two new ones, establishing their incidences, and
integrating the blue faces of A(H U {h}). The steps for updating the auxiliary informa-
tion in the incidence lattice are not discussed in detail. The only action that is not
completely trivial is to provide a blue and unbounded 1-face e with p(e). For this
action note that e is contained in a red 2-face r in A(H) that has at least two subfaces
e, and e,. The intersection of h with the two 1-flats through p(e,) and p(e,), and 2p(e;)
and 2p(e,), gives two points on the 1-flat that contains e. p(e) is easily derived from
these two points.

Step 3.1. For k running from 1 to d and for each red face f in Q, the following
actions are taken;

Step 3.1.1. In D(S) and in Q,, f is replaced by two new red faces f, and f,
representing the parts above and below h (Lemma 2.4(i)). f, is called an above-node
and f; is called a below-node (see Fig. 3.5).

Step 3.1.2. Each superface of f is connected to both f, and Jv as in Fig. 3.5.

Step 3.1.3. Each white or grey subface of f is tested for lying above or below
h. (It is convenient to use the auxiliary information for this test.) In the former
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case, it is connected to f,, in the latter case to f,. Each red subfacial above-node
is connected to f,, and each red subfacial below-node is connected to f, (Lemma
2.4(ii)); again see Fig. 3.5.

Step 3.1.4. A new blue node f” is created and put into Q,_,. f" represents the
new (k—1)-face fM h, and thus, " is connected to f, and f, (Lemma 2.4(ii.3)).
In addition, it is connected to the blue subfaces of the red subfaces of f and to
the black subfaces of the grey subfaces of f (Lemma 2.4(iii)); see Fig. 3.5. (If f'
is a O-face, then it is connected to the (—1)-face.)
Step 3.2.- Finally, Qq, -, Q4 are emptied and all black, red, grey, and blue

nodes are unmarked by coloring them white.

F1G. 3.5. Updating a red face f.

This completes the description of the algorithm. It is worthwhile to note that the
same algorithm can also be used to construct cell complexes defined by a set of
pseudo-hyperplanes. In this case, however, assumptions on the computability of inter-
sections of the pseudo-hyperplanes must be made. We now turn to the analysis of the
time requirements.

LEMMA 3.2. Let H be a set of n hyperplanes in E and h be a hyperplane not in H.
Then the above algorithm constructs D(H U {h}) in O(n®"") time from D(H).

Proof. 1t is trivial to implement Step 1 such that the time needed is proportional
to the sum of deg (v), for all 0-faces v examined. This sum is in O(n?"') by Lemma 2.6.

A tedious look at Steps 2 and 3 reveals that the time required is proportional to
the number of incidences of all faces in A(H U {h}) whose closures intersect h. Let
inc be such an incidence between a k-face g and a (k—1)-face f, for some k with
0= k=d. Observe that the closure of g intersects h whereas the closure of f may not
(Table 2.1, first row). Assume first that g is contained in h, that is, g and f are contained
in h. As hN A(H) is an arrangement in d —1 dimensions, there are at most o(n‘™)
incidences of this kind according to Lemma 2.5. Now assume that g is not contained
in h and without loss of generality that g is above h. We will show that there are at
most O(n?™") incidences of this kind.

For counting purposes, inc is attributed to the unique k-flat p that contains g.
Define H,={h™: h*=h'(p, for h’ in H such that h’ does not contain p} and define
h,=hNp. Then the faces in p whose closures intersect h are exactly the faces in
A(H, U{h,}) that are active with respect to h,. Thus, the number of incidences attributed
to p is at most S§_,(n) = O(n*"") by Theorems 2.7 and 2.8. However, there are at most
(4" = 0(n?™) k-flats defined by H, which implies that there are at most O(n®™")
incidences attributed to all k-flats in A(H). Summing up for k running from 0 to d
gives again O(n®™"), which completes the argument.

As shown in the beginning of § 3, the strategy to set up A(H) for a set H of n
hyperplanes in E? is to successively insert the hyperplanes. Thus, we state the main
result of this section, which follows directly from Lemma 3.2 and Lemma 2.5.
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THEOREM 3.3. Let H be a set of n hyperplanes in E*, for d =2. Then the outlined
algorithm constructs A(H) in O(n?) time, and this is optimal,

4. Applications. The problem of constructing an arrangement of hyperplanes is
an underlying task for several applications, five of which are demonstrated in this
section. The algorithm introduced in § 3 leads to optimal methods for computing
A-matrices and Voronoi diagrams. It also leads to methods for halfspatial range
estimation, degeneracy testing, and finding minimum measure simplices that are faster
than those previously known.

It turns out that the first three applications are closely related to the concept of
“levels” in arrangements. It is for this reason that we introduce what we call the
“ranked representation” of an arrangement, which is essentially the incidence lattice
augmented with some additional information stored in the nodes.

Let H be a set of n nonvertical hyperplanes in E“ and let f be an arbitrary k-face
in A(H). The ranks a(f), o(f), and b(f) of f denote the number of hyperplanes strictly
above f, containing f, and strictly below f. Clearly, a(f)+o(f)+b(f)=n, o(f)=d -k,
fork=d-1,d and o(f)=d -k, for 0= k=d —2. D(S) augmented with the ranks of
its faces is called the ranked representation of A(H). In what now follows, an algorithm
is outlined that computes the ranks of each k-face, for 0= k = d. The algorithm proceeds
in three steps and uses a queue Q.

Step 1. The d-face f,,, that has no hyperplane above it is identified. This can be
done by testing, for each d-face f, whether there is an incident (d —1)-face whose
supporting hyperplane is above p(f).

Step 2. For each d-face f, the numbers a(f), o(f), and b(f) are computed as
follows:

Step 2.1. a(fiop) = 0(fiop) =0 and b( fiop) = n. fiop is marked and put into Q.

Step 2.2. If Q is not empty, then the first d-face f is removed from Q and
the following actions are taken for each subface f* of f: Let g denote the
superface of f* different from f Unless g is already marked, the ranks of g
are computed as follows: If f is above and g is below the hyperplane that
supports f*, then a(g)=a(f)+1, o(g)=0, and b(g)=b(f)—1. Otherwise,
a(g)=a(f)—1,0(g)=0,and b(g)=b(f)+1. Finally, g is putinto Q and Step
2.2 is repeated.

Step 3. For k running from d —1 to 0 and for each k-face f, the numbers a(f),
o(f), and b(f) are calculated as follows: a(f)=min{a(g): g superface of f}, and
b(f)=min {b(g): g superface of f}. Finally, o(f)=n—a(f)—b(f). '

It is readily seen that this algorithm requires constant time per incidence, which
implies that it is in O(n?) by Lemma 2.5.

4.1. The A-matrix. Goodman and Pollack [GP4] introduced the A-matrix of a
finite set of points as a generalization of sorting to arbitrary dimensions. Among the
applications, they suggest it can be used as a tool in pattern recognition, as it character-
izes the set with respect to convexity properties.

Let (py,+ "+, Pas1) denote a sequence of d+1 points in E? for d =2, with
Pi=(pi1,* " ", Ppia), for 1=i=d+1. The sequence is said to have positive orientation
((1,++-,d+1)>0)ifdet (p,;)>0, where p; gy =1,for 1= j=d+1.(1,---,d+1)=
0 and (1,---,d+1)<0 are analogously defined. As noted in [GP4], (1,2,3)>0 if
(p1, P2, P3) is oriented counterclockwise, (1, 2, 3) = 0 if the points lie on a common line,
and (1, 2, 3) <0 if the sequence is oriented clockwise. Let now S={p,, - - -, p,} denote
a set of n points in E% Then A(i,, - -, iy) denotes the number of points p; in S such
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that (i), ', 1sJ)>0. The A-matrix A(S) of S is the d-dimensional matrix with
A(dy, + -+, iy) as the element with indices iy, - - -, iy provided the points with indices
i,**+, iy determine a unique hyperplane containing them. Otherwise, the element is
not defined. For d =2, the A-matrix is a two-dimensional array with entry (i, j) filled
with the number of points that fall to the left of the directed line from p; to p;. Figure
4.1 shows a set of points in E? and the corresponding A-matrix. (The undefined elements
are denoted w.) For d =3, the A-matrix is a three-dimensional array with entry (i, j, k)
filled with the number of points that fall to the “positive” side of the plane determined
by p;, p;, and p;.

w 1 o 3 2
@r
.p3 2 w 3 (o] 1
Als) = 3 0 w 2 1
®Ps o 3 1 w 2
.94 [ 120) i 2 2 1 w

F1G. 4.1. Point-set and A-matrix.

Let H = T(S) using the geometric transform T defined in § 2.1. Furthermore, let
h;=T(p;), for 1 =i=n. By Observation 2.2, the points with indices i,," - -, iy define
a unique hyperplane if and only if the intersection of the hyperplanes in H with the
same indices is a 0-face v of A(H). In addition, A(iy, - -, iy) = a(v) if the positive
side defined by the points is above T '(v), and A(iy, - - -, iz) = b(v), otherwise. These
explanations suggest that A(S) be computed as follows:

Step 1. Construct the ranked representation of A(H).

Step 2. Associate with each 0-face in A(H) the list of hyperplanes in H which
contain it.

Step 3. Derive the elements of A(S) from the ranks of the vertices of A(H).

By now, the details of this strategy should be obvious. Due to Theorem 3.3 and the
fact that A(S) consists of n? elements, we conclude:

THEOREM 4.1. Let S denote a set of n points in E°, for d 2. Then there exists an
algorithm which computes A(S) in O(n®) time, which is optimal.

This is an improvement over the O(n? log n) time algorithm presented in [GP4].

4.2. Halfspatial range estimation. Let S denote a set of n points in E* and let h
denote a nonvertical plane. Let a(h) denote the number of points strictly above h. The
halfspatial range search problem requires that S be stored in a data structure such that
for any nonvertical plane h, a(h) can be computed easily. This problem is a generaliz-
ation of the halfplanar range search problem as considered, e.g., in Willard [W] and
Edelsbrunner and Welzl [EW4]. Since there seems to be no solution for the problem
(as well as for the one in E?) that is efficient in both time and space, we consider the
following simpler halfspatial range estimation problem: S is to be stored such that it is
easy to decide for a plane h whether a(h) < [n/2], or a(h)= [n/2]. The solution to
be described below is a generalization of a data structure in Edelsbrunner and Welzl
[EW2].

By Observation 2.1, a point p in S is above h if and only if T(h) is below T(p).
Let the K-level of A(H) (with H = T(S)) be the collection of regions (2-faces) r in

D
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A(H), with a(r)=K =1 together with the bounding edges and vertices. Clearly,
a(h)< K if and only if T(h) is above or contained in the K-level of A(H). This
suggests that the K-level Ly, for K = [n/2], be used as the basis for our data structure.

Note that Ly intersects each vertical line exactly once and that the projection Lk
of the edges and vertices of Lx onto the x,x,-plane gives a planar subdivision defined
by straight line edges. Let m denote the number of edges in L. Then there exists a
data structure that requires O(m) space and O(m) time for construction from Lk such
that O(log m) time suffices to determine a region of L whose closure includes a query
point (see Kirkpatrick [K] or Edelsbrunner, Guibas, and Stolfi [EGS]). Thus, to
determine whether or not T(h) is above Ly, we locate projection T(h)' of T(h) in L
and then test whether or not T(h) is above the region of Lk that belongs to the located
region. This implies:

THEOREM 4.2. Let S denote a set of n points in E*> and m the number of edges of
Ly, for K =[n/2]. Then there exists a data structure that requires O(m) space such that
O(log n) time suffices to answer a halfspatial range estimation query. O(n’) time and
space is needed to construct the data structure.

Unfortunately, no upper bound better than O(n’) is currently known for m. We
refer to Erdds, Lovasz, Simmons, and Straus [ELSS] and Edelsbrunner and Welzl
[EW21], who derived independently nontrivial bounds for the corresponding quantity
in E-.

Clearly, the notion of a “level” and thus the above method can be generalized
beyond three dimensions. Using all K-levels for 1= K = n, and binary elimination to
determine the one immediately below a query point, yields a solution for the halfspatial
range search problem. The complexities are Q(n’) space and O(log” n) time which
matches the best but more general structure by Chazelle [C].

4.3. Order-K Voronoi diagrams. Voronoi diagrams have received a great deal of
attention in such diverse areas as geography, archeology, crystallography, physics,
mathematics, and computer science. Let S denote a set of n points in E for d = 2.
Then V(p)={x in E%: d(x, p)<d(x, q), for q in S —{p}} is called the Voronoi polyhe-
dron of p in S. The cell complex consisting of the Voronoi polyhedra and the bounding
lower dimensional polyhedra is called the order-1 Voronoi diagram 1-VOD (S) of S.
Shamos and Hoey [SH] were the first to describe an optimal algorithm for constructing
1-VOD (S) if S is in E® They also introduced “higher-order” Voronoi diagrams:
V(§8)={xin E?: d(x, p)<d(x,q), for pin S’ and g in S—S'} is called the Voronoi
polyhedron of S'. Let K be aninteger with 1 = K = n— 1. Then the cell complex consisting
of the Voronoi polyhedra (plus lower dimensional bounding polyhedra) for the subsets
S’ of S with cardinality K is called the order-K Voronoi diagram K-VOS (S) of S.

For simplicity, we restrict our attention to E?; generalizations to three and higher
dimensions are straightforward. In a separate paper, [ES], a transformation P is
described that relates Voronoi diagrams in E* with arrangements of planes in E>. Each
point p=(p,,p,) in S is transformed into the plane P(p) that is tangent to the
paraboloid x; = x2+ x3 and touches it in the point (p,, ps, pi+ p3). Let Lx denote the
K-level of A(H) (with H = P(S)) as defined in § 4.2). The vertical projection of the
intersection of Lx with L., (thatis, all 1-faces e with a(e) = K — 1 and their endpoints)
yield K-VOD (S). The generalization of these considerations implies:

THEOREM 4.3. Let S denote a set of n points in E° Then O(n“*") time suffices to
construct all order-K Voronoi diagrams for S, for 1= K=n-1.

In E?, K-VOD (S) can be exploited to determine the K closest points to a query
point x in O(log n+ K) time. To this end, a region of K-VOD (S) is determined whose
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closure includes x. The region r in K-VOD (S) found uniquely determines the K
closest points which can, e.g., be stored with r. Thus, the data structures in [K] or
[EGS] (this issue, pp. 317-340) yield the result.

Unfortunately, storing the lists of closest points with each region r in each
K-VOD (S), for 1=K =n—1, increases the space required to O(n*). If the explicit
neighbor lists are required, then O(n*) is optimal for constructing all higher-order
Voronoi diagrams, as Dehne claimed [D]. However, the lists can be encoded into the
diagrams as follows:

Let r denote a region in K-VOD (S), for some K =1. Then r is equipped with a
pointer into an arbitrary region ' in (K —1)-VOD (S) such that the list of K -1
closest points of r' is contained in the list of r. (0-VOD (S) is defined to be E? and
has an empty list of closest points associated.) The pointer from r to r' is labelled
with the one point in the list of r that is missing in the one of r'.

This strategy reduces the space required to O(n?"'

O(log n+K).

) and retains the query time of

4.4. Degeneracy testing. A set S of n=d +1 points in E? is said to be in general
position if any subset of d+1 points is affinely independent, that is, there is no
hyperplane that contains d +1 points of S. Recently, van Leeuwen [vL] posed the
question whether O(n”log n) time is the best possible time bound for an algorithm
that decides whether or not n points in E” are in general position. Theorem 3.3 implies
that the answer is negative:

THEOREM 4.4. Let S denote a set of n points in E°. Then there is an algorithm that
decides in O(n?) time and O(n®) space whether or not S is in general position.

Proof. S is in general position if and only if no d+1 hyperplanes in H (with
H =T(S)) intersect in a common point or are normal to a common hyperplane.
Construct all two-dimensional subarrangements and determine whether or not any one
contains d 1-flats intersecting in a common point or normal to a common 1-flat. There
are O(n“"?) such subarrangements, and each requires O(n?) time and space to con-
struct.

4.5. Minimum measure simplices. For simplicity, we confine the discussion in this
section to E2 and thus to minimum area triangles. Generalizations to higher dimensions
are straightforward. Let S denote a set of n points in E 2. Any three points p;, p;, px of
S define a triangle TR (i, j, k) with area m(i, j, k). Then MAT (S8) = TR (i, jo, ko) such
that m (i, jo, ko) assumes the minimum is called a minimum area triangle of S. We can
restrict our attention to S in general position. Otherwise, there are three points on a
line that define a triangle with area zero. However, this case can be checked in O(n?)
time by Theorem 4.4.

The problem of finding a minimum area triangle was first considered by Dobkin
and Munro [DM] who gave an O(n’log’n) time and space algorithm. Later,
Edelsbrunner and Welzl [EW2] improved their result to O(n’log n) time and O(n)
space. Both approaches are based on:

Observation 4.5. Let MAT (S) =TR (i, j, k). Then py is the closest point among
S-{p, p;} to the line through p; and p;

The line through p; and p; corresponds to the intersection of T(p;) and T(p;) by
Observation 2.1. Furthermore, py corresponds to the line T(p,) immediately above or
below (vertically) the intersection. (As two parallel lines have no intersection, S is
assumed to contain no two points on a vertical line. Otherwise, S is assumed to contain
no two points on a vertical line. Otherwise, S is rotated by an appropriate angle, which
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takes O(n”) time.) The following strategy for computing MAT (S) is suggested by
these observations:

Step 1. Construct A(H), with H = T(S).

Step 2. For each region r in A(H) and for each vertex v = T(p) N T(p;) on the
boundary of r the following actions are taken: Determine each line T( p,) that contains
an edge of r and calculate the area m(i,j, k), provided k is different from i and J.

Record the triple (i, j, k) if m(i,j, k) is less than the area of the smallest triangle
determined so far.

Obviously, for each vertex v = T(p,) N T(p;) in A(H), the line T( p) immediately
above or below v is among the lines tested for ». Not counting the requirements for
Step 1, the amount of time required for each region r in A(H) is proportional to the
product of deg, (r) and deg, (r). The sum of these products, over all regions rin A(H),
is in O(n?) by Corollary 2.9. Observing that the algorithm given above as well as all
results used in this section generalize to three and higher dimensions, we conclude:

THEOREM 4.6. Let S denote a set of n= d +1 points in E%, d = 2. Then the minimum
measure simplex determined by d + 1 points in S can be found in O(n®) time and space.

This result, and the presented algorithm, were independently discovered for d =2
by Chazelle, Guibas, and Lee [CGL].

5. Discussion. We have presented an optimal method for constructing cell com-
plexes defined by hyperplanes in E€ basing our algorithm on a new combinatorial
result (Theorems 2.7 and 2.8). The result also holds for arrangements of pseudo-
hyperplanes. In fact, the algorithm applies to the problem of constructing such more
general arrangements, provided that the pseudo-hyperplanes are, in some sense, com-
putationally simple.

Bieri and Nef [BN] described the only existing algorithm known to the authors
which computes the faces of an arrangement in E% The disadvantage of their algorithm
is that it requires more time than ours and does not explicitly establish the incidences
between the faces. The significance of the presented optimal method is that there is a
host of applications leading to new and faster solutions for problems thought to be
unrelated in the past. The five applications shown in § 4 are:

(1) An optimal algorithm for computing A-matrices for finite sets of points in
Euclidean spaces, improving the best result known to date [GP4].

(2) A new data structure and algorithm for halfspatial range estimation for which
no sophisticated solution was yet known.

(3) An optimal algorithm for constructing all higher-order Voronoi diagrams. This
improves the result of Dehne [D] in E? and appears to be the first algorithm known
for higher dimensions.

(4) A faster algorithm for testing for degeneracies in a set of points, providing
an improvement of existing algorithms and a partial answer to question P20 of [vL].

(5) A faster algorithm for computing minimum measure simplices defined by a
set of points. This improves the results of [DM] and [EW2] in E? and appears to be
the first nontrivial result beyond d = 2.

The algorithm also immediately leads to an upper bound on the number of
arrangements. For n hyperplanes in E the algorithm takes O(n?) binary decisions
and so can construct only 201" combinatorially different arrangements. This is also
an upper bound for the number of different combinatorial types since the algorithm

is not restricted to any subclass of arrangements. This improves the upper bound given
in [GP4].
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Several open problems are suggested by the results in this paper. Three of the
most important ones are as follows:

(1) Let H be aset of n planes in E* and let | L (H)| denote the number of regions
of the K-level Lx (H) of A(H). We define by (n) =max {|Lx (H)|: H a set of n planes
in E*}. The authors can show by (n) =Q(nk log k), but no nontrivial upper bound is
currently available. It is likely that the methods in [ELSS] or [EW1] can be extended
in some nontrivial way to obtain an upper bound.

(2) Is Q(n?) a lower bound for deciding whether or not a set of n points in E*
is in general position? Due to its simple appearance, this computational problem seems
to be well suited for a lower bound analysis. Also, there are several problems to which
degeneracy testing in E” can be reduced. Examples are the minimum area triangle
problem of §4.5, and several geometric problems posed in [LP], [EOW], and
[EMPRWW].

(3) There are some geometric problems for which O(n? log n) time solutions are
known that might be amenable to applications of Theorem 3.3 to reduce the time to
O(n®). An example is the “shadow problem” of Lee and Preparata [LP]:

Let S denote a set of n line segments in E2. Compute a direction (if it exists)
such that each line parallel to the direction intersects at most one line segment.
If light shines parallel to this direction, none of the shadows overlap.
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