J. Symbolic Computation (1986) 2, 171-178

Computing a Ham-sandwich Cut
in Two Dimensions

H. EDELSBRUNNERY} AND R. WAUPOTITSCH}

+ Department of Computer Science, University of Illinois at Urbana-Champaign,
1304 West Springfield Avenue, Urbana, Ilinois 61801, U.S.A.

1 Institutes for Information Processing, Technical University of Graz,
Schiesstattgasse 4a, A-8010, Graz, Austria

(Received 25 September 1985)

Let B be a set of n, black points and W a set of n,, white points in the Euclidean plane. A line k
is said to bisect B (or W) if, at most, half of the points of B (or W) lie on any one side of k. A ~
line that bisects both B and W is called a ham-sandwich cut of B and W, We give an algorithm
that computes a ham-sandwich cut of B and W in O((n,+n,) log (min {n,, n,} +1)) time. The
algorithm is considerably simpler than the previous most efficient one which takes
O((n,+n,) log (n,+n,)) time.

1. Introduction

Let B be a set of n, black points and W a set of n,, white points in the Euclidean plane E2.
A line h is called a bisector of B(W) if at most half of the points of B(W) lie on any one
side of h; points on h are counted on neither side. If n, is odd, then any bisector of B
contains at least one point of B. If h bisects both B and W, then h is called a ham-sandwich
cut of B and W. It is not too hard to prove the existence of a ham-sandwich cut for any
two finite sets in E2.

The case where B and W can be separated by a line was treated several times in the
literature of computational geometry (Willard, 1982; Edelsbrunner & Welzl, 1986; Cole
et al., 1984) before Megiddo (1985) presented an optimal algorithm which runs in
O(ny+n,) time. For the non-separated case, Cole (1984) described a general method
which implies an O((n, +n,) log (n,+n,,)) algorithm—it might be hard to implement it,
however, to say the least. Applications of these algorithms to other problems can be
found in Atallah (1983) and Dobkin & Edelsbrunner (1984).

In this paper, we present a generalisation of Megiddo’s algorithm to the case of non-
separated point-sets. To allow a more intuitive presentation of the ideas, we treat the
problem in its dual setting

For any point p = (p,, p,), we let D(p): y = p,x—p, be its dual line and vice
versa, that is, D(D(p)) = p.

Write H, = {hlh = D(p) and p in B} and H, = {h|h = D(p) and p in W}. Forh:y=ax+ba
non-vertical line and p = (p,, p,) a point, we say that p is above, on, or below h if p, is
greater than, equal to, or less than ap,+b, respectively. The transform D preserves
incidences as well as order relations:

0747-7171/86 /020171 + 08 $03.00/0 © 1986 Academic Press Inc. (London) Lid.

172 H. Edelsbrunner and R. Waupotitsch

OBSERVATION 1.1. Let p be a point and h a non-vertical line in E2. Then p is above, on, or
below h if and only if point D(h) is above, on, or below line D(p), respectively.

If a non-vertical line h bisects point-set B (or W), then point D(h) lies above at most
half of the lines in H,(H,) and below at most half of the lines in H,(H,). If we restrict
ourselves to sets B and W with odd numbers of points, then the dual points of bisecting
lines define piecewise linear and continuous functions from x to y. The problem of finding
a ham-sandwich cut thus boils down to finding a point of intersection of the function for
H, and the function for H,.

The organisation of this paper is as follows: Section 2 explains how we can avoid
boring and tedious special cases like collinear points, etc., in our investigations as well as
in the implementation. Sections 3 and 4 give the details of the algorithm that finds a ham-
sandwich cut in time

O((n, +n,) log (min {n,, n,,} +1)).

2. Getting Rid of Degenerate Cases

To simplify the presentation, sections 3 and 4 will assume that the points in B and W,
respectively the lines in H, and H,, are in general position, that is

(i) no three points in § = Bu W are collinear (so no three lines in H = H, U H,
intersect in a common point);

(1) no two points in S lie on a common vertical line (so no two lines in H are parallel);
and

(iii) no two lines connecting respective two points of S are parallel or intersect on a
vertical line through a point of S (so any two pairs of lines from H neither intersect
on a common vertical line nor on a line parallel to another line in H).

If degeneracies as described occur, then we make use of a method called the simulation
of simplicity (Edelsbrunner, 1986), that resolves the degeneracies according to the
following rules which make essential use of indices 1 to n (with n = n, +n,,) assigned to the
n points or lines:

For H = {hy, ..., h,} let h; be given by y = a;x+b,. For any positive real number ¢, we
define

afe) = ai+£22!s bie) = bs"'ﬁzn-ls hie):y = af(e)x+bye),
and
H(e) = {h(e)ll <i<n}.

Straightforward calculations imply that the lines in H(g) are in general position, provided
¢ is sufficiently small, and that lines in H(e) behave like the corresponding lines in H in all
non-degenerate cases. In particular, a ham-sandwich cut h computed for the perturbed
dual points corresponds to a ham-sandwich cut i’ for B and W: if line h contains point
D(h,(¢)), then point D(h;) belongs to k' and if D(h,(g)) is above (below) h, then D(h,) is not
below (above) '. The perturbation is never computed but only used conceptually, that is,
all decisions about the relative positions are based on the lines in H(e), for >0 but
sufficiently small.

Ham-sandwich Cut in Two Dimensions 173

To put the simulation of simplicity into use, we demonstrate how we can deal with lines
in H(e) without ever specifying & or even calculating exponents of &. We do this by
discussing procedures for three primitive operations needed in the algorithm outlined in
sections 3 and 4:

(1) given three different indices i, j, k from {1, ..., n}, decide whether lines h,(¢) and
h;(e) intersect above or below line h,(e);

(2) given four different indices i,j, k,! between 1 and n, decide whether the
x-coordinate of h(e)nhye) is smaller or greater than the one of h(¢) nh,(e), and

(3) given five indices i,j, k, I, m, with i,j, k, | pairwise distinct, decide whether the
distance of hfe)nhfe) from h,(e) is greater or smaller than the distance of

hi(e) " hy(e) from h,,(¢) (where the distance is taken positive above h,,(g) and negative
below h,(¢)).

We discuss the first primitive in detail and sketch the other two. W.l.o.g. assume that
«i(€) < aye), that is, a; < g; or a;=g; and i > j. Then hy(e) N hj(e) lies above (below) h(e) if

and only if
afe) bfe) 1
A, = det |:aj(e) bi(e) 1:|
ale) bile) 1

is positive (negative). To determine the sign of A,, we assume i<j<k; otherwise,
exchange rows and remember the number of exchanges. Consequently, A, can be
expressed in terms of the coefficients of h;, k;, and h, as below

a b 1 i
Ay=det|qg b 1 gt det|: i 1] +
ay bk 1 S

! ; - . g
+62%" det b &2 et | ¥ +
bk 1 ay 1

+£;z.‘+22;-1+”” 1)

The terms in (1) are ordered such that the exponents of ¢ increase from left to right.
Consequently, A; > 0 if and only if there is a positive integer m such that the first m—1
coefficients of the e-terms vanish and the mth coefficient (including its sign) is positive.
Since the fifth coefficient equals one, we can restrict m to 1 <m<5. In other words, a
decision can be found by evaluating one three-by-three determinant and at most three
two-by-two determinants of the form above. It seems worthwhile to note that already the
first or second two-by-two determinant does not vanish if k;, h; and h, are assumed to be
pairwise distinct.
The second primitive can be decided by computing the sign of

afe)—age) ble)—bye)]
a(e)—a(e) bi(e)—Dby(e)

that is, the x-coordinate of h(e) Nhy(e) is less (greater) than the one of hy(e) N hy(e) if and
only if A, <0 (A, > 0), for & small enough. The computation can, again, be based solely

on the coefficients of lines h;, h;, h;, and h; and on indices i, j, k, and I.
i

Al o dt‘t|:

174 H. Edelsbrunner and R. Waupotitsch

For the third primitive, we may compute the sign of

{ afe) bfe) 1
Ay erg—rll ’ 7 i
a(e) —aye) « lijig) big’) ! :l

1 ae) be) 1
. bye) 1
) —afe) 3:% b,,ffg) 1

that is, hy(e) N hy(e) lies above (below) the line parallel to h,(e) through hy(g) " hy(e) if and
only if A; >0 (A; <0), for ¢ small enough.

3. Testing Against a Line

This section examines two variants of the key subproblem occurring in the main
algorithm outlined in the section to follow. First, we will take some care to specify tl
subproblem and then show how to solve it algorithmically.

Let G, and G, be non-empty sets of m, and m, lines in general position in E2, and let
ky and k, be integers such that 1 <k, <m, and 1 <k, <m,. For a point p in E2, we let
a,(p), o(p), and b(p) denote the number of lines in G, such that p is below, on, and above,
respectively, for i = 1, 2. We define the k-level L, (G)) of G, as the set of points p in E?
with a(p) <k;—1 and b(p) < m;—k;; it follows that o,(p) is either 1 or 2. Figure 1 shows
the three levels of two sets of respectively 5 lines in E2.

The procedure discussed in this section accepts as input G,, G,, k,, k,, a possibly
unbounded open convex polygon P with non-empty interior given by a sorted list of non-
redundant halfplanes, and a line t called the test-line. The requirements on this input are

(1) Either P is unbounded to the left or there is a vertical edge bounding P at its left;
the same holds for the right-hand side of P.

(2) If P is bounded by a vertical edge to the left (right), then L, (G,) intersects this
edge; otherwise PN L, (G,) is unbounded to the left (right). :
(3) PnL, (G,) is connected.

(4) P contains an odd number of intersections between Ly (G,) and L, (G,) in its
interior (so at least one), but no intersection on its boundary.

Fig. 1. Two 3-levels which intersect in three points.

Ham-sandwich Cut in Two Dimensions 175

Fig. 2. Convex polygon, two levels, test line.

Figure 2 shows a valid input situation.

In addition to the above input, we pass a boolean variable above which is true if the
leftmost point of L, (G,) in P lies above L,,(G,), and false, otherwise. (If above = true,
then by condition (4), the rightmost point of L, (G,) in P is below L,,(G,).)

We are asked to decide whether ¢ contains an intersection of L, (G,) and L, (G,) in P
and, if not, which one of the open halfplanes bounded by ¢ contains an odd number of
such intersections. We consider the somewhat easier case when ¢ is vertical first.

If t does not intersect P, then the side of ¢ that contains P also contains the desired odd
number of intersections, and we are finished. Otherwise, let the lines in G; intersect ¢ in
points g; ., for 1 <m<m; and i=1, 2. Then the k-level of G; intersects t in point g; with
ki-largest y-coordinate among these points. Using the classic algorithm for finding the
k-largest of an unsorted set of numbers (see, e.g. Aho et al., 1974), we can decide in
O(m, +m,) time whether

() L,,(G,) and L,,(G,) intersect on ¢;
(1) L, (G,) intersects t above L,,(G,); or
(i) Ly,(G,) intersects t below L,,(G,).

In the first case we are finished. In case (ii), the open halfplane to the left of t contains an
odd number of intersections if above = false; the same is true in case (iii) if above = true.
Otherwise, the open halfplane to the right of ¢ is the desired one.

Assume now that ¢ is non-vertical which is more difficult than the vertical case since ¢
might intersect L, (G,) as well as L,,(G,) an arbitrary number of times. To solve the
problem, we consider the intersections g, ,, 1 <m<m, of ¢ with the m, lines of G, (we
assume that no line of G, is parallel to t which can be guaranteed if ¢ gets assigned an
index not between 1 and n, see section 2). Using the algorithm for vertical lines, we can
decide in O(m, +m,) time whether an odd number of intersections of L,,(G,) and L,,(G,)
in P lie to the left or to the right of the vertical line through some q, ,,. (If the vertical line
contains an intersection we are finished.) Building on this possibility, we perform binary
search in the sorted sequence of the points g, ,, to find an index j (0 <j<m,) such that
L, (G,) and L, (G,) intersect an odd number of times in P between the vertical lines
through ¢, ; and ¢, ;4 (if q,,; or g, ;,, do not exist, then the natural dummy point at
infinity can be substituted). In O((m, +m,) log (m, + 1)) time, index j can be found which
decides the problem since L, (G;) exists either only above or only below ¢ in the
computed interval.

176 H. Edelsbrunner and R. Waupotitsch

4. The Prune-and-Search Strategy

The basic idea for the algorithm below is the same as in (Megiddo, 1985): in one step of
the algorithm the region searched is decreased in a way that allows us to eliminate a
constant proportion of the lines regarded. In contrast to the algorithm in (Megiddo,
1985), however, we carefully keep track of what the current region exactly is. We detail
this approach under the assumption that the lines in H = H, U H, are in general position,
that n; < n, for n; = card H,, and that n, and n, are odd (if n, is even, then we delete an
arbitrary line from H,, i = 1, 2).

The input to a general step of the algorithm consists of

(i) sets G, and G, of m, and m, lines;
(ii) integers k, and k, with 1 <k, <m;, fori=1,2; and
(iii) a possibly unbounded open convex polygon P.

Initially, G, = H;, m; = n;, k;= (n;+1)/2, for i=1, 2, and P = E2. The algorithm takes cai
that the input maintains the following properties which are trivially true for the initial
values of G;, m;, k;, and P.

Invariance property 4.1: L, (G)nP=L,(H)nP, with r,=(n;+1)/2, for i=1, 2, the
interior of P contains an odd number of intersections of L,,(G,) and L,,(G,), L, (G)nP
is connected, and either P is unbounded to the left (right), in which case L. (G)nPis
also, or P is bounded to the left (right) by a vertical edge, in which case L, (G,) intersects
this edge. (See also section 3.)

Several actions are taken to decrease P as well as G = G, UG,:

Step 1: Determine line g* in G with median slope, that is, its slope is the | m/2 |-smallest
among all m = m; +m, lines in G. Let G,.(G_) denote the set of at least as
steep (less steep) lines in G.

Step 2: Match each line in G_ with an arbitrary but unique line in G, ; this leaves one
line of G, unmatched if m is odd. Let M be the resulting set of | m/2 | matched
pairs of lines, or, for our purposes, of intersection points.

Step 3: Determine a vertical line v* that bisects M. Using the methods of section 3, we
decide whether v* contains an intersection of L,,(G,) and L;,(G,) in P (in this
case we are finished), or find the open halfplane v bounded by v* that contains
an odd number of intersections between L, (G,) and L, (G,) in P.

Step 4: Determine a line w* parallel to g* which bisects the set of points in M outside
of v. Again, decide whether w* contains an intersection of L,,(G,) and L, (G,)
in P (then we are finished) or determine the open halfplane w bounded by w*
that contains an odd number of these intersection points contained in v (this
also yields two restricting halfplanes w' and w” bounded by vertical lines) (see
section 3).

Step 5: Define P'=Pnvnwnw nw”, and let G} contain all lines of G, that intersect
vawnw nw’,fori = 1,2. If w* bounds w from below, then define k; = k;, and
define k; = k;—|G| + |G}, otherwise, for i=1, 2.

Unless |G| +|G5| =2, Steps 1 to 5 are repeated for sets G, G5, integers k,, 5, and for
polygon P'. Note that Step 5 guarantees the maintenance of Invariance property 4.1. So if
|G| +|G%| = 2, then each one of G} and G}, contain a line and these two lines intersect in a
desired point. To analyse the performance of the algorithm, we show

Ham-sandwich Cut in Two Dimensions 177

LemMMA 4.2. During the execution of Steps 1 to 5 for m lines, the algorithm either stops or at
least (m— 1)/8 lines are eliminated.

Proor. We assume that no condition occurs that lets the algorithm stop. If Steps 1 to §
are executed for m lines, then set M formed in Step 2 contains |m/2]| points. At least a
quarter of M, so at least | m/2 |/4 points, lie outside of v and outside of w. By construction
of M, one line of two which define a point outside of v and w does not intersect v w.
Therefore at least | m/2 /4 lines are eliminated. [

Lemma 4.2. together with the results of section 3 yield the main result of this paper:

THEOREM 4.3. Let B be a set of n, and W a set of n,, points in E?. There is an algorithm that
finds a ham-sandwich cut of B and W in

O((ny +n,,) log (min {n,, n,} +1))
ne.

Proor. If Steps 1 to 5 are executed for m = m, +m, lines, then all actions except for those
in Step 4 can be carried out in O(m) time. By the results of section 3, Step 4 takes

O(m log (min {n,, n,,} +1))

time. Since m decreases geometrically (see Lemma 4.2 and note that (7m+1)/8 < 8m/9
unless m < 9) the total algorithm takes time

0 (f (8/9):(m, +n,,) log (min {n,, n,)} + 1))
=0
which is in

O((ny+n,) log (min {n,, n,} +1))
as asserted.

5. Discussion

This paper demonstrates an algorithm that computes a ham-sandwich cut of two sets of
n, and n,, points in E? in

O((ny+n,) log (min {n,, n,} +1))

time. Beside the theoretical result (it is a slight improvement over the O(n log n) algorithm
of Cole (1984), for n=n,+n,) it is sufficiently simple to allow a reasonable
implementation. Section 2 discusses some methods that simplify the implementation of
the algorithm.

The authors tried for a linear algorithm but apparently did not succeed. This leaves the
open problem of whether or not a linear algorithm exists.

References

Aho, A. V., Hopcroft, J. E. & Ullman, J. D. (1974). The Design and Analysis of Computer Algorithms. Reading:
Addison-Wesley. .

Atallah, M. J. (1983). A matching problem in the plane. J. Comp. Syst. Sci. (in press).

Cole, R. (1984). Slowing down sorting networks to obtain faster sorting algorithms. Proc. 25th Ann. IEEE
Symp. Found. Comp. Sci., 225-260.

178 H. Edelsbrunner and R. Waupotitsch

Cole, R., Sharir, M. & Yap, C. (1984). On k-hulls and related problems. Proc. 16th Ann. ACM Symp. Theory

Comput., 154-166.

Dobkin, D. P. & Edelsbrunner, H. (1984). Space searching for intersecting objects. Proc. 25th Ann. IEEE Symp.
Found. Comp. Sci., 387-392.

Edelsbrunner, H. (1986). Edge-skeletons in arrangements with applications. Algorithmica 1, 93-109.

Edelsbrunner, H. & Welzl, E. (1983). Halfplanar range search in linear space and 0(n®®°%) query time. Inf. Proc.
Lett. (to appear).

Megiddo, N. (1985). Partitioning with two lines in the plane. J. Algorithms 6, 430-433.

Willard, D. E. (1982). Polygon retrieval. SIAM J. Comp. 11, 149-165.

