Information Processing Letters 24 (1987) 413-417
North-Holland

6 April 1987

ZOOMING BY REPEATED RANGE DETECTION

Herbert EDELSBRUNNER

Department of Computer Science, University of Illinois, 1304 West Springfield Avenue, Urbana, IL 61801, U.S.A.

Mark H. OVERMARS

Department of Computer Science, University of Utrecht, P.O. Box 80.012, 3508 TA Utrecht, The Netherlands

Communicated by T. Lengauer
Received 14 May 1986

In a number of recent papers, techniques from computational geometry (the field of algorithm design that deals with objects
in multi-dimensional space) have been applied to some problems in the area of computer graphics. In this way, efficient
solutions were obtained for the windowing problem that asks for those line segments in a planar set that lie in given window
(range) and the moving problem that asks for the first line segment that comes into the window when moving the window in
some direction. In this paper we show that also the zooming problem, which asks for the first line segment that comes into the
window when we enlarge it, can be solved efficiently. This is done by repeatedly performing range queries with ranges of
varying sizes. The obtained structure is dynamic and yields a query time of O(log?n) and an insertion and deletion time of
O(log?n), where n is the number of line segments in the set. The amount of storage required is O(n log n). It is also shown that
the technique of repeated range search can be used to solve several other problems efficiently.

Keywords: Windowing, moving, zooming, line segments, range searching, nearest neighbour searching

1. Introduction

Several recent papers [2,5,6,7] consider prob-
lems in computational geometry related to prob-
lems in computer graphics. These problems in-
clude the ones given in the following list.

(i) The windowing problem asks for those ele-
ments in a set of nonintersecting line segments in
the plane which lie in a given rectangle with edges
parallel to the axes (called a window or a range).
It is a variant of the well-known range searching
problem but in the windowing problem the objects
are nonintersecting line segments rather than
points.

(ii) The moving problem asks for the first line
segment in a set that becomes (partially) visible in
the window when the window moves parallel to
one of the coordinate axes.

(iii) The zooming problem asks for the first line
segment that becomes visible when the window is

enlarged in a certain way (see Section 3 for a more
precise definition of the problem).

For both the windowing problem and the mov-
ing problem, efficient solutions are given in [2]. In
the static case (i.e., the set of line segments is
fixed), both problems were solved within a query
time of O(k +logn), a preprocessing time of
O(n log n) using O(n log n) storage, where n is the
number of line segments in the set and k the
number of segments that are visible in the window
or become visible in the window at the same
moment, respectively. In the dynamic case, both
problems can be solved within a query time of
O(k + log®n), an update time of O(log?n), and a
preprocessing time of O(n log n) using O(n log n)
storage (see [5]). Unfortunately, the zooming prob-
lem was only partially solved.

In this paper we present an efficient dynamic
solution to the zooming problem. This solution is
based on a technique which finds the smallest

0020-0190,/87/$3.50 © 1987, Elsevier Science Publishers B.V. (North-Holland) 413

Volume 24, Number 6

window that contains a new visible line segment
by repeatedly performing windowing queries with
windows of varying sizes. We show how to choose
the window sizes such that the process halts after
a small number of iterations. This results in a data
structure with a query time of O(log?n), an inser-
tion and deletion time of O(log’n) using O(n log n)
storage. The technique of solving one searching
problem by repeatedly solving another searching
problem might be useful for a number of other
problems as well. For example, in Section 4 we
show how the technique can be used to solve some
variants of the nearest neighbour searching prob-
lem efficiently in a dynamic fashion.

2. Preliminary results

In this section we recall some known results
that will be used later on.

2.1. Theorem. Given a set of n points in the plane
there exists a structure which allows us to determine
in O(log n) time whether a given range is empty,
contains one point or coniains more than one point.
The structure uses O(nlogn) storage and has
O(log?n) insertion and deletion time bounds.

Proof. We use the structure described by Edels-
brunner [1], based on the priority search tree of
McCreight [3]. Using O(n log n) storage, the struc-
ture allows us to report the k points in a given
query range in O(k +log n) time. The O(log n)
bound follows if we stop the process after report-
ing the second point. O i

A second result we need is about the so-called
shooting problem: given a set of n nonintersecting
line segments, we ask for the line segment that is
hit first when we shoot from a given point p
horizontally to the right.

2.2. Theorem. Given a set of n nonintersecting line
segments in the plane, the shooting problem can be
answered in a query time of O(log®n). The structure
uses O(n log n) storage and has O(log®n) update
time bounds.

414

INFORMATION PROCESSING LETTERS

6 April 1987

Proof. Shooting is equivalent to moving an in-
finitely small window to the right. Hence, it can be
solved using the structure for moving described in
[5] that has the stated complexity. O

Clearly, the same result holds for shooting in
another, pre-chosen direction.

3. The zooming problem

This section gives a dynamic data structure
which solves the zooming problem, using the re-
sults described in the previous section. Let us first
give a more formal definition of the zooming
problem.

3.1. Definition. The zooming search problem asks
to store a set of nonintersecting but possibly
touching line segments in the plane in such a way
that, given a rectangle R with its sides parallel to
the coordinate axes, we can efficiently determine
the first structural change in the set of line seg-
ments that are (partially) visible in R, when the
rectangle is enlarged or reduced. A structural
change is one of the following cases.

(i) A line segment that was not visible be-
comes partially visible,

(ii) a partially visible line segment becomes
totally visible,

(iif) a line segment that intersects one boundary
of R starts intersecting another boundary,

(iv) a totally visible line segment becomes par-
tially visible,

(v) a partially visible line segment becomes
invisible.

Enlarging a rectangle means: leaving the center
at the same place and increasing the width and the
height by the same factor k > 1. Reducing a rect-
angle means: leaving the center at the same place
and reducing the width and the height by the same
factor k > 1.

We shall only consider the problem of enlarg-
ing the rectangle. The problem of reducing the
rectangle can easily be solved by ordering the line
segments visible inside the rectangle in the ap-
propriate way (see [2]) or by moving the boundaries

Volume 24, Number 6

of the window to the inside in which case it can be

solved using the methods for moving windows. |

When we enlarge the window, only the structural
changes (i), (ii), and (iii) can occur (see Fig. 1 for
examples). For the sake of clarity we assume that
no two endpoints of line segments lie on a com-
mon horizontal or vertical line. We shall also
assume that no two changes occur at the same
moment. In practice this is not true, but the
method can easily be adapted to report all changes
that occur at the same moment.

To solve the zooming problem, we divide it into
cight subproblems. We separately determine the
first change when we move the upper border up-
wards, the left border leftwards, the right border
rightwards and the bottom border downwards.
Next we determine the first change in each of the
corners. The answer to the zooming query is that
change of the eight changes found that occurs first
(see Fig. 2 for the eight subproblems.)

The first four subproblems can be solved by the
structures for moving the window upwards, left-
wards, rightwards, or downwards as described in
[5]. Hence, we can solve these subproblems in a
query time of O(log?n), an update time of O(log?n)
using O(n log n) storage.

We shall now show how to find the first change
in a corner. We shall only consider the top right
corner. The other corners can be treated in a
symmetrical way. We can reformulate the problem
as follows: given a point C (the corner) and a
direction d, determine the first point C’ in the
direction d from C such that the rectangle R with
C and C’ as corners (partially) contains a line
segment (see Fig. 3). We shall call this problem
the growing range problem.

INFORMATION PROCESSING LETTERS

6 April 1987

T’

Fig. 2.

We first restrict the set to contain only points
rather than line segments. So, we search for the
first point C such that the rectangle with C and
C’ as corners contains a point p of the set. Clearly,
this rectangle has point p on one of its edges.
Hence, either the x-coordinate of C’ or the y-coor-
dinate of C’ is equal to the x- or y-coordinate of a
point in the set. We split the problem in two
subproblems. First, we determine the first C; such
that the range contains at least one point and C,
has its x-coordinate equal to that of a point in the
set. Next, we determine the first C; such that the
range contains at least one point and C, has its
y-coordinate equal to that of a point. Clearly,
either C; or C, is the answer to the query. We
shall only show how to determine C, efficiently.
Cy can be computed analoguously.

We store the points in the set ordered by their
x-coordinates in the internal nodes of a balanced
binary search tree T. We also store them in a
structure S for solving the range detection prob-
lem (see Theorem 2.1). Let a be the root of tree T
containing point p, = (X, ¥,). The method is now
best described by the following recursive proce-
dure.

Procedure. Let C'=C.
(1) If o is a leaf and C'+ C, then C’ is the
answer. If C’ = C, there is no answer.

415

Volume 24, Number 6

(2) If ais not a leaf, then compare x , with x ¢, the
x-coordinate of C. Case 1: If x,<x(, con-
tinue the search in the right subtree, Case 2: If
X4 > X, determine point C, in direction d
from C with x-coordinate equal to x,. Perform
a query with the range between C and C, on S.
If the range contains no points, continue the
search in the right subtree. Otherwise, set C’
= C, and continue the search in the left sub-
tree.

In this way we perform at most O(log n) range
detection queries to determine C.. A similar pro-
cedure determiines C,.

3.2. Lemma. Given a set of n point in the plane, the
growing range problem can be solved in a query time
of O(log?n), an update time of O(log®n), using
O(n log n) storage.

Proof. To perform a query we perform O(log n)
range detection queries that take O(log n) time
each. Updating the structure S takes O(log’n)
time according to Theorem 2.1. Clearly, updating
and searching in T takes only O(log n) time. Also,
the amount of storage required follows from The-
orem2.1. O

We shall now solve the general problem, i.e., we
have a set of nonintersecting line segments, rather
than points. To this end, we first perform the
query described above on the set of endpoints of
the line segments. This results in an answer p,
where p is the endpoint of some segment s. Let R
be the range that contained p and no other end-
point. If s is not the right answer, then there must
be another segment s” with no endpoint in R that

416

INFORMATION PROCESSING LETTERS

6 April 1987

intersects R. All other possible answers s” must
intersect the boundary of R twice and, because
they do not intersect, appear ordered along this
boundary (see Fig. 4). Hence, the right answer is
either s or the first line segment we encounter
when we move from C along the boundary of R.
Finding the first segment that intersects the
boundary can be cone by using the structure for
shooting (Theorem 2.2). We shoot from C hori-
zontally along the boundary of R. When we hit a
line segment that is not s, we stop. (When we hit s
we continue shooting—see, e.g., Fig. 5.) When we
arrive at C, (see Fig. 4), we shoot vertically until
we either hit a segment that is not s, or we reach
C,. Similarly, we shoot from C upwards to C, and
next horizontally to C,. Determining whether s or
the found segment s’ is the right answer can be
done in O(1) time.

3.3. Lemma. The growing range problem in a set of
n nonintersecting line segments can be solved in a
query time of O(log®n), an update time of O(log’n)
using O(n log n) storage.

Proof. This lemma immediately follows from
Lemma 3.2 and Theorem 2.2. O

3.4. Theorem. There exists a structure for the zoo-
ming problem in a set of n nonintersecting line
segments with a query time of O(log”n), an update
time of O(log’n) using O(n log n) storage.

Proof. The zooming problem is solved by four
instances of the moving problem and four in-
stances of the growing range problem. The theo-
rem follows from Lemma 3.3 and the known
bounds for the moving problem. O

Volume 24, Number 6
4. Extensions

The results in this paper can be extended in
many ways. First of all, there is no need for the
window to grow in all directions with the same
speed. Hence, the method can also be used for
windows that grow in one or two directions. Sec-
ond, it is possible to reduce the detection time to
O(log n) by using some global rebuilding tech-
niques from [4]. Details are left to the reader.
Third, we do not have to restrict the set to contain
only line segments. The methods in [5] and, hence,
also our methods apply equally well to other types
of objects, like, e.g., circles, arcs, etc., as long as
they do not intersect.

The technique of repeated range detection has
some other interesting applications as well. As an
example, consider the nearest neighbour problem
in an L; or L, metric. In this case, finding the
nearest neighbour to a given point p can be solved
by growing a square around p until it contains a
point of the set. It is clear that our method for
growing a range can be used to solve this problem.
Hence, we obtain the following theorem.

4.1. Theorem. Given a set of n point in the plane,
there exists a structure such that L, and L, nearest
neighbour queries can be performed in O(log®n)

INFORMATION PROCESSING LETTERS

6 April 1987

time. The structure uses O(n log n) storage and has
O(log?n) update time bounds.

We believe that many other problems can be
solved as well by repeated range detection or
repeatedly performing some other type of query.

References

[1] H. Edelsbrunner, A note on dynamic range searching, Bull.
EATCS 15 (1981) 34-40.

[2] H. Edelsbrunner, M.H. Overmars and R. Seidel, Some
methods of computational geometry applied to computer
graphics, Comput. Vision, Graphics & Image Process. 28
(1984) 92-108.

[3] E.M. McCreight, Priority search trees, Tech. Rept. CSL-81-
5, XEROX Palo Alto Research Center, 1981.

[4] M.H. Overmars, The Design of Dynamic Data Structures,
Lecture Notes in Computer Science, Vol. 156 (Springer,
Berlin, 1983).

[5] M.H. Overmars, Range searching in a set of line segments,
Proc. Symp. on Computational Geometry (1985) 177-185.

[6] M.H. Overmars, Geometric data structures for computer
graphics, in: R.A. Earnshaw, ed., Fundamental Algorithms
for Computer Graphics, NATO ASI Series, F, Vol. 17
(Springer, Berlin, 1985) 919-931.

[7]1 J. Van Leeuwen, Graphics and computational geometry,
Les Mathématics de 1'Informatique, Colloq. AFCET, Paris
(1982) 159-165.

417

Bl < 3 i ' y ."

i T R il

: m-t: .fiw»w*mu iﬁrﬁ
_‘.

A i Ardin, T i 1“,-}
.l &1 ; p
Iul‘ 1k '1 '!fj' 3’-‘{'" . L -._
. rr.‘ﬂ ,:.. 1 ; '\ﬂl"l'JJ "'01
. Jd! b 1L '.Jph

_!'}"Jﬂ ",Pq

Y
w.'t;f :‘; Junﬁ‘ 'J'i-!

,'ﬂwimgi‘? Mk 'ts-+‘.l£ 4 ﬁ,:z?w"' '
i M r 1‘_.__“ it
“1!

e S Vi
m,'«-.ﬁl,-;

3 AN

