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An Improved Algorithm for Constructing
kth-Order Voronoi Diagrams

BERNARD CHAZELLE ano HERBERT EDELSBRUNNER

Abstract—The kth-order Voronoi diagram of a finite set of
sites in the Euclidean plane E? subdivides E? into maximal
regions such that all points within a given region have the same k
nearest sites. Two versions of an algorithm are developed for
constructing the kth-order Voronoi diagram of a set of n sites in
O(nlogn + k(n — k) log* n) time, O(k(n — k)) storage, and in
O(n? + k(n — k) log* n) time, O(n?) storage, respectively.

Index Terms—Arrangements of lines and planes, computa-
tional geometry, Euclidean and projective space, geometric
transforms, maintenance of convex hulls, Voronoi diagrams.

[. INTRODUCTION

ET § be a set of n points (called sifes) in the Euclidean
plane E*. For any subset S’ of S, the set of points

dom (8')={x € E?|d(x, s)<d(x, 1),
SES, tE S-5)

is called the Voronoi region of §’ . Inwitively, dom (S*) is the
set of points closer to all sites in S’ than to any site in S — S”.
For two sites s and ¢, define

h(s, )={x € E*d(x, s)<d(x, 1)};

h(s, 1) is the open half-plane bounded by the perpendicular
bisector of s and ¢ that contains s. With this definition, we have

dom (S)= () s, 1),

SESIES-§"

which implies that dom (S’) is an open convex polygon.
Obviously, dom ($’) N dom (S”) = Bif |S’| = |S”| and S’
# §”. In fact, for any value of k between 1 and n — 1 the
Voronoi regions of all subsets of cardinality k induce a
subdivision of E?, called the kth-order Voronoi diagram of S
which we denote as V,(S). No two regions of V.(S)
intersect, and the closures of all regions cover E?. The closure
of two regions intersect in a (possibly empty or degenerate)
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line segment. If this line segment is neither empty nor
degenerate, we call its relative interior an edge of V,(S). The
nonempty intersections of the closures of three or more
regions are the vertices of V(S). Fig. | shows the first- and
the second-order Voronoi diagrams of 11 sites. Note that not
every pair of points defines a region in the second-order
diagram.

Each vertex of V,(S) is equally distant from at least three
sites. Consequently, each vertex is incident to precisely three
edges, unless there are four sites that lie on a common circle
which we consider to be a degenerate case. In [13] it is shown
that the number of regions, edges, and vertices of V,(S) do
not exceed O(k(n — k)).

First-order Voronoi diagrams have appeared throughout the
scientific literature (see [6], [17], [1], [10], [2], [12], [15],
[16], [3]). In computer science, these diagrams were chris-
tened after Voronoi, a Russian mathematician who investi-
gated the geometry of numbers (see [17]). Algorithms for
constructing V,(S) in O(n log n) time and O(n) storage can be
found in [16], [15], [3], [11]. In [13] an algorithm for
computing V,(S) is presented; the method requires O (k2n log
n) time and O(k?n) storage. Another method that can also be
used to construct diagrams of a more general nature and that
takes O(k(n — k)\/n log n) time and O(n(n — k) storage is
reported in [7]. Finally, it is shown in [8] that O(n?) time and
storage suffice for computing all kth-order Voronoi diagrams
of §,fork = 1,2, -+, n — 1. A host of applications of
Voronoi diagrams can be found in [15].

The main result of this paper consists of two versions of a
new method for constructing V,(S): one requires O(n? log n
+ k(n - k) log? n) time and O(n(n - k)) storage, while
with additional O(n?) preprocessing and storage, the other
version speeds up the construction to O(n? + k(n — k) log?
n) time. Fig. 2 displays the requirements in time and storage
of the two algorithms and of the algorithms in [13] and [7]
using logarithmic scales. This display does not show differ-
ences by factors of log n. To distinguish the four algorithms,
we use label “‘L’’ for the algorithm in [13], label ““E’” for the
algorithm in [7], and labels *“CE1'" and ‘‘CE2’’ for the first
and the second algorithm to be presented in this paper. Of
course, one can combine the algorithms such that the time
needed is the minimum of the requirements of any of the
displayed methods.

The organization of this paper is as follows. Section II
discusses a geometric transformation that maps S to a set of
planes in three dimensions; Voronoi diagrams can be obtained
by vertical projection of certain ‘‘skeletons of edges’’ in the
three-dimensional arrangement defined by these planes. Sec-
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Fig. 2. The complexity of constructing kth-order Voronoi diagrams.

tion III puts this geometric background to use by describing a
new algorithm for constructing V,(S). Section IV exploits
extra storage for speeding up the construction of V.(S).
Finally, Section V discusses the contributions of the paper and
mentions some extensions of the methods described.

II. Tue GEOMETRIC BACKDROP

First, we introduce a geometric transform & to embed kth-
order Voronoi diagrams in three-dimensional Euclidean space
E3:

& maps a site s = (0, 0,) in E? to the plane &(s) given by
the relation x3 = 20X, + 2026, — (07 + o02).

Intuitively, &(s) is the plane tangent to the paraboloid U:x;
= x} + x] at the point obtained by projecting s onto U
vertically. Straightforward analytic calculations show the
following result.

Observation 2.1: Lets = (o0, ;) be asiteand p = (7, m2)
a point in E?; write 73y = 7} + 7land 735 = 20m, +
20om; — (07 + o3) for the x; coordinates of the vertical
projections of p onto U and &(s), respectively. Then d?( p, s)
= W3y — W35

To measure the distance between site s and point p we can
thus take the root of the vertical distance between the vertical
projections of p onto U and onto &(s). Now let S be a set of n
sites in E?; identify E? with the plane x; = 0 in E? and define
H = &(8), thatis, H = {h|h = &(s), s € S}. An immediate
consequence of Observation 2.1 gives an intuitively appealing
picture that will help us to understand kth-order Voronoi
diagrams.

Fora point p = (my, m) in E*let I, = (i, by, -, i) bea
sequence of indexes such that d(p, s;) < d(p, s;,) if | < m.

Then the vertical line L, through the point (,, 7, 0) does not
intersect plane &(s;) below plane &(s;,).

We develop this idea more formally. By construction, any
plane h € H is nonvertical, that is, h intersects the x; axis in
a unique point. Thus, A can be described by a relation of the
formx; = nx; + 7%y + n5. Plane A bounds two half-spaces,
namely

h* t X3>mx +92X+73 and A~ : X3< Xy +mXxs+1n3.

A point x is said to be above, on, or below plane hifx € h+,
X € h,orx € h-, respectively. We let a(x), o(x), and b(x)
denote the numbers of planes in A with point x below, on, and
above, respectively. Obviously, a(x) + o(x) + b(x) = n,
for any point x € E>.

The set of planes, H, defines a cell complex in E? called the
arrangement @ (F') of H whose faces are equivalence classes
of the following equivalence relation: two points x and y in E?
are equivalent if, for every plane h € H, h either contains
both x and y or the two points lie both above or both below 4.
Obviously, the functions a@, o0, and b are invariant over all
points of a single face which allows us to extend them to
faces of @(H) in the natural way. A face f is called a cell,
JSacet, edge, or vertex depending on whether it is three-, two-,
one-, or zero-dimensional. Obviously, we have o(f) = 0 for
each cell fand o(f) = 1 for each facet f. Furthermore, o(f)

= 2 for each edge f since a line that avoids U allows exactly
two planes that contain it and are tangent to U. It follows that
o(f) = 3 if and only if f is a vertex.

By Observation 2.1, we have the following relationship
between a set of sites in £? and the corresponding arrangement
of planes in E3.
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Fig. 3.

[llustration of the one-to-one-correspondence.

Observation 2.2: Let S be a set of n sites in E2, define H =
€(S), and let k£ be an integer number with | < k < n — 1.
There exists a one-to-one correspondence between

1) the regions in V(S ) and the cells ¢ in @ (H ) with a(c) =
k,
2) the edges in V,(S) and the edges e in G(H) with a(e) =
k - 1, and

3) the vertices in V,(S) and the vertices v in Q(H) with
a(v) =k - landa@) + o(v) = k + 1

such that f” is the vertical projection of f onto the plane x; =
0, where f” is a face of V,(S) and f is the corresponding face
of GQ(H).

Fig. 3 illustrates Observation 2.2 in one dimension lower: S
is a set of five sites in E' identified with the line x; = 0 in E2.
The transform & maps a site s = (o;) to the line tangent to the
paraboloid x, = x? at point (a,, 02). All cells ¢ with a(c) = 2
are shaded in Fig. 3.

The algorithms in Section III construct V,(S) by computing
the kth skeleton $,(H ) of H that consists of all points x € E?
with

a(x)=k-1and a(x)+o(x)=k+1.

Notice that 8, (H') consists only of edges and vertices of @ (H)
and that the vertical projection of 8,(H ) onto the plane x; = 0
yields exactly the edges and vertices, and thus also the regions,
of Ve(S) (see Observation 2.2). In order to reduce the
Jdimensionality of the problem from three to two, the parts of
S¢(H') in the various planes of H are computed separately.
Thus, to construct 8, () in pieces, the projective view of the
arrangement defined by the planes in A turns out to be more
convenient than the Euclidean interpretation.

The faces of the projective arrangement @*(H ) of H are
defined as the equivalence classes of the following equivalence
relation: points x and y in E? are equivalent if either

1) x is above, on, or below # if and only if y, is respectively
above, on, or below A, for all planes # € H, or

2) x is above, on, or below 4 if and only if y is, respectively
below, on, or above A, for all planes h € H.

With this definition, the projective kth skeleton
SFH)=8,(H) U 8,_((H)

of H is connected in the three-dimensional projective space.
The main difference between the projective and the Euclidean
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interpretation of the three-dimensional arrangement is that in
the projective interpretation opposite pairs of (in the Euclidean
sense) unbounded faces are thought of as one face. This
interpretation will turn out to be natural when we map the
arrangement into dual space.

For any plane 2 € H, we define

S¥(H, h)=8*(H) N A,
the & part of S ¥ (H), and
Q(H, h)=Q(H) N A,

the subarrangement of h. All edges in @ (H, k) are also edges
in @(H'), and an edge e in @(H, h) is contained in SHH) if
andonly ifa(e) = k — lora(e) = n — k — 1. Fig. 4 shows
the vertical projections of @(F, h) and S} (H ), for the set H
of planes corresponding to the 11 sites shown in Fig. 1; & =
&(9) in Fig. 4(a) and & = &(11) in Fig. 4(b).

The value a(p) of a point p in 4 can be expressed in terms
of the following distance function 8. Define & = §(s) and let s,
be the vertical projection of s onto /. For any point p € h, we
let 8( p) designate the number of linesin {/|/ = h N g, g € H
— {h}} that intersect the relatively open line segment with
endpoints p and s,. Function §( p) is invariant over all points
of an edge or facet in h; thus, & can be extended to faces in 4 in
the natural way. Notice that §(¢) = | or 5(e) = 8 holds for all
solid edges shown in Fig. 4; these edges indicate the edges of
S$3(H).

Lemma 2.3: Let H = &(8), for a set S of n sites in E2, let h
be a plane in H, and let p be a point on k. Then a(p) = §(p).

Proof: Let h = &(s), and let s, be the vertical projection
of s onto A (or, equivalently, onto U). By definition of &, s, is
above all planes in A — {h}. Let g be a plane in H — {h}
and define / = h N g. A point p € h lies above g if and only
if p lies on the same side of / as s;, and p € h lies below g if
and only if p and s; lie on different sides of /. ]

The vertical projection of G(H, h) onto x; = 0 is a two-
dimensional arrangement G@(G) in £2, alternatively defined as
follows. Let § and s be such that H = §(S)and h = &(s). For
any site t € § — {s}G contains the perpendicular bisector of
s and ¢. So if |S| = n, then |G| = n — 1 (see Fig. 4).
Arrangement @(G) will be used to construct the A part of
8 ¥ (H). The remainder of this section describes a transforma-
tion of the lines in G to points in the plane. The obtained point
set will be dual to G.

Given an origin O in E?, any line g not containing O can be
written as yx; + vy = 1.

The central duality C maps g to the point €(g) = (v, 72,
and vice versa, that is, it maps a point p = (w;, m,) different
from O to the line C(p)imx; + 73 = 1.

Let g be the unique point of line g closest to O. Then O, g,
and C(g) are collinear and we have d(O, q) = 1/d(0,
C(g)). We write g*© for the open half-plane bounded by g
that contains O, and we write g ~© for the open half-plane
bounded by g that does not contain O. The fundamental
property of € presented below implies the more complicated
relations described in Lemma 2.5 which will be essential in the
algorithmic sections of this paper.
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Fig. 4. Projections of A-parts of SI(H).

Observation 2.4: Let g be a line in E? that does not contain
Oand let p # O be a point in E%. Then p belongs to g *2, g,

or g9 if and only if point C(g) lies in €(p)*°, C(g), or

C(g) "9, respectively.

There is a useful relationship between the edges of S¥(H)
and certain collections of lines dissecting C(G), the set of
points €(g), g € G. Note that E(O) is the plane defined by the
relation x; = 0.

Lemma 2.5: Let S be a set of n sites in E2, O be asite in S,
and let G be the set of perpendicular bisectors defined by O
and all sites in § — {O}. As usual, H and & denote §(S) and
&(0), respectively; note that @(G) = Q(H, k). Define P =
C(G) and let p be any point in E2.

a) |P N €(p)~° = s(p)(=a(p)).

b) Point p is contained in an edge of 8, (¥, h) if and only if
PN EC(p) % =k—-1land |PNC(p) = 1.

¢) Point p is a vertex of 8, (H, h) if and only if |P N €(p)|
22, |PNEC(pP) % =<k-1l,and |PN C(p)| + |PN
C(p)~° = k.

d) Point p is contained in an edge of 8 ¥(H, &) if and only if
PN €(p)| = 1and [P N C(p)-9| or [P N C(p)*+9| is
equal to & — 1. '

e) Point p is a vertex of 8 ¥(H, h) if and only if |P N C(p)|
22,|PNC(P) % =k-1,and|PNC(P)*° =n—k
- 1, or vice versa, thatis, |[PN C(p) °| = n -k —1,and
PN C(P)*° =k — 1.

Proof: Assertion a) is a direct consequence of Observa-
tion 2.4 and the definition of §. b) and c) follow from a) and
Observation 2.2. Notice that the lower bound, k, for |P N
C(p)| + [P N C(p)~9 in c) differs by one from the lower
bound, £k — 1, for a(v) + o(v) in Observation 2.2 c). This
can be explained by the fact that point p belongs to plane A
which is counted in Observation 2.2 but neglected by term |P
N €(p)| in ¢). Finally, d) and e) follow from b), ¢), and the
definition of 8 *(H') as the union of 8;(H) and §,_,(H). O

Section III develops an algorithm for constructing all edges
and vertices characterized by Lemma 2.5 d) and ¢), and hence
for computing 8 ¥(H, k).

[I. THE ALGORITHM

Let S be a set of n sites in E2 and define H = §(S), as usual.
The kth-order Voronoi diagram of S can be constructed as
follows.

1) Compute 8 ¥ (H') by constructing its A-parts for all # €
H.

2) Compute 8;(H) from S} (H) by eliminating all edges
and vertices of 8,_;(H), unless they also belong to S, (H).

3) Project 8¢(H) vertically onto the plane x; = 0; this
yields V. (S).

To distinguish edges and vertices of $,(H) from those of
8,_x(H) we follow the connected sequence of edges of
8#(H). Whenever we pass the point at infinity, we switch
from 8,(H) to 8,_,(H) or vice versa. It is thus sufficient to
determine the status of one particular vertex of 8 ¥(H) in order
to carry out the classification in time linear in the number of
edges encountered. The intriguing part of the algorithm is the
construction of an & part of $ ¥(H), h € H. To this end, we
exploit Lemma 2.5 which reduces the task to a point set
problem in EZ.

Let Pbe asetof n — 1 points and let g be a directed line in
E?. We define /(g), 0(g), and r(g) as the numbers of points in
P that lie to the left of, on, and to the right of g, respectively.
Callga k*-lineif r(g) = k — 1and 0o(g) + r(g) = k and,
for some value of k, compute all k*-lines of P [compare
Lemma 2.5 d) and ¢)].

We have the following result.

Observation 3.1: Let Pbe a set of n — 1 points in E2 and
let k be an integer number with | < k < n — 1. For any angle
a in [0, 2x), there is a unique k*-line g(a) that can be
obtained by rotating the x;-axis through « radians.

To compute all k*-lines of P efficiently, we use a result of
[14] about maintaining two-dimensional convex hulls through
a sequence of insertions and deletions of points. The same
technique has be used in [5] and [9] to construct k-hulls and k-
belts which are structures that bear close relationship with
what we are after. We include the result of [14] and its
application to our problem since we will make use of a specific
property of the technique in Section IV.

Proposition 3.2: There is a data structure that maintains the
convex hull of a set of at most 7 points in £2 in O(log? n) time
per insertion and deletion of a point. The structure requires
O(n) storage and O(n log n) time for its construction (O(n)
time if the points are given sorted in x; direction); for any
point p outside the convex hull, the two lines passing through
p that are tangent to the convex hull can be computed in O(log
n) time.
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The algorithm for constructing all & *-lines follows the three
steps below. It uses the data structure of [14] to perform a
sequence of operations, where each operation is either the
insertion of a point, the deletion of a point, or the determina-
tion of a tangent line passing through a point.

1) Sort the points in P from left to right (and bottom-up if
points share the same x; coordinate).

2) Take the vertical line that passes through the kth point p
€ P and is directed downward as the initial position of a
directed line g which will rotate through all k*-lines. Call p
the current anchor (that is, point of contact) of g, and construct
the convex hulls of sets R and L containing the first £ — 1 and
last n — k& — 1 points of P, respectively.

3) Repeat the following steps until g reaches its initial
position again (for convenience, we treat only nondegenerate
cases here):

Rotate g in counterclockwise direction around its anchor p
until it hits a point g of R or of L. Assume without loss of
generality that ¢ € R. Note that g is now tangent to the
convex hull of R. Call g the new current anchor, delete q from

. and insert p into R.

Each time g encounters a point of R or L, it is mapped to a
vertex of 8 ¥(H, h). Between two consecutive vertices, the
loci of g are mapped to the points of the edge of 8 ¥ (H, h) that
connects the two vertices. This ‘‘edge’” is a projective edge,
that is, it is either the Euclidean line segment that connects the
two vertices or it is the line through the two vertices minus this
line segment. The first case occurs when line g does not rotate
through a vertical position and the second case occurs if it does
rotate through a vertical position.

In a degenerate case, g can encounter several points of R
and L at the same time. Say, g hits points ry, ry, <+, r;and /,,
by *+-, l;, wherei = 0, = 0, and i + J = 1, such that

Fiaifiay weagipn P, [I!"'Es "';!j'_"q“ gz, "

appear in sorted order on g. Then ¢ j+1 is the new anchor, and
the other points are deleted and inserted accordingly. This case
can be handled in O(log? n) time per point and is thus no more
expensive than if the points are encountered in sequence. In

t, the additional effort needed in a degenerate case is paid
off by the loss in the number of edges caused. Since an edge
costs O(log? n) time in the nondegenerate case, this yields the
following result.

Theorem 3.3: Let S be a set of n sites in E2. There is an
algorithm that constructs V(S) in O(n? logn + k(n — k)
log? n) time and O(k(n — k)) storage.

At this point, it is worthwhile to mention that [5] describes a
technique that allows us to maintain the two-dimensional
convex hull in O(log? k) time instead of in O(log? n) time per
operation. This leads to a slight improvement of Theorem 3.3
if k is very small. In these cases, however, our result is
inferior to the result of [13] anyway. This technique of [5] will
not be applicable in Section IV since it entails a preprocessing
cost of O(n? log n) time.

s i1

IV. TRADING STORAGE FOR SPEED

The O(n? log n) time needed for setting up 22 convex hulls
¢an be improved to O(n?) if all necessary sorting is done in

h—-_...__
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respective linear time. For a set S of n points in E2, we
achieve the desired speedup in two steps.

1) We show that O(n?) time suffices to construct, for each
site s € S, the order of the remaining sites sorted around s.

2) The central duality € of Section II is replaced by another
dual transform that yields point sets with the ordering induced
by the corresponding order in 1).

In both steps, we make use of the dual transform D that
maps a point p = (m, 7)) in E? to the nonvertical line
D(p)xy = 2mx; — 7, and vice versa, that is, it maps a
nonvertical line g:x; = y,x; + 7, to the point D(g) = (v,/2,
— 72). Since g is assumed to be nonvertical, we can define the
half-planes

g8 i x2>yix;+y,and g™ : X<y 11X+ ;.

The fundamental property of transform D is expressed in the
following result.

Observation 4.1: Let p be a point and g be a nonvertical
line in E£2. Then p belongs to g *, &, or g~ if and only if point
D(g) belongs to D(p)*, D(p), or D(p)~, respectively.

Compare Observation 4.1 to Observation 2.4. Step 1) is
now achieved by constructing the two-dimensional arrange-
ment defined by the lines in D(S). This subdivision of E2 can
be computed in O(n?) time and storage (see [4], [8]). The
order of the sites in S — {s} around s corresponds to the order
of intersections of O (s) with the other lines. These sequences
can be derived in O(n?) time from the representation of the
arrangement described in [4], [8].

Let S be a set of n sites in E2, let s be a site in S, and let G
be the set of perpendicular bisectors defined by s and all sites
in§ — {s}. The order of sites around s corresponds to the left
to right order of the points in P = D(G). More specifically,
the left to right order of P can be obtained by merging the
counterclockwise order of the sites above the horizontal line
through s with the clockwise order of the sites below this line.
For g a nonvertical line, we let g be the open double wedge
defined by g and line D(s) that does not contain the vertical
line through g N D(s), and we let £ denote the other open
double wedge. If g and D (s) are parallel, then g is the open
stripe between the two lines and g™® is the interior of the
complement of this stripe. We have the following result which
is similar to Lemma 2.5,

Observation 4.2: Let S be a set of 7 sites in E2, let sbe a
site in S, let G be the set of perpendicular bisectors of s and all
sites in § — {5}, and define P = D(G). For any point p €
E?, we have |P N D(p)™s| = 6(p).

Statements analogous to Lemma 2.5 a)-e) follow from
Observation 4.2. Furthermore, the algorithmic techniques
used in Section III carry over to compute all lines g such that
|P N D(p)™¥| <k — 1and |P N D(p)| + |P N D(p)™|
= k. This implies the main result of this section.

Theorem 4.3: Let S be a set of n sites in E2. There is an
algorithm that constructs V,(S) in O(n? + k(n — k) log? n)
time and O(n?) storage.

V. DiscussioN AND EXTENSIONS

Using the technique of geometric transformation and two-
dimensional convex hull maintenance, this paper presents two
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new algorithms for constructing kth-order Voronoi diagrams
in the plane. For n sites, the first algorithm takes O(n?log n
+ k(n - k) log? n) time and O(k(n — k)) storage; the
second algorithm runs in O(n? + k(n — k) log? n) time and
O(n?) storage. This improves upon the time complexity of the
methods in [13] and [7] whenever k = Q(/n) (see Fig. 2).
The details of the developments of this paper are related to
techniques presented in [5] and in [9].

The methods of this paper are applicable to a slightly
broader class of problems than stated. Below, we briefly
describe two additional geometric structures that can be built
using our algorithmic methods.

1) The kth-degree Voronoi diagram of a set S of n sites in
E? associates each site s with the region of points p such that s
is the k-closest site of p (see [8]). The complexity results
stated as Theorem 3.3 and 4.3 apply since the diagram consists
of exactly all edges in V;_(S) and V(S).

2) Let S be a set of n sites in E3. The transformation used in
this paper for two-dimensional point sets can be generalized to
three dimensions and can thus be applied to S. The convex hull
maintenance in E? can be done by a data structure that takes
O(n) storage, O(n log n) time for construction, and oWn
log n) time per update and query (see [7]). If ¢(n) denotes the
maximum number of edges of the kth-order Voronoi diagram
of n sites in E3, then the skeleton of edges of V,(S) can be
constructed in O(n? log n + c(n)\/n log n) time and O(c(n))
storage.
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