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Sweeping a collection of figures in the Euclidean plane with a straight line is one of the
novel algorithmic paradigms that have emerged in the field of computational geometry. In this
paper we demonstrate the advantages of sweeping with a topological line that is not
necessarily straight. We show how an arrangement of # lines in the plane can be swept over in
O(n?) time and O(n) space by a such a line. In the process each element, ie., vertex, edge, or
region, is visited once in a consistent ordering. Our technique makes use of novel data struc-
tures which exhibit interesting amortized complexity behavior; the result is an algorithm that
improves upon all its predecessors either in the space or the time bounds, as well as being
eminently practical. Numerous applications of the technique to problems in computational
geometry are given—many through the use of duality transforms. Examples include solving
visibility problems, detecting degeneracies in configurations, computing the extremal shadows
of convex polytopes, and others. Even though our basic technique solves a planar problem, its
applications include several problems in higher dimensions. © 1989 Academic Press, Inc.

1. MOTIVATION

veeping a collection of figures in the Euclidean plane E? with an undirected

vertical) line is one of the novel algorithmic paradigms that have emerged in
ield of computational geometry [PS, NP]. In general, the sweep is supported
vo types of data structures: one that maintains the figures currently intersecting
iweeping line, and another that tells the sweeping line when to stop next. Such
s include the times when the set of intersected figures changes, as well as other
ts of interest. The stopping-times structure is most naturally implemented by a
ity queue. This common solution, however, inherently entails the price of
itaining the priority queue, which is O(log n) per update if the queue has size n
.U]. The purpose of this paper is to demonstrate that, in certain situations,
: is a way to avoid having to pay this additional logarithmic cost factor. The
1gs will be achieved by replacing the sweeping line by a “topological line,” that
n unbounded simple curve that satisfies properties milder than straightness.
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166 EDELSBRUNNER AND GUIBAS

Vertices partition the pblane into 3 subdivision known ag the arrangement of (H)
[G] We wil assume that A (H) is simple, in other words, that any two lines
intersect at a Vertex, but no three do so. We will also assume that none of the lines
in H is vertical, In a later section we discuss how these restrictions can be removed.

its regions and edges, and its edges and Vertices, in a way consistent with the
natural cyclic orderings of the edges around a region and the edges around a vertex
[GS]. A possible choice for an adequate Tepresentation of the arrangement consists
of a set of vertex records, each containing the names of the four edges jt is incident
to, arranged in counterclock wise order, as well as 2 set of edge records, each

subdivisions,

It is clear from the previous discussion that the size of the subdivision associated
with &7 (H) is @ (n?). This subdivision can be constructed in O(n* log n) time by
sweeping with a vertjca] straight line [EW]. Furthermore, the Sweep uses only O(n)
storage in addition to the space needed to represent the arrangement. This is advan-
tageous in applications where we are allowed to destroy the vertices, edges, and
(implicitly) regions of the arrangement after creation and inspection, By a more
intricate method jt is possible to construct the arrangement in time O(n?), using an
Incremental approach [CGL, EOS] which involves introducing the lines of H one
at a time. However, in this method O(n?) Storage is intrinsic, singe N0 part of the
arrangement may be thrown away until all of it has beep computed.

Fic. 1.1, An arrangement of five lipes.
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In this paper we will see how to use a “topological sweep” to compute o/ (H) in
O(n?) time, but with only O(n) extra storage. As we already mentioned, there are
many applications where the elements of the arrangement (i.e., vertices, edges, and
regions) need only be examined as they are built and then may be discarded
immediately afterwards. Our method will allow these applications to run in O(n?)
time and O(n) space. There are also many problems that can be reduced to-a
number of two-dimensional sweeps (see problems (b), and (e)-(h) below, for
instance). The time it takes to solve such problems is typically the number of
required sweeps times O(n®). Some example applications where our technique
improves existing bounds are listed below; E* denotes Euclidean k-dimensional
space:

(a) Compute the minimum area triangle spanned by three of n points in E*

(b) Compute a maximum subset of a given set of n points in E*> whose
clements define the vertices of a convex polygon; same question for an empiy
convex polygon, that is, one containing none of the given points in its interior.

(c) Compute the visibility graph of »n non-intersecting segments in EZ.

(d) Given n segments in E? compute a line which intersects as many
segments as possible.

(e) Enumerate all faces of an arrangement in E¥ d>2.

(f) Test whether any d+ 1 points of a configuration of » points in E%, d>2,
are in special position (do not span the full space).

(g) Given n non-zero vectors vy, ..., v, in E% compute an assignment of { +1,
—1} to coefficients a;, ..., @, such that 3" o;v; is longest.

(h) Compute the directions of minimum and maximum shadows for a convex
polytope in E4 d>3.

It is remarkable that although our basic technique is strictly planar, there are many
applications to problems in higher dimensions as well.

Besides the applications listed above, the method presented here is noteworthy
for two additional reasons. One is that it is an illuminating example of amortized
complexity analysis, a methodology that has recently become very popular in the
analysis of algorithms [T]. Second, we have implemented our method and it works
extremely well in practice, outperforming the straight-line sweep even for
arrangements of only tens of lines.

Here is a quick summary of the structure of this paper: Section 2 contains various
geometric preliminaries that we will employ throughout the exposition. Section 3
presents the topological plane sweep and its analysis. In Section 4 we deal briefly
with a technique for handling degeneracies, and then Section 5 expands on the
multifarious applications of the topological sweep, including all the problems
mentioned above. Section 6 ends the paper with some open problems and
conclusions.
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2. GEOMETRIC PRELIMINARIES

Let [;,1,, .., 1, denote the lines of an arrangement .o/(H). Without loss of
generality we assume that when so written they are sorted according to slope, from
smallest to largest. Our earlier assumptions about being simple imply that all
slopes are finite and distinct, so this ordering is well defined. The same assumptions
allow us to define an “above” relation between elements of </ (H). We will say that
element 4 is above element B if 4 and B have intersecting projections on the x axis
and, at each abscissa x of their intersection, all points of 4 are above all points of
B. 1t is easy to check that, for any two distinct elemnets 4 and B with intersecting
x-projections, either 4 is above B or B is above 4. It is known that the “above”
relation among the elements of a given subdivision is acyclic. For a discussion of
this topic see, for example, the paper by Edelsbrunner er al. [EGS].

LEMMA 2.1, There is exactly one reg
(denoted by T for “top”) and exact
(denoted by & for “bottom”).

ion that is not below any other region
ly one region that is not above any other region

Proof. Trivial. |

A (vertical) cur is a list (¢, ¢5, ..., ¢,) of edges of .«7(H) such that
(i) ¢, is an edge of 7 and ¢, is an edge of #, and

(i) for each i, 1<i<n—1 we have that ¢, and ¢;41 are both incident upon
region R, such that c; is above R, and C;+, 1S below R,.

These conditions imply that no two edges of the cut lie on the same line of &/ (H),
so there is a one-to-one correspondence between the edges of our cut and the lines
of the arrangement. A cut will be our formal analog of the intuitive concept of a
“topological line.” Such a line cuts the arrangement along the edges of the cut, in
the given sequence; see Fig. 2.1. We let above(/) and below(/) denote the open
halfplanes bounded from below and from above by the non-vertical line 1, respec-
tively. Note that the region R, referred to above is necessarily unique, as R, is

1 T
—

cut

FiG. 2.1. A topological line and the associated cut.

-’
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below(c;) and above(c;, ). Since the “above” relation is acyclic, the same region
cannot be reused in a cut.

We can define an appropriate “left-of” relation among cuts by considering that
cut 4 is left of cut B if for every line / of the arrangement ./ (H), the edge of 4 on /
is the same as, or to the left of, the edge of B on /. Among all cuts there is a
“leftmost” one, consisting of the left-unbounded edges of each line /,, [, ..., [, in
this order; similarly, there is a “rightmost” cut, consisting of the right-unbounded
edges of I,, I, ..., |,. Our topological sweep of the arrangement will be implemented
by starting with the leftmost cut and pushing it to the right till it becomes the
rightmost cut, in a series of elementary steps.

An elementary step is performed when the topological line sweeps past a vertex of
the arrangement; it corresponds to a transposition in the underlying numbering of
the lines as defined by the order in which they are intersected by the sweeping
topological line. Obviously exactly (3) elementary steps will be required to sweep
the arrangement, in proceeding from the identity permutation of the lines to its
reversal, between the leftmost and rightmost cuts. See Fig. 2.2 for an example.

We next state a lemma that shows that for any cut there always exists an elemen-
tary step that advances it to the right, unless it is the rightmost cut.

LemMA 2.2.  There always exist two consecutive edges of the cut with a common
right endpoint, unless we are considering the rightmost cut.

Proof. An edge c; terminates on the right at vertex v, because an intersection
occurs with another line I Let ¢, be the edge of the cut on / and v; be the right
endpoint of ¢;. In fact there are two cases, as Fig. 2.3 shows, depending upon
whether i <j or i>j. In both cases we can conclude that either v, =uv;, or v; occurs
to the left of v,.

Now just consider the edge c; of the cut with the leftmost right endpoint. Such an
endpoint exists, because our cut is not rightmost. In this case we must have v, =v;
and in fact j=i+1. |

The major dificulty in implementing the topological sweep is how to discover
where in a cut an elementary step can be applied. To this end we introduce the
axiliary notion of horizon trees. Before we do this let us make an attempt to find
two edges of the cut with a common right endpoint without using any look-ahead
structures. Indeed this is straightforward if each edge knows its right endpoint—
after all two such edges are adjacent in the cut. But after the elementary step we are

Fig. 2.2. An elementary step.
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Wil cfi]
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C[i] line | V[ﬂ
i i<j

FiG. 2.3. The right endpoint of an edge of the cut.

facing the problem of computing the right endpoints of the two new edges in
constant time. On the other hand, if we give up knowledge of the right endpoint for
edges in the cut, then the computation of the two edges whose right endpoints
coincide becomes nontrivial.

Let (m,, m,, .., m,) denote the lines containing the edges (c,, ¢, .., ¢,), respec-
tively. The upper horizon tree T*(C) of the cut C is constructed by starting with the
edges of the cut and extending them to the right. When two edges come together at
an intersection point, only the one of higher slope continues on to the right; the

m5

m3

the upper horizon tree

the lower horizon tree

F1G. 2.4. The horizon trees of a cut.
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other one stops at that point and is removed from further consideration. More
formally, the upper horizon tree consists of one segment from each of the lines m;,
where a point p of m, belongs to 77 (C) if

(i) p is above all lines m; with j>1, and

(ii) p is below all lines m, satisfying both k < i and having slope greater than
the slope of m;.

Figure 2.4 shows T* (C) for the cut of Fig. 2.1, as well as the symmetrically defined
lower horizon tree T~(C) (where lines of lower slope are the winners ). Observe that
the edges of the cut belong to both trees, but the left endpoints of those edges
belong to no tree.

There is an obvious defect in the definition of the upper horizon tree above, since
it can turn out to be actually a forest and not a tree—consider the upper horizon
tree of the rightmost cut in Fig. 2.4, for example. To rectify this minor problem we
add the dummy vertical line m, at x= + 0 and consider it as the last line in our
list. For the lower horizon tree we add the same line again, but now consider it as
the first in our list.

LEMMA 2.3. The (rectified) definition of the upper horizon tree above truly defines
a tree consisting of exactly one segment s from each line m;; furthermore, s
contains the edge c;.

Proof. We have

sy= m; n[)above(m)n N below(m;).
J=i j<i
slopeim;) = slope{n1;)

| W

convex convex convex

Each of the sets above obviously contains c¢;. Their intersection is convex, and
therefore a segment. Such a segment si is terminated when it encounters another
segment s;* of higher slope. Thus the right endpoints of these segments naturally
form a tree. |

We are interested only in what happens to the right of the topological line, as
what is to the left has already been swept over. Consider two successive edges ¢;
and ¢, , of the cut. Let R be the region of the plane to the right of the topological
line and delimited by s;* and s/, , in the subdivision defined by the upper horizon
tree. Define R;” analogously.

Recall that R, is the region of the arrangement that lies between ¢, and ¢;, , and
let R, be R, restricted to the right side of the topological line. We note that

R.=R;* n Ry, for to the right of the topological line we have
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R = N below(m;) N N above(m,),
i=i i=i
slope(m;) = slopeim;)
R~ = N below(m;) n @ above(m,),
J=i J=i
slopeim;) < slopeim,)
R,= N below(m;) N N above(m,).

J=i =i

The above relation follows, since the doubly indexed intersection in the formula for
R simplifies to below(m,), and that in the formula for R- simplifies to
above(m,, ,). This relation, and its more obvious analog C = T (C)n T (C) will
be useful to us in the sequel.

3. THE TOPOLOGICAL PLANE SwEEP

We now come to the central part of this paper, which is the treatment of the
updating required by the elementary steps of the previous section. Qur goal is to
design data structures for representing cuts and horizon trees, plus some auxiliary
information needed for the implementation of the topological plane sweep. In the
following we use a Pascal-like notation for expressing these structures. As it turns
out, we need only very simple data structures for this problem:

Eflin] is the array of line equations: E(i)=(a,, b,), if the ith line of H,
l;,18 p=a,x+b,.

HTU[1:n] is an array representing the upper horizon tree. HTU[i] is a pair
(4;, p;) of indices indicating the lines that delimit the segment of
/; in the upper horizon tree to the left and to the right, respec-
tively. If this segment is the leftmost on l; we set ;= —1:if it is
rightmost on /, we set p, =0,

HTL[1:n] represents the lower horizon tree and is defined similarly.

- is a set of integers, represented as a stack. If 7 is in 7, then ¢, and
¢i+y share a common right endpoint.

M[1:n] is an array holding the current sequence of indices that form the
lines m,;, m,, .., m, of the cut.

N[1:n] 18 a list of pairs of indices indicating the lines delimiting each
edge of the cut. N[i] thus encodes the endpoints of the cut edge

on /;. The same convention as that above is used for missing
endpoints,

Of course there is nothing categorical about these structures.! The same infor-

"In an actual implementation we need not store the left endpoints of segments in the horizon trees or
the cut. This will save an additional 31 words of storage,
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mation can be represented in many equivalent ways. For our example arrangement
and cut in Fig. 2.1, the contents of our data structure would be as in Fig. 3.1.

E: (a,, b)) HTU: (—1,2) HTL: (-1,0)
(a3, b,) ( 1,5) =11
(ﬂ3,b3] {5’ 4] {51 1]
(as, bs) (5,0) (5,3)
(as, bs) (3,0) (3. 1)

I 4 M:1 -1,2)
1 2 ( 1, 1)

5 (5,4)
3 (5,3)
= (3, 1)

FiG. 3.1. The state of our structures for the arrangement and cut of Fig. 2.1.

We begin by describing how the upper and lower horizon trees can be
constructed in O(n) total time for the leftmost cut—under the assumption that the
lines of H (i.e., the array E) have been given to us sorted in slope order. It is easy to
see that, for the leftmost cut, the upper horizon tree consists of a segment on each
line extending from left infinity till the first intersection with a line of larger slope is
encountered.

This observation makes the construction of the upper horizon tree easy, if we
insert the lines into our structure one at a time in order of decreasing slope. Assume
that lines /;. ,, l;+ 2, .., [, have already been inserted. These lines form an “upper
bay” that /, has to hit. See Fig. 3.2. We can compute where /; hits this bay by traver-
sing it in counterclockwise order. The advantage of doing this is that each edge we
pass over ceases to be part of the bay, so it need never be looked at again. When we
come to the edge that /, hits, we simply have to break it into two parts and update
the bay and HTU structures by inserting the appropriate segment of /; into them.
The linearity of this method is obvious.

Ay

new line

bay

FiG. 3.2. Initialization of HTU.
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Note that by combining the information contained in HTU and HTL for the
leftmost cut we can easily obtain in linear time the structures N and I. The leftmost
segment of each line—which is the appropriate edge for the leftmost cut—is the
shorter of the segments of the line in HTU or HTL. Once N is known I can be
trivially obtained. Thus initialization for all our structures is possible in O(n) time.

How is an elementary step to be implemented using our structures? Suppose that
we pop the stack I and get the index i. We know that ¢; and ¢, , share a common
right endpoint ¥, and therefore we can do an elementary step at V. Denote by ¢ the
s segments after the elementary step. Let us first consider how HTU has to change;
see Fig. 3.3. The change from s}, , to ¢ is easy: the part of 57, to the left of V' is
simply cut off. The change, however, from s/ =c; to ¢/, , requires a good deal of
computation.

Just as in the initialization part, we have to compute where the extension of line
m, to the right hits the bay of the upper horizon tree delimited by ¢, , and ¢, .
And, as during initialization, we do this by traversing the bay starting at ¢, , and
proceeding in a counterclockwise order, till an intersection of an edge of the bay
with m, is encountered. Note that m; must hit this bay, since ¢, , is below ¢; and
therefore below m;,, yet the bay in question connects to ¢;* which is above the line
m,, as in Fig 33. Once the proper intersection of m, and the bay above is
determined, updating the HTU can be done in O(1) time. Thus HTU can be
updated in a total cost of O(n) per elementary step.

Since ¢;=s;" ns; (as follows from the remarks at the end of the previous
section) the new N is easily obtained after the horizon trees are available. The same
holds for I, while M can be trivially updated. Thus the overall cost in time for an
elementary step is linear in the worst case (examples attaining this can be readily
constructed ).

cli]

cfi+1 ]

c'fi+2] = cli+2]

Fic. 3.3. Updating the upper horizon tree.
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The structures for our example, after an elementary step at i=4 become as in
Fig. 3.4.

E:same [ 1 HTU: (-1,2) HTL: (-=1,0) M:1 N:(—12)
(=1,5) (-1, 1) 2 (—1,1)

(4,0) (4, 1) 5 (4, 1)

(3,0) t3:1) 4 (3, 1)

(3,0) (3, 1) 3 (3, 1)

FiG. 3.4. The structures of Fig. 3.1, after an elementary step at 4.

What is the overall cost in time for pushing the leftmost cut all the way to the
rightmost? Since there are O(n?) elementary steps and each step can cost O(n), we
get a total bound of O(n?), which is too large. We desire an O(n”) total bound—or
an O(1) bound per update, in the amortized sense.

To prove such a bound we do an amortized argument using the vertices of the
horizon trees for our accounting. We only consider the upper horizon tree, the
proof for the lower horizon tree being symmetrical. The vertices of the upper
horizon tree are, by definition, the endpoints of the segments s;* through s as well
as the “endpoints” of the artificial vertical segment which coincides with the dummy
line at x = + oo. For the counting argument it makes no difference whether a vertex
is actually a finite point or whether it is the fictitious endpoint of an unbounded
segment. The root of the tree whose nodes are these vertices is the fictitious upper
endpoint of the dummy line, and its leaves are are the left endpoints of the segments
s*. We define the depth of a leaf to be the number of edges between itself and the
root. The external path length of the tree is then defined as the sum of the depths of
all leaves. Since the depth of a leaf cannot exceed n, the external path length is
bounded above by n*

When we perform an elementary step we change s;%, | to ¢ and s/ to ¢, ,. The
transition from s;%, | to ¢;* is not dramatic, as the depth of the left endpoint of ¢ is
only one less than that of the left endpoint of s, ;. The depth of the left endpoint of
o7, is at least that of 57, and in fact it can be much longer (as, for example, in
Fig. 3.3). But this will only be in favor of our argument. What is important is that
the depth of any segment traversed when we search for the right endpoint of 67,
increases by one. This is because the right endpoint of ¢/, | lies on the path to the
root of any such point. Again, there could be even more leaves whose depth
increases by one—which works in our favor. Hence, the time spent in an elementary
step is at most proportional to the increase in external path length caused by this
step. The total amount of time to update the upper horizon tree is thus at most
proportional to the difference is external path lengths between the initial and final
trees. This difference is O(n?) since the external path length of the final tree is at
most n> and that of the initial tree is non-negative.

THEOREM 3.1. The total cost of updating HTU (or HTL) through all the elemen-
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tary steps is O(n?). Therefore the topological sweep can be carried out in O(n?) time
and O(n) working storage.

We remark that the same amortized bound will be obtained if we traverse each
bay in the opposite direction. In the case of the upper horizon free, for example, we
could start at the elementary step vertex V and then proceed clockwise around the
bay, till the intersection of the bay with m, is encountered—see Fig. 3.3. This
requires different and more elaborate data structures, but the proof of the quadratic
bound is comparably simple, as we now briefly explain. In the horizon tree, the
number the bays associated with the cut as 1 to #— 1, from top to bottom. Define
the weight of an edge bounding a bay from below to be the number of the bay right
above it. The weight of the whole horizon tree is then simply the sum of all the
weights assigned to its edges. For the leftmost cut, the weight of the upper horizon
tree is easily seen to be O(n?). At each elementary step, the traversed edges transfer
to a bay numbered one less, except for the intersected edge that is split among the
two bays. The cost of the step can then be accounted for by a fixed charge per step
plus a decrease in the tree weight. We omit the details.

4. CoPING WITH DEGENERACIES

This section proposes a method that eliminates all degenerate cases, such as
parallel lines or multiple concurrent lines, thus relieving the programmer of the
tedious task of coding these cases. Of course, we have to pay something for the
climination, and the price is carefully written primitive procedures that treat two
parallel lines as non-parallel and three concurrent lines as non-concurrent. This
entails the occurrence of zero-length edges and vertices at infinity in the
arrangement. It is crucial for this method that this simulation of non-degenerate
cases be done in a consistent way. For a more complete description of this idea see
[E, Chap. 9; EM], where implementation issues are discussed.

The primitive procedures use the indices 1 through n assigned to the lines for
their computations. Let line /, be given by the equation

a;x+b,y+c;=0C,

for 1<i<n and (a;, b;)# (0,0). We define another line

[{e):ajx+b,y+c,=0,

23i=1

with aj=a,+¢%, bj=b,+&>"", and c¢/=c,+ &, for £¢>0 small enough. All
decisions, like whether or not /, intersects l; above [, etc., are based on /,(¢) instead
of on /;. Consequently, the computation simulates the sweep of arrangement
</ (H(e)), with H(e)= {l(e)|1 <i<n} and ¢>0 but small enough. It is not hard
to prove that H(e) contains no two parallel and no three concurrent lines.

.
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All manipulations of coordinates can be reduced to determining the signs of
determinants of the form

a, b, ¢
! r !
det{ a; b, ¢ |,
’ ’ !
a, b, c

which can be done without specification of any particular value for & To this end,
however, all multiplications must be performed without any loss in precision;
equivalently, we need to compute the power series expansion in ¢ of the deter-
minant above until we encounter the first non-zero term.

5. APPLICATIONS

We expect that the idea of topologically sweeping a geometric scene (instead of
sweeping it with a straight line) will have numerous applications in computational
geometry; for instance, Nievergelt and Preparata [NP] have used a similar idea for
intersecting two planar convex maps. It appears that the difficulty of applying the
idea successfully to problems other than sweeping arrangements of lines is the
design of efficient supporting data structures. In this section we address problems
that can be formulated in terms of arrangements, or that relate to such problems by
some geometric transformation; in all cases we are able to obtain an 1mprovement
over the previously known space or time bounds.

5.1. Convex Subsets of Configurations and Paths in Arrangements

Let H be a set of n lines in general position in E*. A monotone path n of o4 (H) is
a connected subset of alternating edges and vertices of «/(H) such that every
vertical line intersects 7 in exactly one point. Therefore = is unbounded. A vertex p
of m is a rurn if the two incident edges are not collinear. We define the length of 7 as
the number of turns plus one.

ProBLEM 5.1.1. Compute a longest monotone path of o7(H).

Sharir [Sh] has shown that there are arrangements of n lines with monotone
paths of length Q(n\/f_z); no non-trivial upper bound is currently known. To
compute a longest path, we sweep ./ (H) topologically and for each edge e in the
current cut we maintain a longest path which extends from e towards the left: the
edge e holds the number of turns of this path and a pointer to its predecessor edge
on this path. The rules for maintaining this information are illustrated in Fig. 5.1.

THEOREM 5.1.1.  The length of the longest monotone path in an arrangement of n
lines in E* can be found in O(n?) time and O(n) storage.

AR
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c max{c+1,d}

d max{c,d+1}

{a) c and d are the counts of the predecessor edges

{b) the backward peinters

FiG. 5.1. Rules for updating longest monotone paths.

It is interesting that the topological sweep does not maintain enough information
to allow us to extract the actual longest path directly, for we cannot afford to keep
around the predecessor pointers for all edges of the arrangement and still have
linear storage. Without predecessor pointers, we can still backtrack by running a
complete sweep up to each desired edge. This clearly is a time-consuming process,
so what we do instead is to save various snapshots of the data structures used by
the algorithm at certain moments; in this way we can avoid having to rerun the
algorithm from the beginning for each step of backing up we need to do.

The specific method that we use can be formulated in terms of the problem of
backing up from a state ¢ of the sweep to an earlier state s in the linear ordering of
all states visited by the algorithm. We identify each state with its rank in this
ordering. Initially we have saved states s and 7; we now wish to deduce the sequence
of nodes defining the longest path between s and 7. Note that if we have saved a
state of the sweep, then we can easily extract the current (last) node of the longest
path in this state. Let m denote the state halfway between s and ¢. In order to back
up from ¢ so s we proceed as follows: first go forward from s to m and save state m;
then recursively back up from ¢ to m; then output the current node on the longest
path in snapshot m; and finally recursively back up from m to s. To find the longest
path we apply this recursive backing up to the initial and final states of the sweep.

The storage used by this method is the maximal number of buffers needed to
hold states at any one time. The recursive structure of the algorithm makes it clear
that we need O(logn) buffers: this is the depth of the recursion stack and each
invocation needs one buffer to store the halfway state. So the total space used by
this method is O(n log n)—assuming that the edges of the path are output as they
are discovered so that we do not have to store them. The time for the whole
procedure O(n*log n), as follows from a standard divide-and-conquer recurrence.
It is possible to analyze the time cost of this backtracking method for any given
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number of buffers. For example, if we are willing to use (n°) buffers (O(n'**) total
storage), then we can do the backtracking in O(n?) time. This analysis turns out to
be isomorphic to that of certain recurrences on trees considered by Bentley and
Saxe [BS, p. 331].

THEOREM 5.1.1A.  The longesi monotone path in an arrangement of n lines in E*
can be computed in O(n* log n) time and O(n log n + k) storage, where k is the length
of that path.

A monotone path 7 in .2Z(H) is called concave if each turn of 7 is a left turn when
traversed by a particle moving from left to right.

PrROBLEM 5.1.2. Compute a longest monotone concave path in .7 (H).

To solve Problem 5.1.2 algorithmically, we take the same approach as for
Problem 5.1.1; we adjust only the rules for maintaining longest paths (see Fig. 5.2).
Even though a concave (or convex) path has length at most O(n), the previous
difficulties with storage arise again and can be removed again at the expense of a
log n factor in time and storage.

By the duality discussed in [CGL], Problem 5.1.2 corresponds to a problem
studied in combinatorial geometry. Let S be a set of points in £E2 which is dual to H
so that the slopes of the lines determine the x-coordinate of the points (i.e., map line
y=ax+b into point (a, —b)). Let T={(a,, b,), ..., (a,, b,)} be a subset of S such
that a,<a;.,. We say T is a concave chain of length k if for any two consecutive
points (a;, b;) and (a;, ,, b, ;) all other points lie in the upper halfplane of the line
joining these two points, and T is a convex chain if for any two consecutive points
all other points lie in the lower halfplane through these two points.

ProBLEM 5.1.2A. Compute a longest concave (or convex) chain of S.

c max{c+1,d}

(a)

ce=d

(b} we go straight or turn left

FiG. 5.2. Rules for updating longest concave paths.
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Erdos and Szekeres [ES1, ES2] have shown that every non-degenerate set of at
least (3% ~#)+ 1 points in E> has a convex or concave chain of length , but this is
not true for (¥-;) points. By duality, the points in a convex (or concave) chain
correspond to the lines that support edges of a monotone concave (or convex) path

in the dual arrangement.

THEOREM 5.1.2. The length of the longest concave (or convex) chain in a set of n
points in E? can be found in O(n®) time and O(n) storage. To extract the actual path
an extra log n factor must be paid in both time and storage. Alternatively, we can
extract the actual path by paying an extra factor of O(n) in time while keeping the
storage linear.

Building on this result, we attack a related problem. If S denotes a non-
degenerate set of n points in E% we call a subset T of S convex if each point of T
appears as a vertex of the convex hull of T. Again Erdos and Szekeres [ES1, ES2]
have demonstrated the existence of 22 points in E? without a convex subset of
cardinality k. They conjecture that every non-degenerate set of 2“~?+ 1 points
contains such a convex subset.

PROBLEM 5.1.3. Compute a largest convex subset of S.

Suppose that p is the topmost point of a convex subset T of §. Draw the
horizontal line through p and remove all points above this line. Now move this line
upward to infinity using a projective transformation. This projective transformation
maps p into a point with infinite y coordinate and T—{p} into a concave chain.
Conversely, if subset U maps into a concave chain then Uu {p} is a convex subset
of S with topmost point p. To solve Problem 5.1.3 we thus solve n instances of
Problem 5.1.2A. To extract the actual largest convex subset, we use the brute-force
backtracking strategy, but only for the “winning” leftmost point p. This backtrack-
ing takes O(n’) time, since the largest convex subet consists of at most n points.
This improves the storage bound in the result of Chvatal and Klincek [CK] who
gave an algorithm that runs in O(n?) time and O(n?) storage.

THEOREM 5.1.3. The largest convex subset of a set of n points in E? can be found
in O(n®) time and O(n) storage.

A convex subset T of S is called empty if no point of S belongs to the interior of
the convex hull of 7. By a result of Harborth [Ha], every 10 points (no three
collinear) in E* have an empty convex subset of size 5, and by Horton [Ho] there
are sets with arbitrarily many points but without an empty convex subset of size 7.
Using an O(n?) time and O(n®) storage algorithm, Avis and Rappaport [AR]
found a set of 20 points without any empty convex hexagon. The current record
holders are Fabella and O’Rourke [FO] who used other programs to find a set of
22 points without an empty convex hexagon.




St

TOPOLOGICALLY SWEEPING AN ARRANGEMENT 181

PrROBLEM 5.1.4. Compute a largest empty convex subset of S.

Let T be an empty convex subset of S with leftmost point p. By the same projec-
tive transformation as that used above, p is mapped into a point with infinite y
coordinate and T is mapped into an empty concave chain, that is, the image of no
point in S lies vertically above any edge of the chain. So we try to compute a
longest empty concave chain of S. An edge e = (p, q) is forbidden if there is a point r
vertically above e. In dual space p, g, and r correspond to three lines p', ¢, r’ such
that p’ and ¢’ intersect above r’ and the slope of r’ lies between the slopes of p’ and
q'. To compute a longest empty concave chain, we use the same algorithm as for
Problem 5.1.3 with one modification: a turn (in the dual arrangement) is taken only
if it is allowed, that is, if it does not correspond to a forbidden edge in S.
Figure 5.2A shows a forbidden turn and illustrates how we can efficiently
distinguish between forbidden and allowed turns: for each line A remember the
steepest line less steep than h whose intersection with h was processed—call it f(h).
A left turn from line g to line / is now forbidden if and only if f(k) is steeper than g.

Maintaining this extra information for each line costs constant time per edge,
which implies.

TuroreM 5.1.4. The largest empty convex subset of a set of n points in E? can be
found in O(n®) time and O(n) storage.

5.2. Stabbing line segments

Let S be a set of n closed and bounded line segments in E? not necessarily
disjoint. For clarity and convenience, we assume that the 2n endpoints are in
general position. We consider two stabbing problems for S:

PrOBLEM 5.2.1. Find a line that cuts the maximal number of segments in S.

PROBLEM 5.2.2. Find a line that cuts no segment and such that the absolute
value of the numbers of segments above the line minus the number of segments
below is a minimum.

In dual space a segment (with two endpoints) corresponds to a pair of lines; a
line cuts the segment if its dual point lies in a specified double wedge of the two
lines. (If the mapping above is used, then the point belongs to the double wedge
which avoids the vertical line through the intersection of the two lines; see Fig. 5.3.)

Fig. 52A. Forbidden turn from g to h.
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line

segment

Fi6. 5.3. The dual of a line segment.

Let H be the sct of 27 lines dual to the endpoints of the segments in S. If the dual
points of two lines /, and [ fall into the same region of arrangement & (H), then /,
and /, intersect the same segments, and therefore the same number of segments. To
solve Problem 5.2.1 we compute for each region of «/(H) the number of segments
cut by a line dual to a point of the region. This piece of information is best
computed when the region is first encountered during a topological sweep (see
Fig. 5.4 for the five cases that occur). Bach manipulation can be carried out in
constant time. To get the algorithm started, we compute the count for each region
cut by the initial topological line. Even if we do this using a trivial method, this will
take only O(n) time per region and thus O(n?) time altogether. Therefore we can
improve the results obtained in [EOW] by a factor of n in storage.

THEOREM 5.2.1. A line that cuts the maximum number of n given line segments in
R? can be found in O(n*) time and O(n) storage.

To solve Problem 5.2.2, we compute for each region the number of segments inS
which lie above a corresponding line and the number which are cut by this line.

Again, this information can be propagated in constant time from one region to the
next during the topological sweep.

Fic. 5.4. The counts shown give the number of segments cut by a line whose duals falls in that
region. The last case corresponds to “passing to the other side of the plane.”
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TueorReM 5.2.2. A line that avoids all of a given set of n segments in E*> and
produces a best balance between the numbers of segments on either side can be found
in O(n?) time and O(n) storage.

It is interesting to note that the methods above do not work for the following
seemingly related problem originating in Lee and Preparata [LP]: For n segments
in E? find a direction (if it exists) such that no two shadows intersect if light is shed
from this direction. Sweeping the dual arrangement with a topological line, instead
of a straight one, does not seem to be an adequate substitute in this case.

5.3 Visibility Problems for Non-intersecting Line Segments

For solving the problem in this section we make use of the fact that the
topological sweep visits the vertices of any fixed line in the left to right order. In
dual space this means that we scan the points around any fixed point p in the order
they are met by a rotating line anchored at p. This order is not exactly the sorted
order of points around p since the line extends from p to two sides. Nevertheless, we
can “unmerge” and concatenate these sublists to get the points sorted around p in
O(n) steps. After this introductory remark we are ready to state and solve the
segment visibility problem.

Let S be a set of n relatively open, bounded, and pairwise non-intersecting
segments in £, and P the set of their 2n endpoints. We define the visibility graph V.,
as follows:

(i) the endpoints of the segments are the nodes of V,, and

(ii) for endpoints v, w the undirected edge {v, w} is an edge of V, if the
straight segment connecting v and w avoids all segments in S (see
Fig. 5.5).

Visibility graphs have been used for computing shortest paths between points
that avoid all segments in S [L, AA]: the single-source shortest path algorithm of
Dijkstra [AHU] gives a method for finding such a path between two arbitrary
points in time proportional to the number of edges in V, (see also [FT]). To
construct V,, we follow the approach of Welzl [W], which can be described
intuitively as follows.

FiG. 5.5. The visibility graph for five segments.
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Imagine that each point p in P is equipped with a ray r(p) rooted at p and
rotating around p counterclockwise through 180° from pointing down to
pointing up. At each point in time, p stores the segments s(p) that
intersects r(p) closest to p. When r(p) sweeps over a point ¢ in P then s(p)
may possibly change. (If we assume that no collinearities are present
among the points in P, then four cases can occur; see Fig. 5.6.)

Algorithmically, it is straightforward to distinguish the four cases (given p, ¢,
s(p), and s(¢g)) and to make the necessary changes in constant time, given that s(p)
and s(gq) are correct when the ray r(p) reaches g. We are left with a scheduling
problem: how to schedule the crossings of all 2xn rays over all 2n points in such a
way that s(p) and s(g) are correct when the crossing of r(p) over g is processed.
Fortunately, if we look at the dual, the consistency requirement becomes simply the
left-to-right rule satisfied by the topological sweep.

We write p— g for the event that r(p) crosses over g. Thus, the algorithm
processes a sequence (ey, . €,,) of events, with m<(%). Let x be the last point
encountered by r(¢) just before it becomes parallel to the line through p and ¢, and
let y be the first one encountered after that. If e,=[¢g— x] is scheduled before

e;=[p—q]and this is scheduled before ¢, = [¢ — y] (that is, if i <j < k) then s(g)

will have the correct value when p — g is processed.

Let now H be the set of 2n lines which are dual to the points in P. An event p — ¢
corresponds to the intersection of the lines that correspond to p and ¢. For a point
plet (I, s ba_1) be the sequence of lines connecting p with other points such that
the slope of I, is smaller than that of /,,, for 1<i<2n—2. This sequence
corresponds to the sequence of intersections of the line dual to p with the other
2n—1 lines in H, sorted from left to right. The restriction above on schedules of
events thus translates to:

—_—
-
—

r(p)
s(p) s(p)

r(p) sip) B
s(p)

(c) (d)

FiG. 5.6. First segment s(p) changing over time.
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If v and w are two vertices of .«/(H) which lie on a common line of H and v

is further left than w, then the event defined by v 1s to be processed before
the one defined by w.

Let G be the directed graph with the vertices of </ (H) as nodes and an arc from v
to wif v and w are endpoints of a common edge in o/ (H) and v is further left than
w. Any topologically sorted sequence of G’s nodes (see [Kn]) gives a sequence of
events that allows us to process a single event in constant time, as illustrated above;
the sweep algorithm of Section 3 provides exactly such a sequence. The theorem
below imporves the result of Welzl and Asano e al. [W; AA] as far as the amount
of storage is concerned: their methods need quadratic storage since they construct
./ (H) explicitly.

THEOREM 5.3.1.  The visibility graph of a set of n non-intersecting segments in E>
can be constructed in O(n*) time and O(n) storage (not including the storage needed
Jor the edges of the graph).

We now turn to a problem that can be solved by methods similar to the ones
used to construct the visibility graph ¥,:

PrOBLEM 5.32. Identify the segments of S that are hidden from another
segment 5.

Formally, we say that a segment s is hidden from S0 1f there is no relatively open
line segment which avoids S and has its endpoints on the closures of s and $o. For
an endpoint p of any segment in S and every angle o, 0 < x < 27, we let r.(p) be the
ray that starts at p and forms an angle « with the x-axis. Then we define s.(p) as
the segment in SU {s,} which intersects r,(p) closest to p (if such a segment exists).

LEMMA 5.3.2. Segment s of S is not hidden Jrom sq if and only if s, is visible from
an endpoint of s or there is an endpoint p of another segment in S and angle « such
that s=s5,(p) and sq=s_,(p).

Proof. Omitted. J

For each endpoint p of any segment in S, the algorithm maintains two rays
leaving p in opposite directions together with the segments hit first by these rays. If
5o 1s one of these segments then the other one is not hidden from 5q. All details in
the maintenance of this information are as in the construction of the visibility
graph. This process in fact lets us compute the visible pieces from s, of each
segment.

THEOREM 5.3.3. The segents of S hidden from segment s, can be identified in
O(n?) time and O(n) storage.
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5.4. Minimum Area Triangles

Let S be a set of n points in E%. Any three points p, g, r of S define a triangle

t, .., with area 4 We consider

r 2oyt

PROBLEM 5.4.1. Determine points p, ¢, r of S such that 4, , , is minimum.

If points p and ¢ are fixed then r is a point closest to the line / through p and ¢. It
follows that / can be moved continuously into a position where it contains r
without passing through any point of S. In the dual arrangement the line /
containing p and ¢ corresponds to a vertex v and point r corresponds to a line that
bounds a region with v on its boundary. Following [CGL, EOS], we propose the
following algorihtm: for each region of-the dual arrangement, test all vertex-edge
pairs on the boundary, that is, compute the corresponding triangle and record it if
its area is the current minimum. As shown in [CGL, EOS], O(n?) triangles are
tested. In terms of the sweep algorithm in Section 3, a region is examined when it is
entered; at this point, the edges and vertices of the region can be derived in
constant time each from the two horizon trees. This follows from the representation
of the horizon trees and the remarks at the end of Section 2.

THEOREM S5.4.1. The minimum area triangle defined by n points in E* can be
determined in O(n®) time and O(n) storage.

This improves the O(n”) time and storage algorithms of [CGL, EOS] and the
O(n’ log n) time and O(n) storage algorithm of [EW]. Note that the area of the
determined triangle vanishes if S contains three collinear points. A more general
approach to finding degeneracies in point sets follows in subsection 5.6.

5.5. Visiting Faces in d-Dimensional Arrangements

Even though we do not know how to generalize the topological sweep directly to
higher dimensions, a number of problems in E? can be attacked by using only the
planar methods we have developed. In this subsection we look at the problem of
listing all faces of various types in a d-dimensional arrangement. The methods we
describe will be used in later sections to solve other geometrical problems.

Let H be a set of n hyperplanes in E% For convenience, we assume that H is
non-degenerate, that is, each i-face of arrangement /() belongs to exactly d—1i
hyperplanes and any j hyperplanes intersect in a (d—j)flat (ie, a (d—j)-
dimensional linear subspace). It is also convenient to assume that H contains no
hyperplanes parallel to any coordinate axis x,. In particular, no hyperplane is
parallel to the last coordinate axis x,, which we visualize as being “vertical.” Many
problems in computational geometry, including those in the sections below, can be
solved efficiently by visiting all faces of various dimensions in «/(H) and computing
some piece of information for each face. We will show how to use topological
sweeps of two-dimensional arrangements for efficiently computing this information
for each cell (i.e., d-face) of a d-dimensional arrangement. If i-faces (2<i< d) are to
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be visited, then we ay use the same method applied to all i-flats determined by the
hyperplanes. Vertices and edges can be visited by sweeping all planes (i.e., 2-flats) in
the arrangement.

To wvisit all cells of &/(H), we sweep all two-dimensional subarrangements and
make use of a correspondence between cells and vertices of </(H). For ¢ a cell in
</ (H), define v(&), the canonical vertex of £ to be the vertex v of the boundary of ¢
that has the smallest x, coordinate among all points of . Conversely, for a vertex v
we define the canonical cell c(v) so that v(c(v))=v. This is possible since every
vertex is the bottommost vertex of exactly one cell, as by assumption the
arrangement is non-degenerate.

There 1s one unpleasant property of this association. It is clear that cells which
are unbounded from below have no canonical vertex. We can deal with this
problem by carrying out 24 runs of the sweep R, .., R,,, where the positive
(negative) x-axis is treated as the positive xaxis in run R,,_,(R5;), thus assuring
that all cells will be reached.

Suppose that we sweep a two-dimensional subarrangement in plane g which is
the intersection of d—2 hyperplanes in H. Let v and w be two vertices in this
arrangement incident to a common edge; then v and w belong to d—1 common
hyperplanes (i.e., (d—1)-flats). Let 4, and A, be the hyperplanes not common to v
and w, but which contain v and w, respectively. Assume that v already stores the
necessary information /(v) for ¢(v) (where I is application-dependent) and also that
I can be updated in constant time if we cross any hyperplane and thus enter a new
cell. Then the information I(w) for ¢(w) can be computed in constant time from
I(v), h,, h,,, v, and w. As an example let J(v) denote the number of hyperplanes
below ¢(v). Then I(w) can differ from /(v) by at most 2, since h, and A,, are the only
two hyperplanes that can separate c(v) and ¢(w). A simple example illustrating the
various possibilities in the plane is shown in Fig. 5.7.

To initialize the sweep of g, we might compute the informaton for each vertex of
the initial cut using a trivial method. If we assume that a single step in the sweep
costs constant time and that O(n) time is needed to compute / per initial vertex,
then an entire sweep costs O(n?) time. The hyperplanes in H determine (,”,)=
O(n“~?) planes, which amounts to O(n?) time altogether. Thus it is posible to visit
all faces of the arrangement .o/ (H) in time proportional to its size. It is important to
notice that this strategy works for all functions I that satisfy the computability
requirements stated above. Specific examples of such functions are discussed in
Sections 5.7, 5.8, and 5.9.

5.6. Degeneracies in Configurations

Geometrical algorithms often become complex when they have to deal with
degenerate situations—the topological sweep is no exception. As we will see in this
subsection, however, we can use the techniques we have developed to detect and
even enumerate the degeneracies present in a configuration of points. This might be
useful knowledge before our point set is processed by other algorithms. The relation
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c(w) ¢(v)
c(v) w c(w) w
i v
c(w)
cw)
w
w
c(v) c(v) 4
v

FiG. 5.7. Illustration of the four cases in the plane.

between this section and Section 4 is obvious: the objective in this section is to
discover degeneracies, while that in Section 4 to “hide” them. We start with some
definitions.

A set of i+2 points in E 0<i<d, is called an i-degeneracy if it belongs to an
i-flat but to no (i— 1)-flat. A set S of n points in E9 d> 2, is degenerate if for some
i, 0<i<d, it contains an /-degeneracy.

PrOBLEM 5.6.1. Decide whether or not S is degenerate.

To detect i-degeneracies for i<d—2, we simply test all subsets of size i+2 in
O(n“) time; so assume that S contains no degeneracies other than possibly of
dimension d— 1. Assume also that no d points of S lie on a common vertical hyper-
plane (we can perform d—1 extra runs R,, .., R;_; of our algorithm, with coor-
dinates x, and x; exchanged in run R;, to guarantee that the common hyperplane is
non-vertical at least once). If 4+ 1 points of S belong to a common hyperplane (ie.,
they are a (d — 1)-degeneracy) then the corresponding d+ 1 hyperplanes in the dual
arrangement (point (p,,..p,) is mapped to hyperplane x,=p;x,+---+
Pa_1X4_1—Pg) Meet in a common point v. Let g be a plane obtained by intersecting
d— 2 of these hyperplanes. Then v appears as the intersection of at least three lines
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in the two-dimensional subarrangement in g. It is worthwhile to note that the
technique of Section 4 which simulates non-degeneracy during a sweep can still be
applied. To detect degeneracies, however, the technique must be accompanied by a
test which checks for edges of length zero.

THEOREM 5.6.1. In O(n?) time and O(n) storage we can decide whether or not n
points in E* are degenerate, for d> 2.

We can test for points lying on spheres by testing for planar degeneracies among
certain transformed points. Call a set of i + 2 points in E“ an i-cosphericality if these
points are equidistant from a common point and belong to a common i-flat but to
no (i—1)flat, for 0<i<d We can use the algorithm above in order to decide
whether or not a set S of n points in E“ contains a cospherical subset: For point
p=(pi, .. py), define point p’' = (p,, .., py, p3+ ---+p3) in E“*'. A subset of i+ 2
points in S is an i-cosphericality if and only if the corresponding i+ 2 points in
E‘*! are an i-degeneracy; see Guibas and Stolfi [GS] for more details on this
lifting map.

We now address briefly the problem of reporting all degeneracies present in S. A
subset T of S is i-degenerate if every i+ 2 points in T define an i-degeneracy; it is
proper 1f there is no point p with T— { p} (i — 1)-degenerate; and it is maximal if it
is not contained in another i-degenerate subset of S. The proper and maximal
degenerate subsets of S imply in a trivial way all others. Furthermore the number of

such subsets can be only O(n?) (see [E]), so there is hope of reporting them
efficiently.

PROBLEM 5.6.2. For 0<i<d, enumerate all proper and maximal i-degenerate
‘subsets of S.

Edelsbrunner [E] shows how to accomplish this in O(n“) time and space. We
can decrease the storage cost to O(n+ k), where k is the total size of reported
proper and maximal degenerate subsets, by using the techniques of this paper.

For example, when d=2, we are looking to report all lines containing at least
three points of S. In the dual arrangement this corresonds to reporting all vertices
where three or more lines are concurrent. We can find those by modifying the
algorithm of Section 3 so that the stack I contains as entries ranges of indices,
where range [i j] indicates that (¢, .., ¢;) have a common right endpoint. In the
representation of HTU or HTL our convention will be that we record the highest
slope line terminating a tree segment s;* or s . This corresponds to perturbing the
highest slope line by moving it parallel to itself a small distance to its left, then
perturbing the next line in slope by moving it to its left by a much smaller distance,
etc. An elementary step sweeping over such a multiple vertex [/, j] is now easy to
handle. In updating HTU we just find the intersection of the bay from s to 57, by
propagating each of the lines supporting c;, ..., ¢;_; in turn. In each case we can
start the search from where the previous intersection was detected. We omit here
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the details of this method and its counterpart in higher dimensions; our plan is to
report on it elsewhere.

5.7. Computing Ranks of Points

Let S be a non-degenerate set of n points in £9, d=2. For a point p in S and a
halfspace U that contains p, we define r(p, U) as the cardinality of (S— {p})n U.
Then p(p)=min{r(p, U)| U is a halfspace that contains p} is called the rank of p.
Applications of ranks of points can be found in statistics and other fields.

We now translate the notion of a rank into dual space. Let H be the set of dual
hyperplanes, and let 4 € H correspond to point p in S. Consider the (d— 1)-dimen-
sional subarrangement of .«/(H) in h. For each facet (i.e., (d—1)-face) f of #(H) in
h define

a(f)=|{heH|feh™}|,

b(f)=1{heH|feh*}|.

By definition of rank, we have p(p)=min{a(f),b(f)|f is a facet of /(H)
contained in /}. The results in Section 5.5 now imply:

THEOREM 5.7.1. In O(n“) time and O(n) storage we can compute the ranks for
each one of a set of n points in E°.

5.8. Best assignment for vectors in E*

Let V= {v,, .., v,} be a set of n non-zero vectors in E% and let 4 be the set of all
ordered n-tuples («;, ..., a,), termed assignments, with o, e { +1, —1} for 1gign.
For an assignment o = («,, ..., «,), we define

n
slE)= Y ot
f=1

and let |s(«x)| be the (Euclidean) length of vector s(x).

ProBLEM 5.8.1. Given V, a set of n non-zero vectors in E? determine an
assignment « for ¥ with |s(«)| maximum.

By reduction to arangements in E“"! we can show that out of the 2"
assignments only O(n?~"') need to be considered. For vector v, in ¥ let h, denote the
hyperplane through the origin with normal v,, and let 2" and A denote the two
(open) halfspaces bounded by #4;, of which A;" is the one into which v, points.
Hyperplanes /,, for 1 <i<n, cut E¢ into various cones all with apex at the origin.
Let now p=(p,, .., #,) be an optimal assignment for V (ie., |s(u)| is maximal),
and let C denote the cone that contains the endpoint p = p(u) of s(u).

Lemma 58.1. For I1<i<n, peh’ ify;=+1andpeh; if u,=—1.

Proof. Assume the existence of an index j such that p belongs to A} but
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p;= —1. Define g =p + 2v,. Note that g is the endpoint of s(u'), where u' = (4, ...,
Wj— 15— Hjs Hjs1s s Hy). Since peh, we have a fortiori that geh'. Now g is
further from the origin than p since p lies in the positive halfspace h} and
g =p+2v;. This contradicts the optimality of u. A similar argument holds in the
other case. ||

It follows that only one assignment o, = (o, ..., ,) needs to be checked for each
cone C, namely the one with ;=41 if C<h} and o;,= —1 if C<h; . Further-
more, if s(x,) is known and D is a cone separated from C only by hyperplane h; so
that, say, C<h* and D < h~ then s(a,) = s(«) — 2v;. Therefore s(x,) can be com-
puted in constant time from s(x«.). Finally note that only one of each pair of two
opposite cones needs to be considered and that a hyperplane that avoids the origin
cuts each pair of opposite cones in a bounded (d—1)-face or two unbounded
(d—1)-faces of an arrangement of n (d— 2)-flats in 4. Sweeping all two-dimensional
subarrangements of this arrangement and inspecting all cells yields the theorem
below; the # log n term is there to handle the sorting needed when d= 2.

THEOREM 5.8.2. For n vectors in E° we can find in O(n“~"+nlogn) time and
O(n) storage an assignment o with |s(a)| maximum.

It is interesting to note that the choice of assignments checked does not depend
on the lengths of the vectors at all. It is not hard to see that exactly the vectors that
give rise to vertices of the convex hull of {s(x)|a€ 4} are checked (this convex hull
forms a zomotope about which more can be found in [E]). Consequently, the
algorithm works even if |s()| no longer denotes the Euclidean length of s(a) but
some other norm.

5.9. Extremal Shadows of Convex Polytopes

Let P be a fixed convex polytope in E9, that is, P is the convex hull of some finite
set of n points in a d-dimensional Euclidean space with 4> 3. For x a non-zero vec-
tor, the orthogonal projection of P onto the hyperplane A through the origin with
normal vector x is called P’s shadow S(x) from direction x. We define u(x) as the
(d — 1)-dimensional measure of S(x) (in E°, u(x) is the area of the two-dimensional
shadow). Obviously, p(x)= u(—x).

For each facet f of P, let v, be the outward directed normal vector with length
equal to the (d— 1)-dimensional measure of f, and let &, be the hyperplane through
the origin with normal vector v, These hyperplanes cut E“ into cones with the
origin as apex. Each cone can be thought of as a collection of directions of
projection for which the “set of visible facets” is the same. More formally, let C be a
cone thus defined and x a point in C distinct from the origin. We define F(C) as the
set of facets f of P with C in hS (where the latter is defined as the halfspace
bounded by #, on the side defined by v,). It is not hard to verify that

,u(x]=-—1—- y (x,vf)=r17<x, Y vf>‘

|x1f5F(C} feF(C)
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Let us define v-=3 . s, vs and let C be the cone such that v, has maximum
length. By a result of McKenna and Seidel [MS], v+ belongs to C; consequently,
S(ve) has maximum measure among all shadows. This maximizing cone C can be
found by a method akin to that used in the previous application 5.8. Each crossing
of a hyperplane to visit an adjacent cone either brings a new facet “into view,” or
takes one out, so v, changes only locally. As a matter of fact, v~ is actually
maximum even among all sums of the form } /. » v, where # is any subset of the
facets of P. Therefore we can also find this maximum by solving an optimal
assignment problem on the vectors v, by the method of the previous subsection
(this is a {0, 1} assignment which is linearly related to a {+1, —1} assignment).

For the shadow with minimum measure we can restrict our attention to
directions determined by the intersection of d—1 of the hyperplanes h,, for
otherwise we can move our direction onto some hyperplane and reduce the sum v.
As in Section 5.8, the measure of all shadows in the specified directions can be
computed 1n constant time per direction. The observations above improve the
algorithms in McKenna and Seidel [MS] which take either O(n“~') time and
storage or O(n~'logn) time and O(n) storage.

THEOREM 5.9.1.  The minimum and maximum shadow of a convex polytope in E“
with n facets can be computed in O(n®~"' + nlog n) time and O(n) storage.

A number of other variants of this problem are possible. For example, by
analogous techniques we can compute in the same time bounds the direction(s) of
view that maximize or minimize the number of “visible vertices.” A slightly more
challenging problem is that of computing the direction of view from which a convex
polytope in E* has the most or least vertices on its silhouette. The only difficulty in
these problems is that as we cross one of the hyperplanes discussed above, the
information associated with the curent cone changes by more than a constant
amount. For example, in the silhouette problem we are essentially “xor”ing into our
current set of silhouette vertices those of the facet coming in/out of view. However,
during the execution of the sweep through all cones, a particular facet cannot come
in/out of view more than n times (a sweep crosses a line of a two-dimensional
arrangement n — 1 times), so it contributes to the total updating cost proportionally
to n times its size. A simple argument now shows that this still leaves the total time
cost of our algorithm O(n?).

6. OPEN PROBLEMS AND CONCLUSIONS

There are several open questions associated with the problems discussed in this
paper. Among them are the following:

(a) Can the vertices of an arrangement of » lines in E? be sorted in x-order
from left to right in O(n?) time? This problem is at least as hard as the classical
problem of sorting X + ¥, which also remains open [Fr].
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(b) Can the idea of topological sweep be extended to higher dimensions?

(c) Can the topological sweep yield improved results for the problem of
computing all intersecting pairs among » line segments in E*?

(d) Can the method of Section 5.1 of trading time for space be either
completely avoided in that context, or improved?

(¢) How fast can we compute the shadow of a polytope in E° of
minimum/maximum perimeter?

In conclusion, this paper has presented a new technique for sweeping a two-
dimensional arrangement that allows us to visit all elements of the arrangement in a
consistent ordering. The technique is extremely simple to implement: nothing
beyond simple arrays (or linked lists) is needed. It is fast in both practice and
theory, where it improves either the space or the time performance of previously
known methods. The technique has many applications to planar as well as higher
dimensional problems is computational geometry. Since point sets are the duals of
arrangements, many problems about collections of points in a Euclidean space can

be attacked by using the topological sweep. Numerous examples have been given in
this paper.
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