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Introduction. Consider a configuration N of points in the Euclidean plane,
labeled 1,2,...,n. A point j is a furthest neighbour of i if d(i, j)=
max, . . ,{d(i, k)}, where d is the Euclidean distance function. An ordered pair of
points (i, j), i, j € N is a furthest neighbour pair of N if j is a furthest neighbour
of i. We let M(N) denote the number of furthest neighbour pairs defined by N.
Each point has at least one furthest neighbour, so we have M(N) > n. Our interest
is in M(n), the largest number of furthest neighbour pairs possible in a configura-
tion of n points. Avis [1] proves M(n) = 3n — 3 for even n > 4 and 3n — 4 <
M(n) < 3n - 3 for odd n > 5. Counting furthest neighbour pairs can be general-
ized to counting repeated distances with other restrictions, as discussed in [2].

This note corrects Avis’ proof for the even case and improves the result to
M(n) = 3n — 4 for odd n > 5. Also, we show that a convex set of n > 3 points has
at most 2n furthest neighbour pairs and that this bound is tight. Finally, we prove
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that the number of furthest neighbour pairs of n points in three dimensions is
subquadratic if no three points are collinear; this is the case if the set is convex.

Results in Two Dimensions. First, we introduce some terminology which borrows
from [1]. Let n, be the number of furthest neighbours of i and let m, be the number
of points j such that (j, i) is a furthest neighbour pair. We use the distance r,of i
to its furthest neighbours as a radius to define circle C, and disk D; centered at i.
Each disk D, contains all points j € N, so N lies in N7_,D,. Thus n ; can also be

defined as the number of points on C, and m, as the number of circles passing
through 1.

Avis proves M(N) <3n -3 by considering the circles C,, i =1,2,..., n, in
order of non-decreasing radius, that is, 7, < r,, ,. Each point that lies on C, is one of
two types, either one which lies on a C,, j < k or one which does not. We let & « be
the number of points of the first type and f, the number of the second type. By
definition,

n n
M(N)= Y f,+ ¥ hy.
k=1 k=2

Since each point can be intersected for the first time only once, Yi_1fi < n. This
coupled with Lemma 1 gives M(N) < 3n — 2, which can be improved to the stated
result.

Unfortunately, the original proof of Lemma 1 given in [1] uses an incorrect
argument. We present an alternate proof: '

LEMMA 1. rh, <2 fork =2,3,..., n.

Proof. Assume h, > 3. A point is of the first type with respect to C, only if it lies
on the boundary B of N¥Z/'D,. Thus C, intersects B in at least three points. Since
rp<r for all i <k, at each intersection at least one side of C, is outside B.
Consequently, the intersection points divide C, into arcs at least two of which lie
outside B. The smallest of these arcs spans an angle § < = with respect to k. Thus,
there is an index i < k such that C, intersects C, in two points that belong to this
arc. So an arc of C; spanning an angle greater than 7 must be within C,. This is a
contradiction since r; < 7,.

We use two results to prove our main theorem. The first is a technical lemma, the
other a bound on M(N) for convex sets N. In this context, a set of points is said to
be convex if each point is a vertex of the convex hull of the set.

LEMMA 2. For a set N of 2k points on a circle C, we have M(N) < 4k.

Proof. Assume the converse, that there exists a circular arrangement N of 2k
points where M(N) > 4k. Since any two different circles intersect in at most two
points, each point has at most two furthest neighbours on C. Thus M(N) = 4k.

Let u and v be furthest neighbours of s on C and ¢ be the center of C. When the
points are angularly ordered around ¢, u and v must be consecutive points. If there
were to be another point w between them, either d(s, w) > d(s, v) or d(s, u) #
d(s, v). If M(N) = 4k, a point u can be furthest neighbour of another point only if
this other point has another furthest neighbour v. Now, v can only be the
predecessor or the successor of u. Consequently, u is furthest neighbour of exactly
two points. These two points, s and 1, are also the furthest neighbours of u.
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Otherwise, u has a furthest neighbour r between s and ¢ which implies that u is
also furthest neighbour of r, a contradiction. As a consequence, the points must be
equally spaced around C. However, the line through s and ¢ will intersect another
point if an even number of points are equally spaced, so s has only one furthest
neighbour, a contradiction. Therefore, M(N) < 4k.

THEOREM 3. For a convex set N of n > 3 points, M(N) < 2n and the bound is
tight.

Proof. Label the points according to their counterclockwise order around the
convex hull of N.If v, v,,..., v, are the successive furthest neighbours of point i,
we show that only v,, can be a furthest neighbour of i + 1. Consider the perpendicu-
lar bisector between v, and v,, which passes through i. Point i + 1 is on the same
side of the bisector as v,, which means d(i + 1,v,) < d(i + 1,v,) and similarly
di+1l,v)<d(i+1v Up1)s J < m.

We maintain two pointers as we move around N, i and v, where v is a furthest
neighbour of i. Initially i = 1 and v is the first furthest neighbour of i. Each step
moves v forward until it is the n ' " furthest neighbour, when i is advanced. Neither
i nor v can retreat. We stop when i=n and v is the n,™ neighbour of n, which
must be less than or equal to the initial value of v. The situation is shown in Figure
1. Each step corresponds to a furthest neighbour pair, and the only pair not defined
by a step is represented by the initial configuration. Since i is advanced n — 1
times, and v at most n times, adding the initial pair gives M(N) <n+ (n—1) +

= 2n.

To show that the upper bound is tight, take the vertices of an equilateral triangle
and, for each vertex i, draw the shorter circular arc centered at i that connects the
other two vertices. Pick the three vertices together with n — 3 arbitrary points on
the three arcs to form N; then M(N) =

With these results we can prove the exact value of M(#n). For even n the result is
the same as in Avis [1]. For completeness and since it is requires no extra effort we
include this case.

THEOREM 4. M(n) =3n—3ifn >4 isevenand M(n) =3n — 4 ifn > 5 is odd.

Proof. We perform a case analysis on m, the number of points that are not
vertices of the convex hull of N.

(1) Let m = 0. The n points form a convex set. By Theorem 3, M(N) < 2n

(2) Let m = 1. Exactly one point i violates convexity. In this case, i cannot be
furthest neighbour of any other point. Either n;, =n — 1 or n, < n — 1. The first
possibility implies the n — 1 points lie on a circle. Thus M(N)<n -1+ 2(n—1)
which implies the result for even n. If n is odd, then by Lemma 2, M(N) < n, +
2(n — 1) < 3n — 3. Similarly, if n, < n — 1 and the rest of the points are convex,
by Theorem 3:

M(N)gsn+2(n-1)sn-2+4+2(n—-1)<3n-4

(3) Let m > 2. A total of m points violate convexity. Since none of the m points
can be the furthest neighbour of any other point,

M(N) = Enk Efk+ th <(n—m)+2(n—m)<3n—4.
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FiG. 1. Counting furthest neighbours in a convex set.

A point set N realizing this bound can be constructed. If  is even arrange n — 1
points equally spaced along a circle, one point ¢ in the center. The center point has
n — 1 furthest neighbours, and the n — 1 points have two furthest neighbours each.
Thus, M(N) = 3n — 3. If n is odd add a point along a radius between ¢ and any
other point to the construction for n — 1 points. Now, the center point has n — 2

furthest neighbours, and again every other point has two furthest neighbours; so
M(N)=13n -4,

Extensions to Three Dimensions. In three dimensional Euclidean space, we can
construct a set N of n points with M(N) > (n? + 2n)/4. Choose half of the points
on a circle C and choose the other points on the perpendicular line / through the
center of C. If n is odd, then let the number of points on C be one more than on /.
The points on / can be picked such that for each i on / and for each JjonC(i, j)is
a furthest neighbour pair. Only the lower order terms of this construction can be
improved (see [2]).

Note that the above construction uses about n/2 points which are collinear.

Interestingly, collinear points are necessary to obtain a quadratic number of furthest
neighbour pairs.

THEOREM 5. M(N) < ¢ - n*/3 if N is a set of n points in three dimensions such that
no three points are collinear.

Proof. Let r, be the distance from point i to its furthest neighbours and let S, be
the sphere with radius r, and center i. Three such spheres intersect in at most two
points since their centers are not collinear.

Define the 3-regular multi-hypergraph H with node set N that contains a
hyperedge {i, j,k} m times if points i, J, and k share m common furthest
neighbours. Since |S; N §; N S| < 2, each hyperedge can occur at most twice which
implies that H has at most 2(;’ ) hyperedges. Recall that point i is furthest

neighbour of m; other points. Thus, i contributes {";) hyperedges to H. This implies

E (%) <2(3)

i=1
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By the Cauchy-Schwartz inequality (see [3]), we infer

n
Y m, < 221573 + o(n%7?).

i=1
For example, if N is a convex set then no three of its points are collinear and

therefore, M(N) = O(n®/?). It is not known whether or not M(N) can be superlin-
ear in this case.
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