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CIRCLES THROUGH TWO POINTS
THAT ALWAYS ENCLOSE MANY POINTS*

ABSTRACT. This paper proves that any set of n points in the plane contains two points such that
any circle through those two points encloses at least n(1/2 — 1/,/12) + O(1) ~ n/4-7 points of
the set. The main ingredients used in the proof of this result are edge counting formulas for
k-order Voronoi diagrams and a lower bound on the minimum number of semispaces of size at
most k.

1. INTRODUCTION

Hayward [4] proves that any set of n points in the plane contains a pair of
points with the property that any circle through the two points encloses at
least [ 5/84(n — 2)7] of the points. Here we say that a circle encloses a point if
the point belongs to the open bounded region whose boundary is the circle.
‘We assume that the n points are in general position, that is, no three points are
collinear and no four are cocircular. The problem was introduced in [7] and
linear lower bounds slightly weaker than the one in [4] were subsequently
proved in [5] and [1]. [5] also shows that there is a set of n points with the
property that for any two points there is a circle through the two points
enclosing at most [n/47] — 1 points, and they completely solve the case for
convex point sets” — in this case [#/3] — 1 is an upper and a lower bound.
This note improves the lower bound for general sets of # points to
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That is, we prove that there are always two points such that any circle through
the two points encloses at least
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of the points. This is proved in Section 2. The proof makes use of tight bounds
of the number of edges in higher-order Voronoi diagrams as derived in [6]. It

also uses a tight lower bound on the number of semispaces of size at most k of
aset of n points in the plane; this bound is proved in Section 3. Incidentally, our
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T A finite point set is said to be convex if it is the set of vertices of a convex polygon.
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technique yields an alternate proof of the tight lower bound for convex point
sets.

2. PROOF OF THE LOWER BOUND

Our approach to the problem is quite different from the one in [4]. For any
two points p, q € S we draw the perpendicular bisector and consider the pencil
of circles through p and g (see Figure 1). For n — 2 such centers the circle goes
through a third point of § and we mark these centers on the line. The line is
now cut into n — 1 open intervals two of which are unbounded. For each such
interval, 1, there is a unique non-negative integer, p(1), such that any circle
through p and g whose center lies on 1 encloses p(1) points of S. As we move the
center from 1 to an adjacent interval, k, we get p(k) = p(1) — 1or p(k) = p(1) + 1
depending on whether the circle corresponding to the moving center passes
a point that was inside or outside the circle. This is all illustrated in Figure 1.
The problem is thus to prove that there is always a perpendicular bisector
whose smallest p value is at least

n—3 [((n—2?—-1\"
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The intervals on the perpendicular bisectors are actually edges of the so-called
higher-order Voronoi diagrams of S. For any integer k,1 <k<n— 1, the

kth-order Voronoi diagram of S, denoted as ¥ (S), is the decomposition of the
plane into maximal regions such that the k nearest neighbors of any two

Fig. 1.
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points x and y in the same region are the same. Here x and y are any two points
in a region not necessarily in S, and the k nearest neighbors of x, say, are the
k points of S whose distances from x are the k smallest. As observed in [8]
(see also [2], [6]) an interval 1 of a perpendicualr bisector is an edge of ¥%(S) if
and only if p(z) = k — 1. Our problem is thus to prove that there is always
a perpendicular bisector of two points that contains no edge of ¥5(S), for

_ _ 2_11,.’2.
kel 3—((n 2) ) + 1.
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To prove this, we make use of the following counting result proved in [6] (see
also [2]). Here an i-set of S is a subset of i points that can be defined as the
intersection of S with a half-plane; the number of i-sets of S is denoted by e;(8S).

PROPOSITION 1. Let S be a set of n points in the plane where no three points
are collinear and no four points are cocircular. The number of edges of the kth-
order Voronoi diagram of S is

k=1

(6k — 3)n — 3k — e,(S) — 3 ). elS),
i=1

forl<k<n-—1.

It is amazing that the formula in Proposition 1 gives the exact number of
edges of ¥ (S) only as a function of n and k and the number of i-sets of S,
for 1 <i < k. To maximize the number of edges we have to minimize the
number of i-sets, 1 < i < k. Avoiding the interruption of the flow of the cur-
rent argument, we postpone the proof of a tight lower bound on this minimum
until Section 3. There, the result will be stated as Theorem 3.

We now derive our result using Proposition 1. Roughly, the idea is to prove
that the first k Voronoi diagrams do not have enough edges to cover all (3)
perpendicular bisectors. Here, we say that the first k Voronoi diagrams cover
a perpendicular bisector of two points if it contains at least one edge of this
bisector. First we introduce some notation. Let ¢, be the number of edges of
7% (S), that is,

k-1
& = (6k — 3)n — 3k* — ¢,(S) — 3 Y ei(S).
i=1

The unbounded regions of 7 (S) stand in one-to-one correspondence with the
k-sets of S. Since the number of unbounded regions is equal to the number of
unbounded edges of ¥ (S), we have v, = e,(S), with v, the number of un-
bounded edges of ¥ (S). Notice that a bounded edge has two adjacent edges
on the same line whereas an unbounded edge has only one such adjacent edge.
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Picturally, we say that a bounded edge has ‘two hands’ and an unbounded
edge has ‘one hand’. If we put down two adjacent edges then one hand of one
edge holds one hand of the other edge. The second hands of both edges (if there
are any) are free (see Figure 2).

=1 =1 s

Fig. 2.

The total number of hands of all k-order edges is 2¢, — v,. If we put down all
edges of ¥, (S) we thus get ¢, = 2¢, — v, free hands. All edges adjacent to 1-order
edges belong to ¥ (S). As we put down all edges of ¥,(S) we add 2e, — v,
hands but ¢, of these hands are used to satisfy the free hands of ¥ (S). This
leaves ¢, = (26, — v;) — (28, — v, ) free hands after putting down all order-2
edges. Similarly, ¢, hands of 3-order edges are used to satisfy those free hands
which leaves ¢3 = (2e3 — v3) — (265 — v,) + (26, — v,) free hands. In general,
the number of free hands after putting down all edges of ¥;(8), 1 < i<k, is

k
(*) ¢ = E (=1 7'2¢; — vy).
i=1
It is straightforward to check that ¢, is indeed positive but we hope that the
critical reader does not take our word for it.

In order to get an upper bound on the number of covered lines, we count the
number of connected components formed by the edges that we put down on
the lines, where a connected component is a maximal connected subset of a line
that is the union of the closures of edges already put down. Clearly this is an
upper bound on the number of covered lines since a line is covered only if it
contains at least one connected component. Let 4, be the number of connected
components formed by all edges on ¥7,(S) through ¥, (S). We derive
a formula for 4, by distinguishing three cases as we put down k-order edges. If
an edge satisfies two hands at the same time it decreases the number of
connected components by one (see Figure 3(a)). If it satisfies one hand it
extends an existing connected component; it also generates a new free hand
(see Figure 3(b)). If the edge is not adjacent to any (k — 1)-order edge and
thus satisfies no free hand, then it creates a new connected component and two
new free hands (see Figure 3(c)).

pm=k—1 p=k—1 p=k-1

(a) (b) (c)
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Let ¢, &, and ¢, be the number of k-order edges of the first, second, and third
type. The number of connected components after putting down all edges of
7(S) is

j"k=j'k—1 + SC—SR.

We also have g, + &, + & = & and ¢, = 2¢, + &, which allows us to rewrite
this formula as

(#%) A= -1+ & — Pp-1.
If we iterate (x) we get

(#45) A= (ex — Puor) + (Eemy — Puz) + - + (62 — G1) + &

=

k-1
T Z, &

1

From (+) we get ¢; + ¢;-1 = 2¢; — v; which allows us to rewrite (**%) as
K
he= Y & — [(28k—1 — De—g) + Q653 — Op—3) + -+ +
i=1
-+ (282 — Uz)]

if k is odd and the same sum through {2..91 — v,)is k is even. After rearranging
the terms we get

k
Ap= Z (— l)k_iﬁi + (Uk—1 F Vkoz + - + Vsgeq)-
i=1

From Proposition 1 we get
& — &—1 = 6n — 6k + 3 — (S) — 2, ((8).

In the final calculation we distinguish the case that k is even from k odd. If k is
even we get
k2

A=) [6n— 12i + 3 — e,(S) — e5;1(S)]

i=1

= (6n + 3)%‘ - 12(”2 il 1) = i e(S)

2 =1
k2 3k X
=3kn—=-~ >~ ¥ &(8)
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If k is odd A, is

(e—1)/2

=Y [6n—6(2i+ 1)+ 3 —ez:1(S) — ex(S)] + &
i=1

k—1 (k+1)/2) k—1 K
=(6n+3)——12 B
(6n + 3) 5 ( 5 5 Eze(H

+3n—3—¢(8)=3kn——-—"-3 &S).
Thus we get the same result in both cases. If we now use Theorem 3 we get
3
Ay < 3kn — %(k2 + k) — E(k2 + k) = 3kn — 3k* — 3k.
To finally solve our problem we compute the largest k such that the number of
connected components is at least one short of the total number of lines. Thus
we would like to know the largest k such that
n
Ay < 3kn — 3k* = 3k < (2)
This is true as long as
n—1 [(n—=27% 1\ 1 1 n
In terms of labels of edges this implies that there is a line whose labels are all

greater or equals to (n — 1)/2 — (((n — 2)* — 1)/12)*/* — 1. This finally proves
our main result.

THEOREM 2. Let S be a set of n points in the plane such that no three points are
collinear and no four are cocircular. Then there is a pair of points in S with the
property that any circle through these two points encloses at least

points.

It is worthwhile to note that the lower bound of approximately n/4.7 does
not meet the currently best upper bound of [n/47 — 1. The authors of this
paper believe that the upper bound (shown by a construction in [5]) is closer to
the truth than their lower bound.
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If § is a convex point set, then

k

Z eg(S) = kn.

i=1
In this case
Ay = 2kn — 3(k? + k).

Now 4, <(3) as long as k is smaller than n/3 which implies that there is
a perpendicular bisector that contains no i-order edge, for 1 <i< [n/37] —1.
In other words there is always a pair of points such that any circle through the
two points encloses at least [n/37 — 1 of the points. This result was also
obtained in [5] using a completely different method.

3. A LOWER BOUND FOR SEMISPACE

A semispace of a finite point set S in the plane is the intersection of § with
a half-plane; it is called a k-set if its cardinality is k. This section proves a tight
lower bound on the minimum number of semispaces of size k or less for k not
exceeding n/3, n the cardinality of S. This lower bound is used in Section 2 to
prove Theorem 2. To state the lower bound, we let ¢,(S) denote the number
of k-sets of S.

THEOREM 3. Ifno three points of a set S of n points in the plane are collinear,

then
k
I 3(" ; 1)
i=1 2

and this lower bound is tight for k < n/3.

The remainder of this section presents a proof of Theorem 3. To see that the
lower bound is tight consider a triangle and place one third of the points on the
line segment that connects a corner with the center of gravity. Do this for every
corner (see Figure 4). For 1 <i < n/3, we have

k
e(S)=3i andthus Y e(S)= 3(k ;_’ 1).
i=1

To meet the assumption of Theorem 3 we perturb the points slightly so that no

three points are collinear and the k-sets remain unchanged for k < n/3.
To prove the lower bound we consider a half-period of the circular sequence
of § (see [3] or [2, Chap. 2]). This is the sequence of (3) + 1 permutations that
represent the orthogonal projections of S onto a rotating line. The permuta-
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Fig. 4.

tions keep track of the different projections as the line rotates through
nradians. If(1,2,. .., n)is the first permutation, then (n,n — 1,..., 1)is the last
one (see Figure 5). Furthermore, any two consecutive permutations differ by
exactly one swap of an adjacent point pair, and any two points swap exactly
once inside the half-period. (This assumes that no two point pairs lic on two
parallel lines which is no loss of generality.) There is a one-to-one correspon-
dence between the i-sets of S and the swaps that occur between columns i and
i+ 1 and between n — i and n — i + 1. For i < k we call these the critical
swaps. Thus, Z¥_, ¢,(S) is equal to the total number of critical swaps.

We will now argue about half-periods of circular sequences as defined above
without considering geometric realizability. The advantage of doing so is that
these are purely combinatorial objects and easier to manipulate locally than
point sets. A lower bound proved for half-periods will also be a lower bound
for the geometric problem. The reader who is unfamiliar with circular
sequences may want to consult any one of the above mentioned sources.

To further classify the swaps, we let X ¥ be the number of swaps that occur in
region ¥ e {sf, B, ¢} (see Figure 5). Thus, Z¥.;;(S) = X7 + X*

It turns out that it is useful to push the classification even further. We write
A for the points 1 through k, B for k + 1 throughn — kand Cforn — k + 1
through n. X3, stands for the number of P|Q-swaps in region %,P,Q¢€
{A, B, C}, where a P|Q-swap changes an adjacent pair ‘P to the left of Q" to ‘Q
to the left of P’. Since any two points swap only once within the half-period,
there are no B} A-, C|A-, and C|B-swaps. Thus,

XY= XG4+ Xis+ Xic+ Xpp+ X+ Xec,

for % e {sf, #,%}. We now show that we can assume w.l.o.g. that X3 , and
X¢ ¢ vanish. We do this by manipulating the half-period that corresponds to
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Fig. 5.

the point-set. The manipulations may or may not make sense in a geometric
setting.

LEMMA 4. For every half-period there is another half-period with the same
number of critical swaps that has no A} A-swaps in &/ and no C|C-swaps in .

Proof. Let a, and a, be the two A-points involved in the first 4] A-swap
within .«/. We undo this swap and let a, follow the path of &, and «, follow the
path of a, in the remainder of the half-period. This can be done since «, and «,
are adjacent in the very first permutation (otherwise, other 4| A-swaps have to
be performed before the swap of «; and a,) and are thus swapped with exactly
the same points before we undo their swap.

We now get a, and a, adjacent in the last permutation of the half-period and
we swap them then. This swap is within ¢ which implies that the number of
critical swaps is unaffected by this delaying transformation. The assertion
follows since we can perform a sequence of such transformations eventually
eliminating all A A-swaps in ./, and similarly all C|C-swaps in 4.

By the same argument we can defer all 4| 4-swaps in € and all C|C-swaps
in o/ to the end of the half-period without changing the number of critical
swaps. Similarly, all B} B-swaps can be deferred to the end of the half-period
without increasing the number of critical swaps. At the end, all B-points
gather in & where any additional swaps do not affect our count at all. It is
important for us that these transformations do not increase the number of
critical swaps (they may decrease the number) and that they considerably
simplify the pattern in which the swaps can occur. We review what these
simplifications are.

(i) X4 4 =0 which implies that within o/ every A-point moves mono-
tonically to the right.
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(i) All 4] A4 swaps in € occur at the end of the half-period when all
A-points are gathered in . Thus, an A-point that enters € cannot leave
it again.

(i) Properties (i) and (ii) imply that any A-point enters and leaves % at
most once, ¥ € {4, B€)}.

(iv) By symmetry we know that any C-point is first in € (where it moves
monotonically to the left), then in £ and finally in .o/

(V) Xg5=Xb5=0

We use this to derive a simplified formula for the sum of the numbers of
i-sets, | < i < k. As mentioned above, Z¥_, ;(S) = X + X*, and we have

X =Xp+ Xc+ Xfc+ X&c
and
X=X54+ X5+ X8+ X

Clearly X5 5 + X% ¢+ X%5 + X%c = k(k + 1) = 2(*%") because this counts
for each A-point the number of right moves it takes to move from its initial to
its final position, not counting the moves within #. Symmetrically, X% - +
XGc+ X§c+ X{c=2¢*%"). Thus

E k+1
Y elS) =4 por 57 Xic—Xc+ Xec+ X4
i=1

The end of the proof of Theorem 3 is near. To finish it we just need to show that
Xic+XGc—XZc— X94<(*3Y). To simplify the notation we define
Xac=X4c+ X%c Xce=X&cand X, 4 = X% 4, and we set out to prove
Xac— Xce— Xaas<(*3h).

We label the A-points as A,, A4,,..., A, such that 4, is the ith A-point
entering %, Similarly, the C-points are labelled such that C; is the ith C-point
entering /. For each A; we define af as the number of C-points that are in € as
A;is about to enter. We let a; be the number of A-points in & at this moment.
The contribution of 4; to X, — X¢cc — X, 4 is at most af — a since it
cannot swap with more than af C-points within € and it has to swap with at
least i’ A-points within € later. In order to avoid double counting we consider
any 4 | C-swap in & that A, is involved in as the contribution of the C-point.
Similarly, we define ¢ as the number of A-points in &7 when C;is about to enter
< and cf as the number of C-points left in % at this moment. The contribution
of Cito X ¢ — Xce— X 4418 at most ¢ — cf. We therefore have

(af —a? + ¢ = cf).

=

Xac—Xee—Xyu <

13

1
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The trick that we use here is that we account for the combined contribution of
A; and C,, for every i. If A; enters € before C; enters </, then af > ¢ which
implies af — a¥ + ¢ — cf < af. In the other case, that is, when C; enters
s before A; enters €, we have c¢f > af and thus af —a¥ + ¢ — cf < 7.
But now, af < k+ 1 —i since i — 1 positions in € are already occupied by
A, through A4;_,, and similarly ¢f < k + 1 — i. This yields

k . k+1
Xac—Xce—Xpa< Z(k+l—1)=( ? )
i=1

which completes the proof of Theorem 3.

4. DISCUSSION

In this paper we prove that every set of n points in the plane has two points
such that any circle through the two points encloses at least ¢+ n of the points,
for ¢ ~ 1/(4.7). The best upper bound on the maximum c is 1/4 and it is
believed to be tight.

The lower bound on the minimum number of i-sets, for 1 < i < n/3, of a set
of n points in the plane (Theorem 3 in Section 3) has also applications to
k-order Voronoi diagrams. It is known that the kth-order Voronoi diagram of
a set § of n points (no three collinear and no four cocircular) has

k—1
R=Q2k—1n—(k*—1)— > e(S)
i=1
regions, 3R — 3 — ¢,(S) edges, and 2R — 2 — ¢(S) vertices. Theorem 3 thus
implies that for k — 1 < n/3 we have
5k* 3k
Rﬂ(Zk—l)n—T+7+1
regions and that this tight. It is rather straightforward to prove that
€(S) = 2k + 1 which now implies that there are at most (6k — 3) — 15k%/2 +
5k/2 — 1 edges and at most (4k — 2) — 5k + k — 1 vertices, if k — 1 < n/3.
These bounds are probably not tight since e,(S) and Z¥=!e;(S) are not
minimized by the same S.
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