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PARTITIONING SPACE FOR RANGE QUERIES*

F. FRANCES YAQT, DAVID P. DOBKIN:, HERBERT EDELSBRUNNERS,
AND MICHAEL S. PATERSONC®

Abstract. It is shown that, given a set S of points in R*, one can always find three planes that form
an eight-partition of S, thatis, a partition where at most n/8 points of S lie in each of the eight open regions.
This theorem is used to define a data structure, called an ocrant tree, for representing any point set in R’
An octant tree for n points occupies O(n) space and can be constructed in polynomial time. With this data
structure and its refinements, efficient solutions to various range query problems in two and three dimensions
can be obtained, including (1) half-space queries: find all points of § that lie to one side of any given plane;
(2) polyhedron queries: find all points that lie inside (outside) any given polyhedron; and (3) circle queries
in R*: for a planar set S, find all points that lie inside (outside) any given circle. The retrieval time for all
these queries is T(n) = O(n" +m), where a = 0.8988 (or 0.8471 in case (3)), and m is the size of the output.
This performance is the best currently known for linear-space data structures that can be deterministically
constructed in polynomial time.
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L. Introduction. Consider a database that contains a collection of records with
multidimensional keys. Given a range query, which is specified by certain constraints
on the value of the multidimensional key, the database is expected to return the set
of all records (or some function of the set of all records) whose keys satisfy those
constraints. Efficient solutions to range queries are important both in themselves and
also as subroutines for solving other multidimensional search problems. In this paper
we will consider solutions to range queries that use only linear space for data structure
storage.

There is an extensive literature on efficient algorithms for handling orthogonal
queries, that is, queries with constraints of the form OQ=k=by, a5k = by,
where the key is (k;, -« -, ky). Relatively little is known about solving queries of more
general types, such as half-space queries, where the constraints are linear inequalities
ak,+- - -+ azk, = c. Willard [W] was the first to consider half-space queries for d =2,
and gave a solution with linear space and sublinear query time O(n®), where a = 0.774.
Edelsbrunner and Welzl [EW] improved a to log, (v3+1)/2~0.695. Both of these
results are based on the fact that a set of »n points in R? can be partitioned by two
lines so that each open quadrant contains at most n/4 points.

For d =3, the first nontrivial time bound was O(n®) for & =0.98 by Yao [Y]. The
data structure is based on a partition of any point set by three planes into eight regions
with the property that no seven regions together contain more than 23/24 of the points.
Such a partition was obtained by making use of the concept of a centerpoint of a set
(see [YB]).

In this paper, we prove a stronger result on partitions in R® by using the Borsuk-
Ulam theorem of topology. It is shown that, given a set S of n points in R’ one can
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always find three planes that form an eight-partition of S, that is, a partition where at
most n/8 points of S lie in each of the eight open regions. This theorem is used to
define a data structure, called an ocrant tree, for representing any point set in R°.
Efficient solutions to various range query problems in R? and R can be obtained by
using this data structure and its refinements. For example, one can solve in time
O(n"***+m), where m is the size of the output,

1) half-space queries: find all points that lie to one side of a query plane;

2) polyhedron queries; find all points that lie inside {outside) a query polyhedron;

and

3) circle queries in R”: given a planar set, find all points that lie inside (outside)

a query circle.
An octant tree for n points occupies O(n) space and can be constructed in O(n®log n)
preprocessing time.

The paper contains five sections. In §2 we define the concepts necessary for
discussing space partitions in both the continuous case and the discrete case. Section
3 contains the proof of the main theorem of the paper. In § 4 we present and analyze
several data structures based on the main theorem for representing point sets. Finally
Wwe comment on open problems and related results in § 5.

2. Preliminaries. We use S?~' to denote the unit sphere {(x;, x5, + -, x,)|xT+x3+
“o+xg=1} in R% An oriented hyperplane (or hyperplane for short) h in R? with
normal vector v=(v;, v,, -+, v,)e $¢ 1 is defined by an equation ¥ vx, =1 If v has
length 1, then the real number ¢ is the distance of h from the origin; it is the unique
scalar for which the point ¢- v lies on h. The hyperplane h separates R into a positive
half-space h™ defined by ¥ vx;>t and a negative half-space h™ defined by ¥ vix, <.
When we consider continuous functions defined on the collection of hyperplanes in
R, we assume that the latter is endowed with the topology of S*7'x R through the
representation of h by (v, t). Corresponding to h = (v, r) we let —h denote the hyperplane
(—v,—1); thus, —h is a hyperplane defined by the same equation as h but with the
opposite orientation.

We shall limit our discussions to R? with d =3 in this paper. A hyperplane in R*
will simply be called a plane. For a set S of n points in R®, we are interested in finding
three planes h,, h., h; so that at most n/8 points lie in each of the eight open regions
defined by the three planes. Such a triple (hy, h», h;) is termed an eight-partition of S.
We shall prove the existence of an eight-partition for any finite point set by first
transforming the problem to a continuous framework. Thus, let A be a positive density
function defined on some bounded, connected region in R>, and let an eight-partition
of A be a triple of planes (h,, h,, h) that partitions A into eight parts of equal mass.

Lemma 2.1. If every positive density function over a bounded connected region in
R® has an eight-partition, then every finite point set in R has an eight-partition.

Proof. We replace a set S of n points with a density function A by placing at
each point p € S a small ball b(p) of uniform mass (1-8)/n with radius & and center
p- We choose ¢ to be small enough so that a set of balls can intersect a common plane
only if their centers are coplanar. Let C be a large sphere of volume || C| which
contains all the balls, and place additional density 8/||C|| uniformly inside C. Thus
the total mass over C is 1, and the mass outside of the union of the balls is less than
8, which is chosen to be less than 1/2n. Suppose we find an eight-partition for A with
planes (h,, hy, ;). Then we can find (h,, h,, k) with the property that (1) pe h, if
b(p) intersects h,, and (2) pe h; Uk, (or h; Uhy) if b(p) lies in h} (or h7). This is
possible by the choice of e. The partition (i, h,, ;) has the property that there are
at most n/8 points in each of the eight open regions of the partition. O
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Because of Lemma 2.1, it suffices to prove the existence of eight-partitions in the
continuous setting. Let A be a density function as described in the lemma. Any triple
of planes (h,, h,, h;) partitions A into the eight proportions denoted by ay.-(hy, hs, h3)
for x, y, z€{0, 1}, where the £th subscript is 0 or 1 depending on whether the region
lies in hy or h;. We shall abbreviate dy-(M, hy, hy) as a,,. whenever possible. Thus,
agyo denotes the mass contained in hy M hs N h3, and a,,, denotes the mass contained
in hy M hy M hs.(See Fig. 1, where v, is the normal vector to h,.) The a,,.'sare continuous
functions of h,, h,, and h,. We use * as a subscript to indicate a summation of the
ay,.’s where that subscript can assume both 0 and 1. For example, we write a,. for
YOy = Qyot @y, and a,,, for ¥ . a,. =ag,e+ Ay, + a0+ ay,, ete.

Lix,2
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a a
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Fig. 1

DEeFINITIONS. Let A be a positive density function on R?, and consider the B 8
defined by three planes (h,, h,, hy). We say that

1) h, is a bisector of A if a,,, =3 for x€{0, 1};

2) the pair (h,, h,) forms a four-partition of A if a,,, =} for all x, ye{0,1};

3) thetriple (hy, h,, h;) forms an eight-partition of A if a,,. =5 forall x, y, z€ {0, 1}.

In order to achieve a,,, =4 for all x, y, z it is convenient to form eight linear
combinations of the a,,.’s as follows. Let fj; =Y . €5 a,., where &} = (—1)" with
b=(i,j, k) - (x,y,z)=ix+jy+ kz. For example, fopo= Auyy =1, flo0= Aoy — A144, and

f1m=ann*“anl*_ﬂm**“arl;p

The fy’s, like the a,,.’s, are continuous functions of h,, h,, and h;. Note that f},, is
symmetric in the first and the second arguments: f;,4(h;, hs, hs) = f110(ha, hy, hs). Also,
when we flip the sign of an argument h,, the function f,,. either changes sign or not
depending on whether the corresponding subscript in f,,. is 1 or 0. For example, for
(=1, fio(=hy, by, b)) =—f110o(hy, hs, hs); while for €=3, fiolhy, ha,—hy) =
SJiiolhy, ha, hy). We state these symmetry properties in the next lemma.
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LEMmma 2.2.

1) fiulhy, hy, hy) = Jjw(ha, by, hs).

2) Jip(=hy, hy, hsy) = (_l)lj;jk(hl s ha, h3).

Proof. Immediate from the definition of fix. 0

In seeking an eight-partition for A, we shall make use of the following characteriza-
tion in terms of the f;’s.

Lemma 2.3.

1) hy is a bisector of A if and only if fio0=0.

2) the pair (h,, h,) forms a four-partition of A if and only if fi00=fo10=fr10=0.

3) The triple (h,, h,, ;) forms an eight-partition of A if and only if fx =0 for all
(i, j, k) # (0,0, 0).

Proof. 1) oy = a4 =3 if and only if Gouy— @144 = fi00=0 since Qogg+ Uryye =
Sooo= 1.

2) Note that

Jioo 1 1 =1 =1 Qo0x
foxo » 1 -1 1 —1}f agy
fiio 1 -1 -1 111 @04
Jooo 1 1 1 1/ \ay,

If ooy = @01y = @104 = apiy =4, then fioo=fo10=rfi10=0 and Jfoo=1. Since the 4x4
matrix is nonsingular, indeed orthogonal, the converse is also true.

3) We show that the matrix of the coefficients {e}°} is orthogonal, and so
nonsingular. Since

xyz _xyz __ (X, 9,2} i+ j+j k+k")
% Eijk Eiijrr = L (=1)
xyz xyz

=0unless i=1i', j=j', and k= k',
the inner product of any two distinct rows of the matrix is zero. ]

3. Eight-partition in R>. It is well known that a four-partition can always be found
for a positive density function over a bounded connected region in R’ (See, e.g.,
[Me].) We first show this as a lemma and then prove a slightly stronger version in R?
for later use. _

LEmMA 3.1 (Four-Partition). Let A, and A, be two positive density functions on
the plane whose domains are bounded, connected, and separable by a line L. There is a
unique (unoriented) line L' that bisects A, and A, simultaneously.

Proof. For any point p on L, let £, and r, be the (unique) lines that go through
p and bisect A, and A,, respectively. We can assume that L is vertical and that A, is
to the right of L. As p moves up L from bottom to top, the slope of r, decreases
continuously and monotonically from oo to —00, while that of ¢, increases continuously
and monotonically from —o to . Hence there is a unique p for which ¢, and 7,
coincide, giving the desired L' 0

We next consider four-partitions in R>.

LEMMA 3.2. Let A, and A, be two positive density functions in R® whose domains
are bounded, connected, and separable by a plane h. Let S, =S" denote the set of unit
vectors in R? that are parallel to h. Then,

1) for any ue S, there is a unique plane p(u) parallel to u which bisects Ay and A,
simultaneously and has an orientation induced by u;

2) the mapping f: S,— S* which maps u € S, to the normal vector of p(u) gives a
continuous antipodal mapping of S, into S, i.e., f(—u) = —f(u) for all u€ S,.
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Proof. Forany u€ S,, a plane p(u) parallel to u bisects Ay and A, simultaneously
if and only if the projection of p(u) along the direction u (onto a plane normal to u)
gives a line that bisects the projections of A, and A, simultaneously. The intersection
of h and p(u) is a line parallel to u. The orientation of u gives it a natural orientation
which can be used to define the left and right half-planes of h with respect to this line.
The orientation of p(u) is chosen so that these lie respectively in the positive and
negative half-spaces determined by p(u). By Lemma 3.1, p(u) is unigue.

Itis easy to see that the function f defined in (2) is continuous and antipodal. O

We shall make use of the d =2 case of the following topological theorem in
proving that every density function A in R’ can be eight-partitioned.

THEOREM (Bursuk-Ulam). Let f: S9— R be a continuous, antipodal map, i.e.,
f(=p)=—f(p) for pe §°. Then there is a point pe S* such that f(p)=0.

A proof of the Borsuk-Ulam theorem can be found in textbooks on algebraic
topology such as Munkres [Mu]. The theorem does not extend in general to mappings
defined on direct products of spheres. However, we can establish the following extension
for mappings defined on the torus S'x S' which satisfy certain additional symmetry
properties. This lemma is sufficient, as we shall see, for establishing the existence of
eight-partitions in R>.

LEmMA 3.3. Let f: §'x 8" R? be a continuous map such that

1) fis symmetric, i.e., f(u, v) =f(v, u),

2) fis antipodal in each argument, i.e., f(u, —v) =fl—u, v)=—f(u, v), and

3) fis constant on the diagonal {(u, u)|lue S'}.

Then there is a point pe S' x S' such that f( p) =0.

Proof. We can represent S'x S' by the square 2 =[0, 27]x [0, 277] with opposite
sides identified. Consider the rectangle ? ={(u, v)|7=u+0v=3m u=v=u+ 7} con-
tained in 2 with vertices A=(#7/2,7/2), B=(0, ), C=3n/2,37/2), and D=
(m, 2m) (Fig. 2). Note that f is constant on side AC by property (3), constant on side
BD since f(u, u+ ) =—f(u, u) by (2), and defined identically on AR and CD sinéé
Sf(u,v)=f(u+a v+7). The involution (u, v)<> (v, u+7) maps square ABFE to
FECD and vice versa, while f(v, u+a)=—f(q, u)=~f(u, v). Consider any map
a: P~ §? which identifies sides AB and CD, contracts BD and AC to points, and
maps every pair of points of the form (u, v) and (v, u+#)in P to a pair of antipodal

D
- AN 2m
B T
0
0 T 2

FiG. 2.
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points (p, —p) on §° Such an e yields an induced continuous function f': §*+— R*
where f'(a(p))=f(p) for pe ?. Since [’ is an antipodal map, it follows from the
Borsuk-Ulam theorem that f’, and hence f, must map some point onto the origin
of R*. 0

Main THEOREM. Let A be a positive density function over a bounded connected
region in R, and let wye S” be given. Then there exists a triple of planes (h,, hy, hs)
which forms an eight-partition for A, and where the normal vector of h; is wy.

Proof. By Lemma 2.3, this is equivalent to finding h,, h,, h; such that
fix(hy, by, hy) =0 for all (i, j, k) # (0,0, 0). Since h,, h,, and h; must be bisectors for
A, and for any u € S’ there is a unique bisector h, for A with normal vector u, we can
define functions gy $%x $?x §%— R by

(1} gl}'k(u: U, W} =j:jk(hu’ hvs hw}'

the gy’s are obviously continuous. It suffices to find u, and v, such that gy,0=g10: =
go11= €111 =0 at (uy, vy, wy). We can limit the choice of u, (or v,) to the set {u} (or
{v}) for which (h,, h,,) (respectively, (h,, h,,)) forms a four-partition, i.e.,

(2) gioi{u, v, wo)=0 and go;,(u, v, wy) =0.

By Lemma 3.2, the set of (u, v) that satisfies (2) is homeomorphic to S§'x 8'. Our goal
is thus to find a point (u,, vy) € S'x §' where both of the functions

def def
Go(u, v) = gnoly, v, wy) and G,(u, v) = gy1;(y, v, Wo)

def
are zero. Let G = (G,, G,): S' x S'— R”. Note that G is symmetric in its two arguments
and antipodal on each S' by Lemma 2.2 and (1):

G(u, v) = G(v, u),
G(u, —v)=—-G(u, v).
Furthermore it is easy to verify that on the diagonal we have
G(u, u)=(1,0).

It follows from Lemma 3.3 that there exists (g, vo) € §' X 8" such that G(u,, ve) = (0, 0).
We conclude that (h,, h,, h,,) yields the desired eight-partition. g

LEMMA 3.4. Consider a partition of R* into eight open regions by three mutually
intersecting planes. Any plane h in R® can intersect at most seven of these eight regions.

Proof. Define the origin O to be the point where the three planes meet, and axes
X, Y, and Z to be the lines where pairs of planes intersect. Then O divides each axis
into two half-axes {X*, X7}, {Y", Y7}, and {Z7, Z7}. Without loss of generality,
assume that h intersects the half-axes X, Y*, and Z*. Then h does not intersect the
open region bounded by X, Y, and Z~. 0

The Borsuk-Ulam theorem also leads to the following well-known corollary (see,
e.g., [E]), which we shall employ in defining a data structure in § 4.2. We state it in
the discrete version for convenience.

THEOREM (Ham-Sandwich Cut). Ler S,,S,, -+, S, be d finite point sets in R4
There exists a hyperplane which simultaneously bisects S,, S5, -+, Sy.

4. Data structures and algorithms. Let S be a finite set of points in R’. We will
describe several tree structures for representing S, based on partitions of S by planes.
These partitions are obtained by recursive applications of the theorems proved in the
last section, and the resulting tree structures are suitable for the purpose of half-space
retrieval and related searches on S.
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We first present g recursive partition scheme based on the main theorem, giving
a data structure termed an ocrant tree. Two variations of this basic scheme are derived
by applying recursion in more intricate ways. The retrieval time is analyzed for each
scheme, with the last variant achieving a retrieval time of (n*®) for half-space query.

4.1. Octant tree. An octant tree is a recursively defined structure for storing a
finite set S of points in R*. If S is empty the octant tree is the special node NIL,
otherwise the root of the octant tree contains a plane h, and its left, middle, and right
children represent the subsets SN h™, SN h,and SNA™, respectively. More precisely,
the middle child points to a two-dimensional data structure for SN A (suchasa polygon
tree [W] or a conjugation tree [EW]), while the left and right children point to the
root nodes of octant trees for SN h™ and SN h™, respectively. We define the domain
of any node v, denoted by dom (v), to be the intersection of the “regions” on the path
from the root to v. That is, the domain of the root is the whole space, and if v is a
child of w, and h is the plane stored at w, then dom (v) is the intersection of dom (w)
with h~, h, or h™, depending on whether v is the left, middle, or right child of w. The
set stored at v, denoted by S(v), is SN dom ( 1

The plane h at each node v of the octant tree is chosen so that both [S(v)N h7|
and |S(v) N h™| are at most |S(v)|/2. There is no difficulty in finding planes with this
property, but, without further conditions, such a data structure would have poor
worst-case performance for half-space retrieval. (For example, k-d trees [B] require
O(n) time in the worst case.) In the schemes to be described, we achieve better
performance by appropriately grouping the tree nodes so that all nodes within a group
can share a common plane. For this purpose, we build octant trees recursively from
small primitive trees and define the grouping among the nodes of a primitive tree. The
data structures pointed to by middle children represent the corresponding two-
dimensional sets efficiently for a retrieval time of O(1®) for a set of size t, where
6=0.695 [EW]. These substructures are ignored in the recursive structures described
below and contribute just O(n®) terms to the recurrence relations given.

OcTtaNT TREE A. In this basic scheme, the primitive tree is of height 3 and all
nodes on the same level share the same plane (see Fig. 3). The existence of such
primitive trees is implied by the Main Theorem. The octant tree is obtained by applying
recursion at the leaves of the primitive tree. In the figure solid nodes represent the
roots of primitive trees.

FiG. 3.
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A search algorithm for the octant tree can be derived recursively from a search
algorithm for the corresponding primitive tree. The general search strategy for primitive
trees, with respect to a query plane g, is to identify those leaves in the primitive tree
which need not be searched further. More precisely, a leaf v can be excluded from
future search if dom (v) lies completely in a half-space of g, since the entire set S(v)
can be either reported or discarded. A leaf satisfying this condition is said to be free
with respect to q.

By Lemma 3.4, the primitive tree has at least one free leaf with respect to any
query g. Furthermore, the time required to identify the free leaves is bounded by a
constant. Thus the search time for the derived octant tree is proportional to the total
number of nodes visited. The recurrences below yield upper bounds for the search
time. The reporting time, which is always linear in the size of the result, is not included
here. Let f(n) denote the maximum number of nodes visited in an octant tree for a
set of n points. The constant & arising from the two-dimensional subtrees has value
at most 0.695.

Lemma 4.1. f(n) satisfies the recurrence relation

fn)=7+7f(n/8)+0(n?),

which gives a search time of O(f(n))= 0(n®) for a =logg 7~ 0.9358.

Proof. In Fig. 3, the seven upper nodes of the primitive tree are visited, followed
by visits to the seven substructures of size at most n/8 corresponding to the non-free
leaves. The total number of nodes visited from middle children is at most O(n®). The
linear recurrence relation is solved by standard techniques (see, e.g., Knuth [ K ]). a

4.2. Refined octant trees.

OctanT TrREE B. In this variant of the basic scheme, we apply recursion to the
four sets at level 2, while requiring that the same h, be used as the first plane for all
four sets. The primitive tree is of depth 2 (see Fig. 4). Here we take advantage of the
strength of the Main Theorem, which allows one of the three partitioning planes to
be an arbitrary bisector.

To estimate the search time for scheme B, let f(n) (and g(n)) denote the maximum
number of nodes searched for any query, when the search starts at a root-level (and,
respectively, second-level) node v of the primitive tree with S(v)=n.

0114 Ohy Chs OChs Chg Ohg  Ohy Qh?

Fi1G. 4.
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LemMA 4.2. f(n) and g(n) satisfy the recurrence relations
S(n)=4+3f(n/4)+g(n/8)+ O(n®),
gn)=1+2f(n/2)+ O(n®),

which give a search time under scheme B of O(f(n))= O(n®), where B=09163.

Proof. Suppose without loss of generality that the rightmost of the eight lowest
nodes, r, is free. The algorithm visits the three upper nodes and the parent of r, then
recurses from the root level in the three left subtrees. In the fourth subtree, since r is
free the search can begin at the second-level node which is r’s sibling. This yields the
first inequality. For the second, a search begun at second-level node searches that node
and recurses on its children, which are root-level nodes. Substituting the second
inequality into the first, we have

S(n)=5+3f(n/4)+2f(n/16)+ O(n®).

The recurrence yields f(n) = O(n®), where 8=~09163. 0O

OcTtaNT TrEE C. This is a hybrid of schemes A and B with some further
refinements. The primitive tree has six leaves on level 3 and one leaf on level 2. (See
Fig. 5.) The six leaves on level 3 are divided into two triplets, where each triplet is to
share a common first plane in the recursion. This is possible since, by the Ham-Sandwich
theorem, any three point sets in R? can be bisected by a single plane. We choose each
triplet to consist of three octants that do not share any common faces; indeed the six
octants can be divided into two such triplets as shown in Fig. 6, where the octants are
represented as the vertices of a cube.

Ohs Oh3 Ohs ® b3

N AN AN AN

%
®h; @®h; @h; @hy ®h; Ohy O O
A a b B C C U \%

Fi1G. 5.

Again, define f(n) and g(n) as in the analysis of scheme B. We have the following
bound for f(n).
LEMMA 4.3. Under scheme C, f(n) satisfies the recurrence relation

f(n)=10+f(n/4)+4f(n/8)+4f(n/64)+ O(n®),
which gives a search time of O(f(n))=0(n") for y=~10.8988.
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Proof. There are a number of cases to consider depending on which of the eight
nodes is free.

If A is free then the intersection of the query plane g with the other domains will
be similar to Fig. 7. The domains A, B, and C are bisected by h,, while hs bisects a,
b, and c. In the worst case, g will intersect both halves of B and C but, by our choice
of the triplets, g cannot intersect both halves of a, b, and c. (In Fig. 7, the intersections
of g with a, b, and ¢ form three regions which cannot be simultaneously intersected
by the line representing the intersection of ¢ and hs.) For the case detailed in Fig. 7,
our algorithm is to search the six non-leaf nodes of the primitive tree; recursively

i hy

FiG. 7.
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search from the parent of U and V; recursively search a, b, B, and C; search the node
labelled c¢; and search from the second-level node corresponding to the child of ¢
which is intersected by g. This yields the inequality

(3) f{n)§7+f(n/4)+4f(nf8)+g(n/16)+0(n8).

If U is free the intersection with g is similar to Fig. 8. Here at most two of A, B,
and C and two of a, b, and ¢ can have both of their halves (with regard to h, and hs,
respectively) intersected by g. For the case detailed in Fig. 8, our algorithm is to search
the upper seven nodes; search the nodes labelled B and b; recursively search q, ¢, A,
and C; recursively search the single children of B and b which are intersected by g;
and recursively search V. The corresponding inequality is

(4) f(n)=9+4f(n/8)+2g(n/16)+g(n/8)+ O(n®).

We also have two inequalities for g(n), depending on whether the second-level node
where the search starts is the left child or the right child of a root node.

(5) g(n)=3+4f(n/4)+ O(n®),

(6) 8§) =2+2f(n/4)+f(n/2)+ O(n®).

The worst case is obtained by substituting (5) into (3), resulting in
f(n)=10+£(n/4)+4f(n/8)+4f(n/64) + O(n®).

This yields f(n) = O(n”), where y=0.8988. 0

4.3. Preprocessing cost. We look at the time it takes to construct an octant tree
for a set S of n points. First consider the computation of an eight-partition (h,, h,, h,)
for S. The first bisector h; can be found in O(n) time by a median-finding algorithm.

hs hj

Fi1G. 8.
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We may assume that h, and h; are each determined by three points of S. For each of
the O(n®) possible choices of (ha, h3), we decide in O(n) time whether it forms an
eight-partition together with A, by explicitly counting the number of points in each
octant. This amounts to a total time of O(n’) with linear space. The time can be
reduced to O(n®) by lowering the cost due to counting as follows. For any two fixed
points a, b, of S, order the remaining points as ¢, €, * - by projecting the points of
S onto a plane perpendicular to ab and sorting them radially. Coplanar sets of more
than three points introduce some complication but no significant difficulty. With such
orderings imposed on h; during the search, the task of counting associated with each
pair (hy, hy) becomes that of doing simple updates, with constant cost per pair on
average. The total cost for finding an eight-partition, with sorting included, is thus
O(n®) time using O(n”) storage. The storage could be made O(n) by repeating the
sorting operations whenever needed, but at a cost of O(n® log n) time.

The octant trees of schemes A and B can be constructed by applying the above
procedure recursively, in total time O(n® log") for n points with linear space. The same
bounds hold for scheme C since a ““ham-sandwich cut” can be computed in O(n* log n)
time,

4.4. Circle queries. The problem of finding all points (x, ¥) in a planar set § which
lie inside a query circle C with center (a, b) and radius r can be transformed to a
three-dimensional half-space problem in the following way. Since

(x, y) lies inside C& (x—a)*+(y-b)’<r?
©—2ax-2by+(x*+y?)<rl-a’— b2,

if we represent each point (x, y) € § as a three-vector v=(x, y, x>+ »?) then the query
with respect to circle C can be expressed by the half-space query:

(=2a,-2b,1) - v< (r*—a®-b?).

A geometrical interpretation of this is that, when the xy-plane is projected upwards
onto the paraboloid z = x’+y?, the image of any circle in the plane is the intersection
of the paraboloid with a suitable plane. The same technique is applicable to other
“algebraic” queries, but the dimension required is the number of degrees of freedom
of the defining polynomial. ' '

Rather than transform the circle query problem to three dimensions, we can also
recast our three-dimensional results in two dimensions. An eight-partition of the n
points on the paraboloid can be projected down to the xy-plane yielding a partition
by three circles. Our main theorem implies the following.

CoROLLARY 4.4. For any finite point set and any bisecting circle in the plane, there
are two circles such that each open region defined by the three circles contains at most
one eighth of the set.

Any query circle intersects at most six of the eight regions since it meets the three
circles in at most six points. Using (the two-dimensional projection of) octant tree A
we therefore get O(f(n)) query time, where

f(n)=7+6f(n/8)+ O(log n) = O(n*),

for @ =logs 6=~0.8617. Here the O(logn) term takes care of the one-dimensional
queries needed for points lying on the partitioning circles.
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We get the same worst-case time using scheme C, but using octant tree B yields
a slight improvement. The query time is O(f(n)), where

f(n)=7+2f(n/4)+4f(n/16) + O(log n),
which solves to f(n) = O(n*), with B = (log, v3+1)/2~0.8471.

4.5. Polyhedron queries. Based on our half-space query schemes, we may derive
a generalization to queries for convex polyhedra defined by the intersection of r
hyperplanes. For fixed r, the query time will be of the same order as for half-space
queries, but the constant increases with r. Since every (not necessarily convex) poly-
hedron can be decomposed into (possibly unbounded) tetrahedra (see, e.g., [Ch1]),
it would suffice to consider at most tetrahedral queries, i.e., r=4.

Let f,(n) be the number of nodes of the data structure for n points which may

@ be searched in a query with a polyhedron C which is the intersection of r half-spaces,

where we already have by our scheme C above that f,(n) = O(n”) for some y=0.8988.
We prove by induction on r that £,(n) = O(n?) for all r.

Suppose f,_,(n) = O(n”) and consider a query with respect to the intersection of
r half-spaces. In the case that some level-three node is free with respect to all r planes,
the recurrence relations considered above hold for f,. In the alternative case, there are
two level-three nodes, each free with respect to some plane or planes. Now the
recurrence terms in f, are diminished and so correspond to some exponent y' <,
while the remaining terms are of size O(f,_,(n))= O(n”). The result is that fi(n)=
O(n”) and the induction is complete.

Of course the same general argument is valid for any similar scheme in any finite
dimension.

5. Conclusion and related results. We showed that an eight-partition with three
planes exists for any finite point set in R>. It was brought to the authors’ attention
that a continuous version of this theorem was proved earlier by Hadwiger with a more
complicated argument [H]. As far as generalization to higher dimensions is concerned,
Avis [A] showed that 2% partitions are not always possible in dimensions d =5. A

_ different and simpler proof is as follows (stated here for d =5 but adaptable to any

. larger d). Take thirteen small balls of equal mass and place them in general position
so that no hyperplane in R® can intersect more than five of the balls. Now, in any
2°-partition, each ball must be cut by at least two hyperplanes, otherwise some orthant
will contain at least one half of a ball, with at least 1/26 of the total mass, which is
larger than the 1/32 required. Therefore, for all thirteen balls, at least 26 instances of
hyperplane-ball intersections are needed. Since the balls are in general position, five
hyperplanes can provide at most 25 such instances and we have a contradiction.

The case of d =4 still remains an intriguing open question, that is, given any finite
point set in R*, whether one can always partition it with four hyperplanes such that
each orthant contains at most 1/16 of the points. Our proof for d =3 makes use of
the Borsuk-Ulam theorem of algebraic topology; the case of d =4 is likely to draw
further upon classical mathematics for its resolution.

Generalizations of eight-partition to higher dimensions have also been studied
along a different line, by relaxing the number of hyperplanes used in the partition (see
Cole[Co] and Yao and Yao [YY]). Deterministic partition schemes in three dimensions
that are different from those described in this paper can be found in [EH]. Their main
construction is based on the existence of a six-partition for every planar point set, that
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is, a partition by three concurrent lines so that every wedge contains at most one sixth
of the points. The best such scheme achieves O(n“) query time, where a = 0.9089.

Haussler and Welzl [HW] used random sampling to demonstrate the existence of
partitions in R? which afford the best query time currently known. In particular, for
d =3 their scheme gives query time O(n®) for a=0.857. As their algorithms are
probabilistic, it is an interesting open question to find deterministic algorithms for
constructing partitions to realize similar or even better query time in R¥

Chazelle [Ch2] established a lower bound under a rather general model for range
search in d dimensions. His bound in three dimensions assuming O(n) space is
Q(n*”log n) query time.
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